首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Early Cretaceous adakite or adakitic plutons are widely distributed in central eastern China, e.g. lower Yangtze river belt (LYRB), the south Tan–Lu fault (STLF), and the Dabie orogen. Their genesis, however, remains controversial. In this contribution, we present detailed geochemical and geochronological study on the Guandian pluton in central Anhui Province, eastern China, which has been formerly regarded as a part of the north belt in the LYRB and lately classified in the STLF. Namely, it is located near the boundary between ridge subduction related slab melting and partial melting of lower continental crust (LCC). The Guandian pluton consists of quartz monzonite and is metaluminous and high-K calc-alkaline according to the chemical composition. The samples show high SiO2 (59.15–62.32%), Al2O3 (14.51–15.39%), Sr (892–1184 ppm), Sr/Y (56.74–86.32), and low Y (12.65–18.05 ppm), similar to typical geochemical features of adakite. The Guandian adakitic rocks also exhibit high K2O (2.88–3.86%), MgO (3.89–5.24%), and Mg# (55–60), negative anomalies of high field strength elements (e.g. Nb, Ta, and Ti), and positive anomalies of Ba, Pb, and Sr. LA-ICP-MS zircon U–Pb dating yielded a weighted average age of 129.2 ± 0.7 Ma. Calculations of zircon Ce4+/Ce3+ (6.97–145) and (Eu/Eu*)N (0.23–0.42) on the basis of in situ zircon trace element analysis indicate that the magma had a lower oxygen fugacity relative to the ore-bearing adakites in the LYRB and Dexing, which is consistent with the fact of ore-barren in the research area. In combination with previous research, we propose that Guandian adakitic pluton was formed by partial melting of delaminated LCC triggered by Early Cretaceous ridge subduction of the Pacific and Izanagi plates. During ridge subduction, physical erosion destructed the thickened LCC and resulted in delamination, while thermal erosion facilitated partial melting of the delaminated LCC.  相似文献   

2.
It is generally accepted that the low-Mg adakitic rocks were derived from the partial melting of metabasalts/eclogites. In this study, we demonstrate that the early Cretaceous low-Mg adakitic granites in the North Dabie Complex (NDC) were generated by the partial melting of the NDC orthogneisses. Here we present in-situ U–Pb and Lu–Hf isotopes in zircon with whole-rock geochemical and Sr–Nd isotopic compositions were carried out for the Tiantangzhai porphyritic monzogranites from the Dabie orogen, eastern China. The monzogranites are characterized by high Sr (576–988 ppm), low Y (7.3–19.0 ppm), and depletion in HREE (Yb: 0.50–1.78 ppm) (thus resulting in high Sr/Y (34.3–135.2) and (La/Yb)N (17.0–105.2) ratios) without a negative Eu anomaly. They also exhibit high SiO2 (66.5–73.5 wt.%) and K2O (2.7–4.7 wt.%), and low MgO (0.4–1.6 wt.%) or Mg# (28.2–45.3, mostly < 40) values. Whole-rock geochemical compositions suggest that the monzogranites represent low-Mg adakitic rock with high-Si and rich-K features equilibrated with residues rich in garnet. Sr–Nd isotopic compositions (εNd (t) = ? 16.2 to ? 20.3, (87Sr/86Sr)i = 0.707798–0.708804, tDM2(Nd) = 2.3–2.6 Ga) of the monzogranites are distinct from that of the eclogites and amphibolites in the Dabie orogen, but similar to that of the Neoproterozoic (700–800 Ma) gneisses in the NDC. U–Pb dating of zircons gives a consistent age of 130.0 ± 3.4 Ma with discordia upper intercept age of 716 ± 34 Ma for inherited cores identified by CL imaging. Correspondingly, in-situ Lu–Hf analyses of early Cretaceous young age-spots from zircons yield initial 176Hf/177Hf ratios from 0.281898 to 0.282361, εHf(t) values from ? 28.1 to ? 17.6 and two-stage “crust” Hf model ages (tDM2) from 2293 ± 89 to 2949 ± 108 Ma, which are generally in agreement with values of 0.281891 to 0.282218, ? 28.2 to ? 11.7 and 1927 ± 87 to 2963 ± 92 Ma for the pre-Mesozoic inherited cores, respectively. As for individual core-rim pairs in zircon, Th/U ratios increase from the inherited cores to the young growth rims possibly due to variable degrees of partial melting, whereas 176Lu/177Hf ratios greatly decrease because of the garnet effect in residues. Thus, we suggest that the early Cretaceous low-Mg adakitic granites were derived from the partial melting of the NDC Neoproterozoic (700–800 Ma) gneisses, and the foundering of the garnet-bearing residues could have caused the destruction of the over-thickened lower continental crust.  相似文献   

