首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of geological mapping, chemical analysis and radiometric dating of metabasic rocks of Betara Formation, and mapping and dating of those present in the Betara basement nucleus together with mylonitic granodiorite and syenogranite are reported here. U–Pb analysis of bulk zircon fractions from the metabasic rocks of the basement nucleus yielded a Statherian age of 1790 ± 22 Ma, while the metabasic rocks from the upper part of the Betara Formation yielded a Calymmian age between 1500 and 1450 Ma. This age is a minimum for the deposition of the Betara Formation. The older metabasic rocks are associated with post-tectonic, possibly anorogenic syenogranite, while the younger ones are gabbro or very porphyritic ankaramite whose REE patterns are consistent with crystallization from an N-MORB parent magma. The observations and data point to the probable events associated with extensional processes of the end of Paleoproterozoic and early Mesoproterozoic. Similar registers of Statherian (1.80–1.75 Ga) and Calymmian (1.50–1.45 Ga) extensional events are recorded in other parts of the South American and African continents. The Neoproterozoic witnessed the formation and junction of the tectonic slices which formed the Apiaí domain during the assemblage of western Gondwana.  相似文献   

2.
Many geological and geochemical changes are recorded on Earth between 3 and 2 Ga.Among the more important of these are the following:(1)increasing proportion of basalts with"arc-like"mantle sources;(2)an increasing abundance of basalts derived from enriched(EM)and depleted(DM)mantle sources;(3)onset of a Great Thermal Divergence in the mantle;(4)a decrease in degree of melting of the mantle;(5)beginning of large lateral plate motions;(6)appearance of eclogite inclusions in diamonds;(7)appearance and rapid increase in frequency of collisional orogens;(8)rapid increase in the production rate of continental crust as recorded by zircon age peaks;(9)appearance of ophiolites in the geologic record,and(10)appearance of global LIP(large igneous province)events some of which correlate with global zircon age peaks.All of these changes may be tied directly or indirectly to cooling of Earth's mantle and corresponding changes in convective style and the strength of the lithosphere,and they may record the gradual onset and propagation of plate tectonics around the planet.To further understand the changes that occurred between 3 and 2 Ga,it is necessary to compare rocks,rock associations,tectonics and geochemistry during and between zircon age peaks.Geochemistry of peak and inter-peak basalts and TTGs needs to be evaluated in terms of geodynamic models that predict the existence of an episodic thermal regime between stagnant-lid and plate tectonic regimes in early planetary evolution.  相似文献   

3.
一、对我国石油天然气工业发展历史、现状、前景的评估 1、世界天然气工业,从50年代以来迅速发展。1950年世界剩余探明储量为8.5万亿m~3,1988年初已达111.9万亿m~3。其探明储量大约每十年翻一番。据十二届世界石油大会(1987年,美国休斯敦)资料介绍,尚可寻找的储量为119万亿m~3。以目前年产约1.5~1.8万亿m~3(有人预测2020年年产可达2.0万亿m~3)计算,世界天然气储量可维持开采100年以上。从全球来看,在可望的未来,天然气仍是不可替代的重要能源和化工原料。天然气工业仍处于蓬勃发展的趋势。  相似文献   

4.
5.
6.
Cai  Guoqing  Zhou  Annan  Liu  Yi  Xu  Runze  Zhao  Chengang 《Acta Geotechnica》2020,15(12):3327-3341
Acta Geotechnica - This paper presents an experimental investigation of the soil water retention curve (SWRC) and volume change curve over a large suction range (0–286.7 MPa), and...  相似文献   

7.
《Quaternary Science Reviews》1999,18(4-5):515-530
The most recent sapropel in the deep eastern Mediterranean Sea has been deposited between 9 and 6 ka bp. Climate conditions, as revealed by the pollen records of this sapropel in marine cores, were most favorable for temperate deciduous trees, which is in agreement with the inferences from records of peripheral land pollen sites. The abundance of deciduous oak pollen is much higher than that of Artemisia (sage-brush), indicating that annual precipitation in the mid-elevation borderlands was at least 550 mm without summer drought, but more probably in the range 800–1300 mm. The pollen of Pistacia, which formed a savanna at low elevations, is also at its highest abundance and signals the absence of frost in winter, while being capable of withstanding summer drought. The early Holocene therefore appears as the post-glacial climatic optimum with the highest moisture and mildest winters. In southwest Asia, this is also the time of the Neolithic population explosion with incipient domestication of cereals, possibly following natural selection of the ‘tough rachis’ mutation in wheat and barley by the extreme aridity of the preceding Younger Dryas.  相似文献   

