首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
Recent studies have indicated that a significant amount of iron in MgSiO3 perovskite (Pv) is Fe3+ (Fe3+/ΣFe = 10–60%) due to crystal chemistry effects at high pressure (P) and that Fe3+ is more likely than Fe2+ to undergo a high-spin (HS) to low-spin (LS) transition in Pv in the mantle. We have measured synchrotron Mössbauer spectroscopy (SMS), X-ray emission spectroscopy (XES), and X-ray diffraction (XRD) of Pv with all iron in Fe3+ in the laser-heated diamond-anvil cell to over 100 GPa. Fe3+ increases the anisotropy of the Pv unit cell, whereas Fe2+ decreases it. In Pv synthesized above 50 GPa, Fe3+ enters into both the dodecahedral (A) and octahedral (B) sites approximately equally, suggesting charge coupled substitution. Combining SMS and XES, we found that the LS population in the B site gradually increases with pressure up to 50–60 GPa where all Fe3+ in the B site becomes LS, while Fe3+ in the A site remains HS to at least 136 GPa. Fe3+ makes Pv more compressible than Mg-endmember below 50 GPa because of the gradual spin transition in the B site together with lattice compression. The completion of the spin transition at 50–60 GPa increases bulk modulus with no associated change in density. This elasticity change can be a useful seismic probe for investigating compositional heterogeneities associated with Fe3+.  相似文献   

2.
We have measured magnetic hysteresis loops, zero-field-cooled (ZFC) and field-cooled (FC) remanence, and low-field AC susceptibility as a function of temperature between 2 and 40 K for a single crystal several mm in size and for two powders of manganese carbonate (mineral rhodochrosite, MnCO3), one ground from a natural precipitate (grainsize ∼100 μm) and another synthesized in the laboratory (grainsize ∼10 μm). For the single crystal, measurements carried out both in the basal (easy magnetization) plane and along the trigonal (hard magnetization) axis yielded, expectedly, grossly different magnetic properties. In the basal plane, hysteresis appears to be mostly controlled by domain wall movement at the two lowest temperatures studied, 5 and 15 K, as indicated by a fairly broad switching field distribution. At 25 K and above, however, magnetization reversal occurs at a single, well defined magnetic field, which we interpret as a characteristic field of the in-plane magnetic anisotropy. Hysteresis in the basal plane is observed up to 36 K which is above the nominal Néel temperature of rhodochrosite (34.3 K). In addition, a sharp coercivity peak occurs at 34.5 K. Rather unexpectedly, hysteresis is also observed for the magnetic field applied along the trigonal axis. It is very small at 5 K but develops gradually with increasing temperature, coercivity reaching maximum of 100 mT at 28 K and remanence peaking at slightly higher temperature (30–31 K). Hysteresis along the trigonal axis is observed up to 37 K. Hysteresis temperature dependence conforms with the AC susceptibility versus temperature curve which shows a maximum at 36.5 K. ZFC/FC remanence curves also closely match the temperature dependence of remanence extracted from hysteresis loops. We suggest that this behavior could be due to the presence of a minor, about 1 at.% amount of Fe2+ substituting for Mn in the crystalline lattice of rhodochrosite. Hysteresis measurements on powders have revealed a significant enhance in coercivity, up to 50 mT for the 100-μm powder and up to 150 mT for the 10-μm one. FC/ZFC ratio amounts to about 2 for the natural powder, while for the synthetic one, which is essentially pure material, it barely exceeds unity. FC/ZFC ratio can thus be viewed as a sensitive indicator of iron incorporation into rhodochrosite.  相似文献   