3.
徐淮地区丰山花岗闪长斑岩和蔡山石英闪长玢岩的岩石地球化学、Sr-Nd-Hf同位素和石榴石的矿物化学研究对探讨华北克拉通东南缘早白垩世高镁埃达克质岩的岩石成因和构造演化具有重要意义。结果表明,丰山花岗闪长斑岩和蔡山石英闪长玢岩具高SiO_2(60.98%~67.88%)、富Al_2O_3(14.37%~15.04%)以及高的Na_2O/K_2O比值(1.58~2.24)和Mg~#值(57~66)的特征;富集LILE(Rb、Ba、Sr)和LREE,亏损HFSE(Nb、Ta、Ti)和HREE,具有Pb正异常和弱的Eu异常;结合高的Sr含量(579×10~(-6)~778×10~(-6))以及Sr/Y(33~69)和(La/Yb)_N比值(8.63~13.7),低的Y(10.5×10~(-6)~17.8×10~(-6))和Yb含量(0.74×10~(-6)~1.17×10~(-6)),暗示它们属于高镁埃达克质岩。丰山和蔡山埃达克质岩石的初始~(87)Sr/~(86)Sr比值介于0.7079~0.7086之间,ε_(Nd)(t)值变化于-10.77~-7.18之间,t_(DM2)=1504~1793Ma;岩浆锆石的ε_(Hf)(t)值为-14.2~-5.3,t_(DM2)=2101~2898Ma。徐淮地区早白垩世利国、班井、夹沟高镁埃达克质岩石中岩浆锆石的ε_(Hf)(t)值分别介于-13.4~-7.0、-13.4~-7.9和-15.9~-4.5之间,它们的t_(DM2)分别变化于2248~2825Ma、2331~2824Ma和2030~3048Ma之间。徐淮地区丰山和蔡山高镁埃达克质岩的Sr-Nd-Hf同位素组成和丰山花岗闪长斑岩中铁铝榴石残留晶的存在,结合它们高的Pb同位素组成和继承锆石U-Pb年代学暗示,丰山和蔡山高镁埃达克质岩浆主要起源于俯冲断离的扬子克拉通石榴辉石岩相下地壳物质熔融的熔体与地幔橄榄岩的反应,同时有拆沉的华北克拉通基底物质的参与,形成于华北克拉通东部岩石圈减薄的伸展构造背景。  相似文献   

4.
The Early Palaeozoic was an important period in the geologic evolution of the South China block (SCB), marking the intracontinental orogen in the Wuyi-Yunkai region. One salient feature of the western SCB is the absence of Early Palaeozoic oceanic subduction-related magmatism. Here, we report the first known occurrence of Late Ordovician andesites from the Shimian area, western SCB. Zircon SHRIMP U–Pb dating reveals that the andesites formed at ca. 451 Ma. They have geochemical features of high-Mg adakitic andesite (HMAA) and are characterized by low K2O (1.09–2.24 wt.%) and Th (2.50–5.65 ppm) and high MgO (4.02–6.91 wt.%) and Mg# (56–71). Furthermore, their zircon grains display positive εHf(t) (+11.4 to +19.6) and low δ18O (4.72–6.20‰) values. The andesites are interpreted to have been derived from partial melting of a peridotitic mantle wedge in an oceanic subduction setting and subsequent fractional crystallization. Integrating previous studies of the Qinling-Dabie orogenic belt with the data presented in this contribution, we suggest that the SCB was probably involved in the Early Palaeozoic Andean-type orogeny along the Gondwanan proto-Tethyan margin.  相似文献   