8.
Peng  Yu  Song  Jingyi  Cui  Tiantian  Cheng  Xiang 《Natural Hazards》2017,89(1):441-456
Natural Hazards - Inner Mongolia, located in the northern China, is a natural disaster-prone region. This study is dedicated to making a comprehensive and quantitative analysis of the...  相似文献   

9.
This paper reports in situ observations on barite (0 0 1) surface dissolution behavior in 0.1–0.001 M NaCl solutions at 30 °C using atomic force microscopy (AFM). The step retreating on barite (0 0 1) surfaces changed with increasing NaCl solution concentrations. In solutions with a higher NaCl concentration (⩾0.01 M), many steps showed curved or irregular fronts during the later experimental stage, while almost all steps in solutions with a lower NaCl concentration exhibited straight or angular fronts, even during the late stage. The splitting phenomenon of the initial 〈h k 0〉 one-layer steps (7.2 Å) into two half-layer steps (3.6 Å) occurred in all NaCl solutions, while that of the initial [0 1 0] one-layer steps observed only in the 0.1 M NaCl solution. The step retreat rates increased with an increasing NaCl solution concentration. We observed triangular etch pit and deep etch pit formation in all NaCl solutions, which tended to form late in solutions with lower NaCl concentrations. The deep etch pit morphology changed with increasing NaCl solution concentrations. A hexagonal form elongated in the [0 1 0] direction was bounded by the {1 0 0}, {3 1 0}, and (0 0 1) faces in a 0.001 M NaCl solution, and a rhombic form was bounded by the {5 1 0} and (0 0 1) faces in 0.01 M and 0.1 M NaCl solutions. An intermediate form was observed in a 0.005 M NaCl solution, which was defined by {1 0 0}, a curved face tangent to the [0 1 0] direction, {3 1 0}, and (0 0 1) faces: the intermediate form appeared between the hexagonal and rhombic forms in solutions with lower and higher NaCl concentrations, respectively. The triangular etch pit and deep etch pit growth rates also increased with the NaCl solution concentration. Combining the step and face retreat rates in NaCl solutions estimated in this AFM study as well as the data on the effect of water temperature on the retreat rates reported in our earlier study, we produced two new findings. One finding is that the retreat rates increase by approximately two-fold when the NaCl solution concentration increases by one order of magnitude, and the other finding is that the retreat rate increase due to a one order of magnitude increase in the NaCl concentration corresponds to an increase of approximately 8 °C in water temperature. This correlation may help to understand and evaluate increasing dissolution kinetics induced by the different mechanisms where barite dissolution is promoted by the catalytic effect of Na+ and Cl ions (through an increase in the NaCl solution concentration) or by an increase in the hydration of Ba2+ and SO42− (through an increase in water temperature).  相似文献   

10.
Zhang  Yilun  Rimstidt  Donald J.  Huang  Yi  Zhu  Chen 《中国地球化学学报》2019,38(4):472-480
Acta Geochimica - Kyanite is an important and slow-dissolving mineral. Earlier work has measured its dissolution rate at high temperature and acidic pH, but experimental measurements at low...  相似文献   