3.
Mechanisms and kinetics of the post-spinel transformation in Mg2SiO4 were examined at 22.7–28.2 GPa and 860–1200 °C by in situ X-ray diffraction experiments using synchrotron radiation combined with microstructural observations of the recovered samples. The post-spinel phases nucleated on spinel grain boundaries and grew with a lamellar texture. Under large overpressure conditions, reaction rims were formed along spinel grain boundaries at the initial stage of the transformation, whereas under small overpressure conditions, the transformation proceeded without formation of reaction rims. Mg2SiO4 spinel metastably dissociated into MgSiO3 ilmenite and periclase, and stishovite and periclase as intermediate steps in the transformation into the stable assemblage of MgSiO3 perovskite and periclase. Topotactic relationships were found in the transformation from spinel into ilmenite and periclase. Kinetic parameters in the Avrami rate equation, time taken to 10% completion, and the growth rate were estimated by analysis of the kinetic data obtained by in situ X-ray observations. The empirical activation energy for 10% transformation decreases with increasing pressure because the activation energy for nucleation becomes smaller at larger overpressure conditions. Extrapolations of the 10% transformation to ∼700 °C, which is the lowest temperature expected for the cold slabs at ∼700 km depth, suggest that overpressure of more than ∼1 GPa is needed for the transformation. Because the growth rate is estimated to be large even at low-temperatures of ∼700 °C and overpressures of 1 GPa, the depth of the post-spinel transformation in the cold slabs is possibly controlled by nucleation kinetics.  相似文献   

4.
The diffusion behavior of HA and Nd in the presence of HA in compacted bentonite was investigated experimentally by means of the through-diffusion method. Breakthrough of HA is observed in 1 and 0.1 mol dm−3 NaCl solution and is more significant with a lower dry density such as 1.2 Mg m−3. The one dimensional diffusion model taking parallel complexation equilibrium into account was fitted to the experimentally obtained breakthrough curves and concentration profiles, and the diffusion parameters, such as effective diffusivity and rock capacity factor, were evaluated. The obtained effective diffusivity, around 10−11 m2 s−1, for HA and Nd–HA is comparable to the previously reported value. Using these parameters, predictive calculations were performed to evaluate the effect of HA concentration and sorption distribution coefficient. It is indicated that the effect of sorption distribution coefficient is significant only for a short period and that relatively low HA concentrations might bring higher diffused mass depending on the diffusion behavior of dominant species.  相似文献   

5.
The peridotites from north of the town of Nain in central Iran consist of clinopyroxene-bearing harzburgite and lherzolite with small lenses of dunite and chromitite pods. The lherzolite contains aluminous spinel with a Cr number (Cr# = Cr/[Cr + Al]) of 0.17. The Cr number of spinels in harzburgite and chromitite is 0.38–0.42 and 0.62, respectively. This shows that the lherzolite and harzburgite resulted from <18% of partial melting of the source materials. The estimated temperature is 1100 ± 200 °C for peridotites, the estimated pressure is <15 ± 2.3 kbar for harzburgites and >16 ± 2.3 kbar for lherzolites and estimated fo2 is 10?1±0.5 for peridotites. Discriminant geochemical diagrams based on mineral chemistry of harzburgites indicate a supra-subduction zone (SSZ) to mid-oceanic ridge (MOR) setting for these rocks. On the basis of their Cr#, the harzburgite and lherzolite spinels are analogous to those from abyssal peridotites and oceanic ophiolites, whereas the chromites in the chromitite (on the basis of Cr# and boninitic nature of parental melts) resemble those from SSZ ophiolitic sequences. Therefore, the Nain ophiolite complex most likely originated in an oceanic crust related to supra-subduction zone, i.e. back arc basin. Field observations and mineral chemistry of the Nain peridotites, indicating the suture between the central Iran micro-continent (CIM) block and the Sanandaj–Sirjan zone, show that these peridotites mark the site of the Nain–Baft seaway, which opened with a slow rate of ocean-floor spreading behind the Mesozoic arc of the Sanandaj–Sirjan zone as a result of change of Neo Tethyan subduction régime during middle Cretaceous.  相似文献   