5.
Detailed petrological, geochemical and geochronological studies were carried out for the core samples from the Chinese Continental Scientific Drilling Main Hole (CCSD-MH) with a final depth of 5158 m. This borehole has penetrated into an ultrahigh-pressure (UHP) metamorphic slice consisting mainly of eclogites, gneisses, garnet-pyroxenites and garnet-peridotites. Geochemical characteristics indicate that their protoliths are igneous rocks, and occur in a continental rifting tectonic setting. Quartz-, rutile- and ilmenite-rich eclogites from 0 to 710 m occur as alternating layers; the eclogites, together with interlayers of peridotites and gneisses form a layered ultramafic-mafic-acidic intrusion, which was formed by extensive fractional crystallization of basaltic magma in continental environments. The granitic gneisses from 1190 to 1505 m and 3460 to 5118 m show affinity to within-plate granite, whereas the granitic gneisses from 710 to 1190 m and 1505 to 3460 m exhibit characteristics of volcanic-arc granite. Zircon U-Pb dating demonstrates that the magmatic zircon cores, which have relatively high Th/U ratios (mostly > 0.4), from both eclogites and gneisses, yield the same age at c. 788.8 Ma, suggesting that the protoliths of UHP rocks were formed by bimodal magmatism in Neoproterozoic rifting tectonic zones along the northern margin of the Yangtze Plate, in response to the breakup of the supercontinent Rodinia. U-Pb dating of metamorphic zircons with coesite and other eclogite-facies mineral inclusions and with relatively low Th/U ratios (mostly < 0.14) gives similar Triassic ages, which define two main zircon-forming events at 221.1 Ma and 216.7 Ma. We suggest that the older weighted mean age represents the peak-UHP metamorphic event at a pressure of 5.0 GPa (corresponds to ∼ 165 km depth), whereas the younger mean age reflects the UHP/HP retrograde event at a pressure 2.8 GPa (∼ 92 km depth). Therefore, a maximum rate of vertical movement during early exhumation of the UHP rocks from the Sulu orogen would be 17 mm/year, which is quite similar to initial exhumation rates (16 to 35 mm/year) of many UHP terranes in the world.  相似文献   

6.
东江口、柞水和梨园堂岩体位于商丹断裂南侧。锆石的LA-ICP-MS U-Pb年代学分析表明,东江口花岗闪长岩、柞水花岗岩、梨园堂石英二长岩和梨园堂花岗岩等4个样品的岩浆结晶年龄分别为246.8±2.5Ma(早三叠纪),233.6±1.3Ma(中三叠纪),956.1±4.5Ma(新元古代),203.6±2.2Ma(晚三叠纪)。锆石的Lu-Hf同位素原位分析结果表明,锆石的两阶段Hf模式年龄(tDM2)分别为1.4~1.6Ga、1.0~1.3Ga、1.0~1.3Ga和1.0~1.3Ga。勉略洋闭合(约250Ma)之后,扬子板块和华北板块发生碰撞,导致扬子陆块俯冲至南秦岭地块之下并发生小规模的部分熔融形成早-中三叠纪(246.8~233.6Ma)花岗岩类。碰撞结束(约220Ma)后,扬子陆块板片断离诱发软流圈物质上涌,同时俯冲的扬子陆壳开始折返,在地幔热和构造减压的条件下,俯冲陆壳及上覆岩石圈地幔发生广泛的部分熔融,形成不同程度具埃达克质地球化学特征的晚三叠纪(199.0~224.8Ma)花岗岩类及伴生的镁铁质包体。  相似文献   