11.
Batch reactor experiments were conducted to assess perthitic alkali-feldspar dissolution and secondary mineral formation in an initially acidic fluid (pH = 3.1) at 200 °C and 300 bars. Temporal evolution of fluid chemistry was monitored by major element analysis of in situ fluid samples. Solid reaction products were retrieved from two identical experiments terminated after 5 and 78 days. Scanning electron microscopy revealed dissolution features and significant secondary mineral coverage on feldspar surfaces. Boehmite and kaolinite were identified as secondary minerals by X-ray diffraction and transmission electron microscopy. X-ray photoelectron spectroscopy analysis of alkali-feldspar surfaces before and after reaction showed a trend of increasing Al/Si ratios and decreasing K/Al ratios with reaction progress, consistent with the formation of boehmite and kaolinite.Saturation indices of feldspars and secondary minerals suggest that albite dissolution occurred throughout the experiments, while K-feldspar exceeded saturation after 216 h of reaction. Reactions proceeded slowly and full equilibrium was not achieved, the relatively high temperature of the experiments notwithstanding. Thus, time series observations indicate continuous supersaturation with respect to boehmite and kaolinite, although the extent of this decreased with reaction progress as the driving force for albite dissolution decreased. The first experimental evidence of metastable co-existence of boehmite, kaolinite and alkali feldspar in the feldspar hydrolysis system is consistent with theoretical models of mineral dissolution/precipitation kinetics where the ratio of the secondary mineral precipitation rate constant to the rate constant of feldspar dissolution is well below unity. This has important implications for modeling the time-dependent evolution of feldspar dissolution and secondary mineral formation in natural systems.  相似文献   

12.
The newly-discovered Shiyaogou molybdenum deposit is located in the eastern Qinling metallogenic belt in central China. The deposit contains at least 152,000 t of Mo metal and bears typical porphyry-type features in terms of its concentric alteration zonation, quartz vein-hosted Mo mineralization, veining sequence and the spatial association with concealed granite porphyries. Re–Os isotope analyses of molybdenite from the deposit yield an ore-forming age of 132.3 ± 2.8 Ma. LA-ICP-MS U–Pb zircon dating of ore-related porphyries yields crystallization ages from 135 Ma to 132 Ma, indicating a temporal link between granitic magmatism and Mo mineralization. A population of captured magmatic zircons indicates another pulse of magmatism at ~ 143 Ma. A barren granite intrusion near the deposit gives a zircon U–Pb age of 148.1 ± 1.1 Ma. These magmatic activities were concurrent with the emplacement of the nearby Heyu granitic batholith, a largely ore-barren intrusive complex formed from ~ 148 Ma to ~ 127 Ma. Zircon Ce4 +/Ce3 + ratios of ore-related porphyries are obviously higher than those of contemporaneous barren granitoids, implying an affinity between Mo mineralization and highly oxidized magmas. Moreover, zircons from these granitoids overall have decreasing Ce4 +/Ce3 + ratios from 148 Ma to 132 Ma, reflecting decreasing oxygen fugacities during magma evolution. Available geological, radiometric and stable isotopic evidence suggests that the decrease of magma oxygen fugacity was probably associated with an increase of mantle contribution to granitic magmatism and metallogenesis, which probably gave rise to successive mineralization of Mo and Au in the eastern Qinling. The intense magmatic–metallogenic events in the eastern Qinling during Late Jurassic to Early Cretaceous times are interpreted as a response to the large-scale lithosphere thinning and subsequent asthenosphere upwelling beneath the eastern part of the North China Craton.  相似文献   

13.
Melt inclusions in kimberlitic minerals and diamonds indicate that chlorides are important constituents of mantle carbonatite melts. Besides, alkaline chlorides are important constituents of saline high-density fluids (HDFs) found in diamonds from kimberlites and placers around the world. Continuous compositional variations suggest that saline and carbonatitic HDFs could be genetically linked. However, the essence of this link remains unclear owing to the lack of data on phase relations in the chloride-carbonate systems under pressure. Here we studied subsolidus and melting phase relations in the system NaCl–CaCO3–MgCO3 at 6 GPa and 1000–1600 °C using a Kawai-type multianvil press. We found that at 1000 °C, subsolidus assemblage consists of halite, magnesite, and aragonite. At higher temperatures, the stabilization of dolomite splits the subsolidus area into two partial ternary fields: halite + magnesite + dolomite and halite + dolomite + aragonite. The minimum on the liquidus surface corresponds to the halite-dolomite-aragonite ternary eutectic, situated at 1100 °C. The eutectic melt has Ca# 89 and contains 30 wt.% NaCl (26 mol% 2NaCl). The system has two ternary peritectics: halite + dolomite = magnesite + liquid located near the ternary eutectic and magnesite + dolomite = Mg-dolomite + liquid situated between 1300 and 1400 °C. Although under dry conditions incipient melting yields carbonate-dominated melt, the addition of water facilitates the fusion of NaCl and expands the liquid field to NaCl-rich compositions with up to 70 wt.% NaCl. The obtained results favor the idea that hydrous saline melts/fluids (brines) found as inclusions in diamonds could be a lower temperature derivative of mantle carbonatite melts and disagree with the hypothesis on chloride melt generation owing to the chloride-carbonate liquid immiscibility since no such immiscibility was established. We also studied the interaction of the NaCl–CaCO3–MgCO3 system with iron metal and found that carbonate reduction produces C-bearing species (Fe0, Fe-C melt, Fe3C, Fe7C3, C0) and wüstite containing Na2O, CaO, and MgO. Besides, a carbonate chloride compound, Ca2Cl2CO3, was established among the reaction products. The interaction between NaCl-bearing carbonate melt shifts its composition toward Mg-poor and NaCl-rich. Given the above, an alternative hypothesis can be proposed, according to which the interaction of alkaline chloride-bearing carbonate melts formed in the subduction zones with the reduced mantle should be accompanied by diamond crystallization and shift the composition of the melt from carbonatitic to alkali-rich saline.  相似文献   