6.
Stable cosmogenic isotopes such as 3He and 21Ne are useful for dating of diverse lithologies, quantifying erosion rates and ages of ancient surfaces and sediments, and for assessing complex burial histories. Although many minerals are potentially suitable targets for 3He and 21Ne dating, complex production systematics require calibration of each mineral–isotope pair. We present new results from a drill core in a high-elevation ignimbrite surface, which demonstrates that cosmogenic 3He and 21Ne can be readily measured in biotite and hornblende. 21Ne production rates in hornblende and biotite are similar, and are higher than that in quartz due to production from light elements such as Mg and Al. We measure 21Nehbl/21Neqtz = 1.35 ± 0.03 and 21Nebio/21Neqtz = 1.3 ± 0.02, which yield production rates of 25.6 ± 3.0 and 24.7 ± 2.9 at g? 1 yr? 1 relative to a 21Neqtz production rate of 19.0 ± 1.8 at g? 1 yr? 1. We show that nucleogenic 21Ne concentrations produced via the reaction 18O(α,n)21Ne are manageably small in this setting, and we present a new approach to deconvolve nucleogenic 21Ne by comparison to nucleogenic 22Ne produced from the reaction 19F(α,n)22Ne in F-rich phases such as biotite. Our results show that hornblende is a suitable target phase for cosmogenic 3He dating, but that 3He is lost from biotite at Earth surface temperatures. Comparison of 3He concentrations in hornblende with previously measured mineral phases such as apatite and zircon provides unambiguous evidence for 3He production via the reaction 6Li(n,α)3H  3He. Due to the atypically high Li content in the hornblende (~ 160 ppm) we estimate that Li-produced 3He represents ~ 40% of total 3He production in our samples, and must be considered on a sample-specific basis if 3He dating in hornblende is to be widely implemented.  相似文献   

7.
Adsorption of Pb2+ from aqueous solution onto a sugarcane bagasse/multi-walled carbon nanotube (MWCNT) composite was investigated by using a series of batch adsorption experiments and compared with the metal uptake ability of sugarcane bagasse. The efficiency of the adsorption processes was studied experimentally at various pH values, contact times, adsorbent masses, temperatures and initial Pb2+ concentrations. A pH of 4.5 was found to be the optimum pH to obtain a maximum adsorption percentage in 120 min of equilibration time. The composite showed a much enhanced adsorption capacity for Pb2+ of 56.6 mg g−1 compared with 23.8 mg g−1 for bagasse at 28 °C. The Langmuir adsorption isotherm provided the best fit to the equilibrium adsorption data. The pseudo first-order, pseudo second-order, intraparticle diffusion and Elovich kinetics models were used to analyse the rate of lead adsorption and the results show that the Elovich model is more suitable. The thermodynamic parameters of adsorption, namely ΔG°, ΔH° and ΔS°, were determined over the temperature range of 20–45 °C. The adsorption of Pb2+ onto both bagasse and the sugarcane bagasse/MWCNT composite was found to be spontaneous but for the former adsorbent it was enthalpy-driven whereas for the latter it was entropy-driven. Desorption of the lead-loaded adsorbents was fairly efficient with 0.1 mol dm−3 HCl. Overall this composite has the potential to be a good adsorbent for the removal of Pb2+ from wastewaters.  相似文献   

8.
At the appropriate times, silica diffusion in clay is possibly the rate determining process for the dissolution of vitrified waste disposed of in a clay layer. For testing this hypothesis, combined glass dissolution/silica diffusion experiment are performed. SON68 glass coupons doped with the radioactive tracer 32Si are sandwiched between two cores of humid Boom Clay, heated to 30 °C. Due to glass dissolution, 32Si is released and diffuses into the clay. At the end of an experiment, the mass loss of the glass coupon is measured and the clay core is sliced to determine the diffusion profile of the 32Si released from the glass in the clay.Both mass loss and the 32Si diffusion profile in the clay are described well by a model combining glass dissolution according to a linear rate law with silica diffusion in the clay. Fitting the experiments to this model leads to an apparent silica diffusion coefficient in the clay between 7 × 10−13 m2/s and 1.2 × 10−12 m2/s. Previously determined values from diffusion experiments at 25 °C are around 6 × 10−13 m2/s (In-Diffusion experiments) and 2 × 10−13 m2/s (percolation experiments). The maximal glass dissolution rate for glass next to clay is around 1.6 × 10−7 g glass/m2 s (i.e. 0.014 g glass/m2 day). In undisturbed clay, the measured silica concentration is around 5 mg/L. Combining these values with the previously measured (In-Diffusion experiments) product of accessible porosity and retardation factor, leads in two ways to a silica glass saturation concentration in clay between 8 and 10 mg Si/L.Another candidate for the rate determining process of the dissolution of vitrified waste disposed in a clay layer is silica precipitation. Although silica precipitation due to glass dissolution has been shown experimentally at 90 °C, extending the model with silica precipitation does not lead to much better fits, nor could meaningful values of a possible precipitation rate be obtained.  相似文献   