7.
The Qinling Orogenic Belt marks the link between the South China and North China Blocks and is an important region to understand the geological evolution of the Chinese mainland as well as the Asian tectonic collage. However, the tectonic affinity and geodynamic evolution of the South Qinling Tectonic Belt (SQTB), a main unit of the Qinling Orogenic Belt, remains debated. Here we present detailed geological, geochemical and zircon U–Pb–Hf isotopic studies on the Zhangjiaba, Xinyuan, Jiangjiaping, Guangtoushan and Huoshaodian plutons from the Guangtoushan granitoid suite (GGS) in the western segment of the SQTB. Combining geology, geochronology and whole-rock geochemistry, we identify four distinct episodes of magmatism as: (1) ~ 230–228 Ma quartz diorites and granodiorites, (2) ~ 224 Ma fine-grained granodiorites and monzogranites, (3) ~ 218 Ma porphyritic monzogranites and (4) ~ 215 Ma high-Mg# quartz diorites and granodiorites as well as coeval muscovite monzogranites. The ~ 230–228 Ma quartz diorites and granodiorites were generated by magma mixing between a mafic melt from mantle source and a granodioritic melt derived from partial melting of Neoproterozoic rocks in the lower continental crust related to a continental arc regime. The ~ 224 Ma fine-grained granodiorites and monzogranites were formed through partial melting of a transitional source with interlayers of basaltic rocks and greywackes in the deep zones of the continental arc. The ~ 218 Ma porphyritic monzogranites originated from partial melting of metamorphosed greywackes in lower crustal levels, suggesting underthrusting of middle or upper crustal materials into lower crustal depths. The ~ 215 Ma high-Mg# quartz diorites and granodiorites (with Mg# values higher than 60) were derived from an enriched mantle altered by sediment-derived melts. Injection of hot mantle-derived magmas led to the emergence of the ~ 215 Ma S-type granites at the final stage.Integrating our studies with previous data, we propose that the Mianlue oceanic crust was still subducting beneath the SQTB during ~ 248–224 Ma, and final closure of the Mianlue oceanic basin occurred between ~ 223 Ma and ~ 218 Ma. After continental collision between the South China Block and the SQTB, slab break-off occurred, following which the SQTB transformed into post-collisional extension setting.  相似文献   

8.
Both oceanic and continental HP rocks are juxtaposed in the Huwan shear zone in the western Dabie orogen, and thus provide a window for testing the buoyancy‐driven exhumation of dense oceanic HP rocks. The HP metamorphic age of the continental rocks in this zone has not been well constrained, and hence it is not known if they are of the same age as the exhumation of the HP oceanic rocks. In situ laser ablation (multiple collector) inductively coupled plasma mass spectrometry (LA‐(MC‐)ICP‐MS), U–Pb, trace element and Hf isotope analyses were made on zircon in a granitic gneiss and two eclogites from the Huwan shear zone. U–Pb age and trace element analysis of residual magmatic zircon in an eclogite constrain its protolith formation at 411 ± 4 Ma. The zircon in this sample displays εHf (t) values of +6.1 to +14.4. The positive εHf (t) values up to +14.4 suggest that the protolith was derived from a relatively depleted mantle source, most likely Palaeotethyan oceanic crust. A granitic gneiss and the other eclogite yield protolith U–Pb ages of 738 ± 6 and 700 ± 14 Ma, respectively, which are both the Neoproterozoic basement rocks of the Yangtze Block. The zircon in the granitic gneiss has low εHf (t) values of ?14.2 to ?10.5 and old TDM2 ages of 2528–2298 Ma, suggesting reworking of Palaeoproterozoic crust during the Neoproterozoic. The zircon in the eclogite has εHf (t) values of ?1.0 to +7.4 and TDM1 ages of 1294–966 Ma, implying prompt reworking of juvenile crust during its protolith formation. Metamorphic zircon in both eclogite samples displays low Th/U ratios, trace element concentrations, relatively flat heavy rare earth element patterns, weak negative Eu anomalies and low 176Lu/177Hf ratios. All these features suggest that the metamorphic zircon formed in the presence of garnet but in the absence of feldspar, and thus under eclogite facies conditions. The metamorphic zircon yields U–Pb ages of 310 ± 3 and 306 ± 7 Ma. Therefore, both the oceanic‐ and continental‐type eclogites share the same episode of Carboniferous eclogite facies metamorphism. This suggests that high‐pressure continental‐type metamorphic rocks might have played a key role in the exhumation and preservation of oceanic‐type eclogites through buoyancy‐driven uplift.  相似文献   