14.
Phase equilibria in the system CaO–MgO–SiO2–CO2–H2O–NaCl are calculated to illustrate phase relations in metacarbonates over a wide-range of P–T–X[H2O–CO2–NaCl] conditions. Calculations are performed using the equation of state of Duan et al. (Geochim Cosmochim Acta 59:2869–2882, 1995) for H2O–CO2–NaCl fluids and the internally consistent data set of Gottschalk (Eur J Mineral 9:175–223, 1997) for thermodynamic properties of solids. Results are presented in isothermal-isobarical plots showing stable mineral assemblages as a function of fluid composition. It is shown that in contact-metamorphic P–T regimes the presence of very small concentrations of NaCl in the fluid causes almost all decarbonation reactions to proceed within the two fluid solvus of the H2O–CO2–NaCl system. Substantial flow of magma-derived fluids into marbles has been documented for many contact aureoles by shifts in stable isotope geochemistry of the host rocks and by the progress of volatile-producing mineral reactions controlled by fluid compositions. Time-integrated fluid fluxes have been estimated by combining fluid advection/dispersion models with the spatial arrangement of mineral reactions and isotopic resetting. All existing models assume that minerals react in the presence of a single phase H2O–CO2 fluid and do not allow for the effect that fluid immiscibility has on the flow patterns. It is shown that fluids emanating from calc-alkaline melts that crystallize at shallow depths are brines. Their salinity may vary depending mainly on pressure and fraction of crystallized melt. Infiltration-driven decarbonation reactions in the host rocks inevitably proceed at the boundaries of the two fluid solvus where the produced CO2 is immiscible and may separate from the brine as a low salinity, low density H2O–CO2 fluid. Most parameters of fluid–rock interaction in contact aureoles that are derived from progress of mineral reactions and stable isotope resetting are probably incorrect because fluid phase separation is disregarded.  相似文献   

15.
We have measured the dielectric spectra of sand and bentonite mixtures with oil and saline water (NaCl solution) in the frequency range from 50 MHz to 16 GHz at 22 °C. The measured spectra were compared with predictions in terms of the generalized refractive mixing dielectric model (GRMDM), and the respective error was estimated as a check of the model applicability to describe oil-bearing formations. The results may be useful in developing new methods of electromagnetic logging.  相似文献   

16.
The article deals with phase relations in the KFeS2–Fe–S system studied by the dry synthesis method in the range of 300–600 °C and at a pressure of 1 bar. At the temperature below 513?±?3 °C, pyrite coexists with rasvumite and there are pyrite–rasvumite–KFeS2 and pyrite–rasvumite–pyrrhotite equilibria established. Above 513?±?3 °C pyrite and rasvumite react to form KFeS2 and pyrrhotite, limiting the pyrite–rasvumite association to temperatures below this in nature. The experiments also outline the compositional stability range of the copper-free analog of murunskite (K x Fe2?yS2) and suggest that mineral called bartonite is not stable in the Cl-free system, at least at atmospheric pressure and the temperature in the experiments. Chlorbartonite could be easily produced after adding KCl in the experiment. Possible parageneses in the quaternary K–Fe–S–Cl system were described based on the data obtained in this research and found in the previous studies. The factors affecting the formation of potassium–iron sulfides in nature were discussed.  相似文献   