9.
We investigated the concentration and site occupation of ferric iron (Fe3+) in (Mg,Fe)O to understand the influence of point defects on transport properties such as atomic diffusion, electrical conductivity and viscosity. We conducted Mössbauer spectroscopy of (Mg0.8Fe0.2)O single crystals synthesized at temperatures from 1673 to 2273 K and pressures from 5 to 15 GPa with Re–ReO2 and Mo–MoO2 oxygen fugacity buffers. The isomer shift of the Mössbauer spectra suggests that Fe3+ occupies mostly the tetrahedral site at reduced conditions and both the octahedral and tetrahedral sites at oxidized conditions. We formulate a thermodynamic model of point defect dissolution in (Mg,Fe)O which suggests that unassociated tetrahedral Fe3+ is more stable than unassociated octahedral Fe3+ at high-pressure and low oxygen fugacity due to the effect of configurational entropy. The pressure dependence of Fe3+ concentration indicates a change in the dominant site occupancy of Fe3+: (1) Fe3+ in the tetrahedral site, (2) Fe3+ in the octahedral site, and (3) defect clusters of Fe3+ and cation vacancy, in the order of increasing oxygen fugacity and decreasing pressure. This is in reasonable agreement with previously reported experiments on Fe3+ concentration, Mg–Fe interdiffusivity and electrical conductivity. We consider it plausible that (Mg,Fe)O accommodates Fe3+ in the tetrahedral site down to the lower mantle. Based on our results and available experimental data, we discuss the solubility competition between Fe3+ and protons (H+), and its implications for transport properties in the lower mantle.  相似文献   

10.
Two mineralogically and chemically distinct rhyolite magmas (T1 and T3) were syn-erupted from the same conduit system during the 21.9 ka basalt intrusion-triggered Okareka eruption from Tarawera volcano, New Zealand. High spatial resolution U–Th disequilibrium dating of zircon crystals at the ~ 3–5 μm scale reveals a protracted yet discontinuous zircon crystallization history within the magmatic system. Both magma types contain zircon whose interiors predate the eruption by up to 200 ka. The dominant age peak in the T1 magma is ~ 30 ka with subordinate peaks at ~ 45, ~ 75, and ~ 100 ka, whereas the T3 magma has a dominant zircon interior age peak at ~ 90 ka with smaller modes at ~ 35 and ~ 150 ka. These patterns are consistent with isolated pockets of crystallization throughout the evolution of the system. Crystal rim analyses yield ages ranging from within error of the eruption age to at least ~ 90 ka prior to eruption, highlighting that zircon crystallization frequently stalled long before the eruption. Continuous depth profiling from crystal rims inward demonstrates protracted growth histories for individual crystals (up to ~ 100 ka) that were punctuated by asynchronous hiatuses of up to 30 ka in duration. Disparate zircon growth histories can result from localized thermal perturbations caused by mafic intrusions into a silicic reservoir. The crystal age heterogeneity at hand-sample scale requires considerable crystal transport and mixing. We propose that crystal mixing was achieved through buoyancy instabilities caused by mafic magma flow through crystal mush. A terminal pre-eruptive rejuvenation event was capable of mobilizing voluminous melts that erupted, but was too short (< 102–103 years) to result in extensive zircon growth. The contrasting, punctuated zircon histories argue against closed-system fractional crystallization models for silicic magmatism that require protracted cooling times following a mostly liquid starting condition.  相似文献   