9.
To date, few adakitic rocks have been reported in direct association with contemporary intra-continental extensional structures, which has cast doubt on genetic models involving partial melting of the lower crust. This study presents Early Cretaceous (143-129 Ma, new Sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb ages) adakitic granites, which are directly associated with a contemporary metamorphic core complex (i.e., the Northern Dabie Complex in the Dabie area). These granites exhibit relatively high Sr contents, negligible to positive Eu and Sr anomalies, high La/Yb and Sr/Y ratios, but very low Yb and Y contents, similar to subducted oceanic crust-derived adakites. They are also characterized, however, by very low MgO or Mg# and Ni values, and Nd-Sr isotope compositions (εNd(t) = −14.6 to −19.4 and (87Sr/86Sr)i = 0.7067-0.7087) similar to Triassic continent-derived eclogites subducted in the Dabie-Sulu Orogen. Additionally, late granitic dikes in the adakitic intrusions exhibit low Sr contents, clearly negative Eu and Sr anomalies, low La/Yb and Sr/Y ratios, but relatively high Yb and Y contents, similar to 118-105 Ma granites in the Northern Dabie Complex. Based on composition and geochronology data of Neoproterozoic amphibolites and orthogneisses, Triassic high- to ultra-high pressure metamorphic rocks, and Early Cretaceous mafic-ultramafic intrusive rocks, and the constraints provided by experimental melt data for tonalites, metabasaltic rocks and eclogites, we suggest that the adakitic granites were most probably generated by partial melting of thickened amphibole or rutile-bearing eclogitic lower crust as a consequence of Triassic-Middle Jurassic subduction and thrusting. The late dikes probably originated from plagioclase-bearing intermediate granulites. Moreover, we suggest that late Mesozoic delamination or foundering of thickened eclogitic lower crust is also a more plausible mechanism for the petrogenesis of Early Cretaceous mafic-ultramafic intrusive rocks in the Dabie area, and probably involved partial melting of a mixed source comprising eclogitic lower crust that had delaminated or foundered into upper lithospheric or asthenospheric mantle peridotite. Asthenospheric upwelling in response to post-collisional delamination of lithospheric mantle was likely to have provided the heat source for the Cretaceous magmatism.  相似文献   

10.
This paper reports new whole-rock geochemical, Sr–Nd–Pb isotopic, and zircon U–Pb and Hf isotopic data for Early Cretaceous intrusive rocks in the Sanmenxia–Houma area of central China, and uses these data to constrain the petrogenesis of low-Mg adakitic rocks (LMAR) and the spatial extent of the influence of the deeply subducted Yangtze slab during the Triassic evolution of this region. New zircon laser-ablation inductivity coupled plasma mass spectrometry (LA-ICP-MS) U–Pb data indicate that the early- and late-stage southern Quli, Qiligou, and Gaomiao porphyritic quartz diorites, the Canfang granodiorite, and the northern Wangmao porphyritic quartz monzodiorite were emplaced during the Early Cretaceous (~ 130 Ma) and the late Early Cretaceous (~ 116 Ma). These rocks are characterized by high Na2O/K2O, Sr/Y, and (La/Yb)n ratios as well as high Sr concentrations, low Mg# [molar 100 × Mg/(Mg + Fe2 +tot)] values, and low heavy rare earth element and Y concentrations, all of which indicate an LMAR affinity. The samples have relatively high initial 87Sr/86Sr ratios (0.7054–0.7095), and low εNd(t) (− 11.90 to − 22.20) and εHf(t) (− 16.7 to − 32.7) values, indicative of a lower continental crust origin. The presence of Neoproterozoic (754–542 Ma) and inherited Late Triassic (220 Ma) metamorphic zircons within the late Early Cretaceous LMAR and the relatively high 206Pb/204Pb ratios of these rocks suggest that they formed from primary magmas derived from partial melting of Yangtze Craton (YC) basement material that had undergone ultrahigh-pressure metamorphism. In contrast, the presence of Paleoproterozoic and Archean inherited zircons within early Early Cretaceous LMAR in this area and the relatively low 206Pb/204Pb ratios of these rocks are indicative of derivation from primary magmas generated by partial melting of the thickened lower continental crust of the North China Craton (NCC). These rocks may have formed in an extensional environment associated with the upwelling of asthenospheric mantle material. The presence of YC basement material within the NCC in the Sanmenxia–Houma area suggests that the deeply subducted Yangtze slab influenced an area of ~ 100 km in lateral extent within the southern margin of the central NCC during the Triassic.  相似文献   