17.
The dissolution rate of minerals in silicate melts is generally assumed to be a function of the rate of mass transport of the released cations in the solvent. While this appears to be the case in moderately to highly viscous solvents, there is some evidence that the rate-controlling step may be different in very fluid, highly silica undersaturated melts such as basanites. In this study, convection-free experiments using solvent melts with silica activity from 0.185–0.56 and viscosity from 0.03–4.6 Pa s show that the dissolution rate is strongly dependent on the degree of superheating, silica activity and the viscosity of the solvent. Dissolution rates increase with increasing melt temperature and decreasing silica activity and viscosity. Quartz dissolution in melts with viscosity <0.59–1.9 Pa s and silica activity <0.47 is controlled by the rate of interface reaction as shown by the absence of steady state composition and silica saturation in the interface melts. Only in the most viscous melt with the highest silica activity is quartz dissolution controlled by the rate of diffusion in the melt and only after a long initiation time. The results of this study indicate that although a diffusion-based model may be applicable to dissolution in viscous magmas, a different approach that combines the interplay between the degree of undersaturation of the melt and its viscosity is required in very fluid melts.This revised version was published online September 2004 with a correction to Figure 8.  相似文献   

18.
19.
Homogeneous single crystals of synthetic monticellite with the composition \({\text{Ca}}_{0.88}{\text{Mg}}_{1.12}{\text{SiO}}_4\) (Mtc I) were annealed in a piston-cylinder apparatus at temperatures between 1000 and \(1200\,^{\circ }\hbox {C}\), pressures of 1.0–1.4 GPa, for run durations from 10 min to 24 h and applying bulk water contents ranging from 0.0 to 0.5 wt% of the total charge. At these conditions, Mtc I breaks down to a fine-grained, symplectic intergrowth. Thereby, two types of symplectites are produced: a first symplectite type (Sy I) is represented by an aggregate of rod-shaped forsterite immersed in a matrix of monticellite with end-member composition (Mtc II), and a second symplectite type (Sy II) takes the form of a lamellar merwinite–forsterite intergrowth. Both symplectites may form simultaneously, where the formation of Sy I is favoured by the presence of water. Sy I is metastable with respect to Sy II and is successively replaced by the latter. For both symplectite types, the characteristic spacing of the symplectite phases is independent of run duration and is only weeakly influenced by the water content, but it is strongly temperature dependent. It varies from about 400 nm at \(1000\,^{\circ }\hbox {C}\) to 1200 nm at \(1100\,^{\circ }\hbox {C}\) in Sy I, and from 300 nm at \(1000\,^{\circ }\hbox {C}\) to 700 nm at \(1200\,^{\circ }\hbox {C}\) in Sy II. A thermodynamic analysis reveals that the temperature dependence of the characteristic spacing of the symplectite phases is due to a relatively high activation energy for chemical segregation by diffusion within the reaction front as compared to the activation energy for interface reactions at the reaction front. The temperature dependence of the characteristic lamellar spacing and the temperature-time dependence of overall reaction progress have potential for applications in geo-thermometry and geo-speedometry.  相似文献   

20.
A large scale model test of a 1 × 2 pile group was conducted in silts to investigate its behavior under eccentric lateral loading. The model pile group consisted of two well instrumented steel piles and was installed in a large soil tank with a close spacing of three-pile diameters on centers. The test results revealed that the eccentricity of lateral loads had limited effect on the overall performances of the 1 × 2 pile group, but significantly contributed to the unevenness of internal forces of the individual piles. The coupling effect between the lateral deflection and torque gave rise to the substantial increase in the torsional resistance of individual piles within the group, comparing to that of a torsionally loaded single pile. The contribution provided by the torsional resistances of individual piles in resisting the external torque continually decreased when the applied lateral load increased. In addition, a three-dimensional finite-element analysis for the pile group was performed and the simulated response was found to be in good agreement with the measured test results. Based on the same model, more cases with different loading conditions were further analyzed. It could be concluded from the analyses that the layout of individual piles within the group obviously affected the behavior of the 1 × 2 pile group under eccentric lateral loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号