11.
The production rate of cosmogenic 3He in apatite, zircon, kyanite and garnet was obtained by cross-calibration against 10Be in co-existing quartz in glacial moraine boulders from the Nepalese Himalaya. The boulders have 10Be ages between 6 and 16 kyr and span elevations from 3200 to 4800 m. In all of these minerals 3He correlates with 10Be and is dominantly cosmogenic in origin. After modest correction for non-cosmogenic components, 3He/10Be systematics imply apparent sea-level high-latitude (SLHL) apparent production rates for 3He of 226 atoms g? 1 yr? 1 in zircon, 254 atoms g? 1 yr? 1 in apatite, 177 atoms g? 1 yr? 1 in kyanite, and 153 atoms g? 1 yr? 1 in garnet. These production rates are unexpectedly high compared with rates measured elsewhere in the world, and also compared with proposed element-specific production rates. For apatite and zircon, the data are sufficient to conclude that the 3He/10Be ratio increases with elevation. If this reflects different altitudinal scaling between production rates for the two isotopes then the SLHL production rates estimated by our approach are overestimates. We consider several hypotheses to explain these observations, including production of 3He via thermal neutron capture on 6Li, altitudinal variations in the energy spectrum of cosmic-ray neutrons, and the effects of snow cover. Because all of these effects are small, we conclude that the altitudinal variations in production rates of cosmogenic 3He and 10Be are distinct from each other at least at this location over the last ~ 10 kyr. This conclusion calls into question commonly adopted geographic scaling laws for at least some cosmogenic nuclides. If confirmed, this distinction may provide a mechanism by which to obtain paleoelevation estimates.  相似文献   

12.
To date, studies of the stability of subsurface ice in the McMurdo Dry Valleys of Antarctica have been mainly based on climate-based vapor diffusion models. In University Valley (1800 m), a small glacier is found at the base of the head of the valley, and adjacent to the glacier, a buried body of massive ice was uncovered beneath 20–40 cm of loose cryotic sediments and sandstone boulders. This study assesses the origin and stability of the buried body of massive ice by measuring the geochemistry and stable O–H isotope composition of the ice and applies a sublimation and molecular diffusion model that accounts for the observed trends. The results indicate that the buried massive ice body represents an extension of the adjacent glacier that was buried by a rock avalanche during a cold climate period. The contrasting δ18O profiles and regression slope values between the uppermost 6 cm of the buried massive ice (upward convex δ18O profile and SD-18O = 5.1) and that below it (progressive increase in δ18O and SD-18O = 6.4) suggest independent post-depositional processes affected the isotope composition of the ice. The upward convex δ18O profile in the uppermost 6 cm is consistent with the ice undergoing sublimation. Using a sublimation and molecular diffusion model, and assuming that diffusion occurred through solid ice, the sublimation rate needed to fit the measured δ18O profile is 0.2 ? 10? 3 mm yr? 1, a value that is more similar to net ice removal rates derived from 3He data from cobbles in Beacon Valley till (7.0 ? 10? 3 mm yr? 1) than sublimation rates computed based on current climate (0.1–0.2 mm yr?1). We suggest that the climate-based sublimation rates are offset due to potential ice recharge mechanisms or to missing parameters, particularly the nature and thermo-physical properties of the overlying sediments (i.e., temperature, humidity, pore structure and ice content, grain size).  相似文献   

13.
Hot springs in the Marsyandi Valley, Nepal, vent CO2 sourced from metamorphic fluids that mix with shallow groundwaters before degassing near the Earth's surface. The δ13C of spring waters ranges up to + 13‰, while that of the coexisting free gas phase is close to ? 4‰. Empirical and thermodynamic modelling of this isotopic fractionation suggests > 97 ± 1% CO2 degassing. The calculated minimum total CO2 degassing in the Marsyandi catchment is 5.4 × 109 mol/yr from a Cl-based estimate of the spring water discharge to the Marsyandi River and the fraction of CO2 degassed. Extrapolated to the whole of the Himalayas, this implies a probable minimum metamorphic CO2 flux of 0.9 × 1012 mol/yr, or ~ 13% of solid Earth CO2 degassing. The calculated flux is a factor of three greater than the estimated CO2 drawdown by silicate weathering in the Himalayas. Himalayan metamorphic degassing contributes a significant fraction of the global solid Earth CO2 flux and implies that metamorphism may cause changes in long-term climate that oppose those resulting from the orogenic forcing of chemical weatherability.  相似文献   