11.
碰撞后岩浆作用是探索岩石圈物质组成、反演深部地球动力学过程的重要对象。近来,笔者等所在课题组在南东帕米尔热斯卡木地区新识别出一套新生代高锶低钇花岗岩。本文报道了该花岗岩的锆石U- Pb年龄、全岩主微量元素和Sr—Nd同位素及锆石Lu—Hf同位素组成。锆石LA- MC- ICPMS U- Pb定年显示,这些岩浆岩为中新世岩浆活动的产物(12. 0 ± 0. 3 Ma)。元素地球化学显示,样品具有高SiO2(72. 14% ~ 74. 35%)和K2O (3. 78% ~ 5. 25%)含量,低MgO(0. 13%~0. 50%)和Mg#(18 ~ 35),高Sr(363×10-6 ~ 754×10-6),低Y(3. 41×10-6 ~ 16. 4 ×10-6)和Yb(0. 327×10-6 ~ 0. 903×10-6),从而高Sr/Y (27. 1 ~ 188)和(La/Yb)N比值(18. 9 ~ 210),与典型Adakite地球化学特征一致。同位素方面,样品具有显著富集的锆石εHf(t)(-10. 1 ~ -5. 4)和全岩εNd(t)(-8. 33 ~ -6. 39)值。综合本文及前人研究成果,热斯卡木地区中新世高锶低钇花岗岩是加厚下地壳部分熔融的结果。欧亚大陆碰撞以来,区内地壳显著增厚、高原快速隆升。~ 12 Ma,由于增厚地壳局部岩石圈重力不稳发生垮塌,软流圈上涌使加厚古老下地壳发生部分熔融,形成该时期的高锶低钇花岗岩岩浆。  相似文献   

12.
Orthopyroxene-bearing granodiorite (sometimes referred to as ‘charnockite’) with an adakitic affinity is a rare type of granitoid. It is generally accepted that the stabilization of orthopyroxene in igneous charnockites essentially requires low aH2O and/or high temperatures in a closed system. However, orthopyroxene can be an antecryst in a trans-crustal magmatic system. In this regard, orthopyroxene-bearing granitoids are somewhat analogous to pseudo-charnockites, where the orthopyroxene stems from a mafic reservoir. On the other hand, the source compositions of continental adakites can vary, which is often ignored in the interpretation of their contribution to the adakitic geochemical signature. In this study, we have investigated a rare orthopyroxene-bearing felsic pluton from the Zhuyuan area of West Qinling, Central China. The Zhuyuan pluton was emplaced in the Middle–Late Triassic (222–217 Ma) and is mainly composed of metaluminous to weakly peraluminous granodiorites belonging to the high-K calc-alkaline series. Moreover, they are characterized by high Mg# values (49.7–60.9) and Sr contents (471–697 ppm), low Y (12.2–15.4 ppm) and Yb (1.03–1.24 ppm) contents, high Sr/Y (33.2–46.2) and (La/Yb)N (15.3–21.4) ratios, and weakly negative Eu anomalies (Eu/Eu* = 0.78–0.89). The Zhuyuan adakitic granodiorites exhibit fairly limited Sr–Nd–Pb isotopic ratios and variable zircon initial Hf isotopes, indicating a major contribution from the Neoproterozoic basement of the Qinling Orogenic Belt. There is no evidence of any formation through high-pressure magmatic processes, and we propose that the adakitic signature of the Zhuyuan pluton could have been inherited from its source rocks (i.e., from the Neoproterozoic basement). The orthopyroxenes in the Zhuyuan granodiorites display poikilitic textures with high MgO, NiO and Cr2O3 contents, indicating that they have an antecrystic origin. Studies of regional tectonic evolution have shown that the Zhuyuan granodiorites formed during the tearing stage of the A'nimaque–Mianlue oceanic subduction slab. Therefore, this study emphasizes the effect of source inheritance on the formation of pseudo-charnockite with an adakitic signature.  相似文献   