14.
Combining cosmogenic 3He and 21Ne (3Hec and 21Nec) measurements on both pyroxene and olivine from the Pleistocene Bar Ten flows (85–107 ka) greatly increases our ability to evaluate the accuracy of 3Hec and 21Nec production rates and, therefore, 3Hec and 21Nec surface exposure ages. Comparison of 3Hec and 21Nec age-pairs yielded by experimentally determined production rates and composition-based model calculations indicates that the former give more accurate surface exposure ages than the latter in this study. However, experimental production rates should be adjusted to the composition of the minerals being analyzed to obtain the best agreement between 3Hec and 21Nec ages for any given sample. 21Nec/3Hec values are 0.400 ± 0.029 and 0.204 ± 0.014 for olivine and pyroxene, respectively, in Bar Ten lava flows, in agreement with previously published values, and indicate that 21Nec/3Hec in olivine and pyroxene is not affected by erosion and remains constant with latitude, elevation, and time (up to 10 Myr). Samples with 21Nec/3Hec that do not agree with these values may indicate the presence of non-cosmogenic helium and/or neon. The neon three-isotope diagram can also indicate whether or not all excess neon in mineral separates comes from cosmogenic sources. An error-weighted regression for olivine defines a spallation line [y = (1.033 ± 0.031)x + (0.09876 ± 0.00033)], which is indistinguishable from that for pyroxene (Schäfer et al., 1999). We have derived a production rate of 25 ± 8 at/g/yr for 21Nec in clinopyroxene (En43–44) based on the 40Ar/39Ar age of the upper Bar Ten flow. Our study indicates that the production rate of 21Nec in olivine may be slightly higher than previously determined. Cosmogenic 3He and 21Ne remain extremely useful, particularly when paired, in determining accurate eruption ages of young olivine- and pyroxene-rich basaltic lava flows.  相似文献   

15.
In general, the rate and timing of calcite precipitation is in part affected by variations in cave air CO2 concentrations. Knowledge of cave ventilation processes is required to quantify the effect variations in CO2 concentrations have on speleothem deposition rates and thus paleoclimate records. In this study we use radon-222 (222Rn) as a proxy of ventilation to estimate CO2 outgassing from the cave to the atmosphere, which can be used to infer relative speleothem deposition rates. Hollow Ridge Cave, a wild cave preserve in Marianna, Florida, is instrumented inside and out with multiple micro-meteorological sensor stations that record continuous physical and air chemistry time-series data. Our time series datasets indicate diurnal and seasonal variations in cave air 222Rn and CO2 concentrations, punctuated by events that provide clues to ventilation and drip water degassing mechanisms. Average cave air 222Rn and CO2 concentrations vary seasonally between winter (222Rn = 50 dpm L? 1, where 1 dpm L? 1 = 60 Bq m? 3; CO2 = 360 ppmv) and summer (222Rn = 1400 dpm L? 1; CO2 = 3900 ppmv). Large amplitude diurnal variations are observed during late summer and autumn (222Rn = 6 to 581 dpm L? 1; CO2 = 360 to 2500 ppmv).We employ a simple first-order 222Rn mass balance model to estimate cave air exchange rates with the outside atmosphere. Ventilation occurs via density driven flow and by winds across the entrances which create a ‘venturi’ effect. The most rapid ventilation occurs 25 m inside the cave near the entrance: 45 h? 1 (1.33 min turnover time). Farther inside (175 m) exchange is slower and maximum ventilation rates are 3 h? 1 (22 min turnover time). We estimate net CO2 flux from the epikarst to the cave atmosphere using a CO2 mass balance model tuned with the 222Rn model. Net CO2 flux from the epikarst is highest in summer (72 mmol m? 2 day? 1) and lowest in late autumn and winter (12 mmol m? 2 day? 1). Modeled ventilation and net CO2 fluxes are used to estimate net CO2 outgassing from the cave to the atmosphere. Average net CO2 outgassing is positive (net loss from the cave) and is highest in late summer and early autumn (about 4 mol h? 1) and lowest in winter (about 0.5 mol h? 1). Modeling of ventilation, net CO2 flux from the epikarst, and CO2 outgassing to the atmosphere from cave monitoring time-series can help better constrain paleoclimatic interpretations of speleothem geochemical records.  相似文献   

16.
In the frame of the R&D activities performed on the Boom Clay for assessing the suitability of deep clayey formations for radioactive waste disposal, the transferability of the scientific results obtained on the Boom Clay in Mol to the whole Campine Basin is investigated. Boreholes were drilled at different locations (e.g. Mol, Doel, Essen) and cores were sampled over the entire thickness of the Boom Clay formation on which the migration parameters for iodide and tritiated water (HTO) are determined.At Essen, the transport parameters in the Boom Clay can be considered as homogeneous in the range from 159 m to 241 m Below Drilling Table. The average hydraulic conductivity is (5.4 ± 1.7) × 10−12 m/s. The average ηR value for iodide is 0.25 ± 0.03 and 0.42 ± 0.05 for HTO. For HTO, this high value is mainly due to a higher value in the Putte Member (0.46 ± 0.03) compared to the other members (0.39 ± 0.02). The apparent diffusion coefficient is (1.3 ± 0.1) × 10−10 m2/s for HTO and (1.1 ± 0.2) × 10−10 m2/s for iodide. The expected effect of ionic strength (increasing with depth) on the ηR value of iodide is of the same size as the measurement error, what might explain why it was not observed.On a lateral (horizontal) level, the hydraulic conductivity at the Essen-1 borehole (5.4 × 10−12 m/s) lies between that of Boom Clay in Mol-1 (2.5 × 10−12 m/s) and that of Boom Clay in Doel-2b (1.4 × 10−11 m/s). For iodide, the higher ηR value in Essen-1 and Doel-2b (ηR  0.25) than in Mol-1 (ηR  0.16) can partly be explained by a higher ionic strength of the pore water. Apart from the Putte Member at Essen-1, the HTO porosities of the Terhagen Member and the Transition zone in Essen are in the range of the average porosities observed in Mol and Doel (ηR  0.37–0.39). For both iodide and HTO, the value of the apparent diffusion coefficient Dapp is similar in Mol-1 and in Doel-2b, with a clearly higher value for HTO than for iodide. In Essen-1, the apparent diffusion coefficients for iodide and HTO are nearly equal, and slightly smaller than the iodide value in Mol-1/Doel-2b. Accordingly, the HTO apparent diffusion coefficient is considerably smaller in Essen-1 than in Mol-1/Doel-2b.  相似文献   

17.
Silica alteration zones and cherts are a conspicuous feature of Archaean greenstone belts worldwide and provide evidence of extensive mobilisation of silica in the marine environment of the early Earth. In order to understand the process(es) of silicification we measured the silicon and oxygen isotope composition of sections of variably silicified basalts and overlying bedded cherts from the Theespruit, Hooggenoeg and Kromberg Formations of the Barberton Greenstone Belt, South Africa.The δ30Si and δ18O values of bulk rock increase with increasing amount of silicification from unsilicified basalts (?0.64‰ < δ30Si < ?0.01‰ and + 8.6‰ < δ18O < + 11.9‰) to silicified basalts (δ30Si and δ18O values as high as + 0.81‰ and + 15.6‰, respectively). Cherts generally have positive isotope ratios (+ 0.21‰ < δ30Si < + 1.05‰ and + 10.9 < δ18O < + 17.1), except two cherts, which have negative δ30Si values, but high δ18O (up to + 19.5‰).The pronounced positive correlations between δ30Si, δ18O and SiO2 imply that the isotope variation is driven by the silicification process which coevally introduced both 18O and 30Si into the basalts. The oxygen isotope variation in the basalts from about 8.6‰ to 15.6‰ is likely to represent temperature-dependent isotope fractionation during alteration. Our proposed model for the observed silicon isotope variation relies on a temperature-controlled basalt dissolution vs. silica deposition process.  相似文献   

18.
The oxygen fugacity and therefore the iron redox state of a melt is known to have a strong influence on the liquid line of descent of magmas and thus on the composition of the coexisting melts and crystals. We present a new method to estimate this critical parameter from electron probe microanalyses of two of the most common minerals of basaltic series, plagioclase and clinopyroxene. This method is not based on stoichiometric calculations, but on the different partitioning behaviour of Fe3+ and Fe2+ between both minerals and a melt phase: plagioclase can incorporate more Fe3+ than Fe2+, while clinopyroxene can incorporate more Fe2+ than Fe3+. For example, the effect of oxidizing a partly molten basaltic system (Fe3+ is stabilized with respect to Fe2+) results in an increase of FeOtotal in plagioclase, but a decrease in the associated clinopyroxene. We propose an equation, based on published partition coefficients, that allows estimating the redox state of a melt from these considerations. An application to a set of experimental and natural data attests the validity of the proposed model. The associated error can be calculated and is on average < 1 log unit of the prevailing oxygen fugacity.In order to reduce the number of different variables influencing the Fe2+/Fe3+ mineral/melt equilibrium, our model is restricted to basaltic series with SiO2 < 60% that have crystallized at intermediate to low pressure (< 0.5 GPa) and under relatively oxidizing conditions (?FMQ > 0; where FMQ is the fayalite–magnetite–quartz oxygen buffer equilibrium), but it may be parameterized for other conditions. A spreadsheet is provided to assist the use of equations, and to perform the error propagation analysis.  相似文献   

19.
SHRIMP zircon U–Pb dating, mineral chemical, element geochemical and Sr–Nd–Pb–Hf isotopic data have been determined for the Yulong monzogranite-porphyry in the eastern Tibet, China. The Yulong porphyry was emplaced into Triassic strata at about 39 Ma. The rocks are weakly peraluminous and show shoshonitic affinity, i.e., alkalis-rich, high K2O contents with high K2O / Na2O ratios, enrichment in LREE and LILE. They also show some affinities with the adakite, e.g., high SiO2 and Al2O3, and low MgO contents, depleted in Y and Yb, and enrichment in Sr with high Sr / Y and La / Yb ratios, and no Eu anomalies. The Yulong porphyry has radiogenic 87Sr / 86Sr (0.7063–0.7070) and unradiogenic 143Nd / 144Nd (εNd =  2.0 to − 3.0) ratios. The Pb isotopic compositions of feldspar phenocrysts separated from the Yulong porphyry show a narrow range of 206Pb / 204Pb ratios (18.71–18.82) and unusually radiogenic 207Pb / 204Pb (15.65–15.67) and 208Pb / 204Pb (38.87–39.00) ratios. In situ Hf isotopic composition of zircons that have been SHRIMP U–Pb dated is characterized by clearly positive initial εHf values, ranging from + 3.1 to + 5.9, most between + 4 and + 5. Phenocryst clinopyroxene geothermometry of the Yulong porphyry indicates that the primary magmas had anomalously high temperature (> 1200 °C). The source depth for the Yulong porphyry is at least 100 km inferred by the metasomatic volatile phase (phlogopite–carbonate) relations. Detailed geochemical and Sr–Nd–Pb–Hf isotopic compositions not only rule out fractional crystallization or assimilation-fractional crystallization processes, but also deny the possibility of partial melting of subducted oceanic crust or basaltic lower crust. Instead, low degree (1–5%) partial melting of a metasomatized lithosphere (phlogopite–garnet clinopyroxenite) is compatible with the data. This example gives a case study that granite can be derived directly by partial melting of an enriched lithospheric mantle, which is important to understand the source and origin of diverse granites.  相似文献   

20.
Drinking water wells indiscriminatingly placed adjacent to fecal contaminated surface water represents a significant but difficult to quantify health risk. Here we seek to understand mechanisms that limit the contamination extent by scaling up bacterial transport results from the laboratory to the field in a well constrained setting. Three pulses of Escherichia coli originating during the early monsoon from a freshly excavated pond receiving latrine effluent in Bangladesh were monitored in 6 wells and modeled with a two-dimensional (2-D) flow and transport model conditioned with measured hydraulic heads. The modeling was performed assuming three different modes of interaction of E. coli with aquifer sands: (1) irreversible attachment only (best-fit ki = 7.6 day−1); (2) reversible attachment only (ka = 10.5 and kd = 0.2 day−1); and (3) a combination of reversible and irreversible modes of attachment (ka = 60, kd = 7.6, ki = 5.2 day−1). Only the third approach adequately reproduced the observed temporal and spatial distribution of E. coli, including a 4-log10 lateral removal distance of ∼9 m. In saturated column experiments, carried out using aquifer sand from the field site, a combination of reversible and irreversible attachment was also required to reproduce the observed breakthrough curves and E. coli retention profiles within the laboratory columns. Applying the laboratory-measured kinetic parameters to the 2-D calibrated flow model of the field site underestimates the observed 4-log10 lateral removal distance by less than a factor of two. This is promising for predicting field scale transport from laboratory experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号