13.

秦岭造山带早中生代花岗质岩浆及成矿作用非常发育, 是探讨地壳深部物质组成及成矿关系的重要地区之一, 学者已从岩石学、矿床学和地球化学等角度开展了众多研究, 但对成矿作用与花岗岩和地壳深部物质组成的认识仍不太清楚。黑云母是中酸性岩中常见的暗色矿物, 也是指示成矿可能性的重要矿物之一。因此, 本文对秦岭该期花岗质岩石中黑云母成分开展研究, 为解决该问题探索新途径。对秦岭早中生代花岗质岩石中黑云母成分的研究结果显示, 北秦岭和南秦岭两个构造单元中黑云母成分和形成物理条件存在系统差异, 揭示其岩浆物源有别, 进而制约了其成矿种类特征。北秦岭早中生代花岗质岩石中黑云母的成分和形成条件变化范围小, 以MgO(8%~13%)、TiO2(3%~5%)和Cl(0.02%~0.6%)含量较高, F(0.2%~0.4%)含量较低, 以及较高的氧逸度(logfO2值为-16.96~-14.62)和温度(682~771℃)为特征; 而南秦岭的成分和形成条件总体变化范围较大, 具有MgO(3%~15%)、TiO2(2%~4.5%)、Cl(0.01%~0.18%)含量较低, F(0.1%~1.6%)含量较高, 以及较低的氧逸度(logfO2值为-20.88~-15.08)和温度(536~754℃)。此外, 研究还显示, 黑云母的形成压力与岩浆演化程度和矿物组合相关, 当岩石中出现黑云母+白云母±石榴子石组合时, 压力较高。秦岭两个构造单元中黑云母成分和形成条件的差异, 特别是氧逸度和Cl含量的明显不同, 揭示各自的成矿种类和成矿潜力不同, 如北秦岭较高的氧逸度和Cl含量, 形成铜矿的潜力比南秦岭大。同时, 两个构造单元中黑云母的成分差异, 还揭示了岩浆物源及深部物质组成的不同, 即北秦岭比南秦岭具有更为年轻的地壳, 这与区域同位素填图示踪的深部物质组成差异基本一致。由此可见, 对区域上同时代花岗质岩石中黑云母成分的研究, 不仅可以揭示岩浆演化、岩浆结晶过程物理化学条件等, 还可示踪深部物质组成的空间变化与差异及成矿种类和潜力, 有望成为探测深部物质组成的新方法和了解区域成矿背景和潜力的新途径。

  相似文献   

14.
A combination of new 40Ar/39Ar dating results, major- and trace-element data, plus Sr-Nd-Pb-Hf isotope data, are used to investigate the petrogenesis of Triassic high-Si adakite (HSA), Cretaceous low-Si adakite-like (LSA) lavas, and Cretaceous high-K and shoshonitic trachyandesite lavas, from eastern and south-central Mongolia. All samples are light rare-earth element and large-ion lithophile element enriched but depleted in some high-field strength elements (notably Nb, Ta and Ti). Two alternative models are proposed to explain the petrogenesis of the HSA samples. (1) A southward-subducting Mongol-Okhotsk slab underwent partial melting in the Triassic during the closure of the Mongol-Okhotsk Ocean, with the resultant melts assimilating mantle and crustal material. Alternatively (2), a basaltic underplate of thickened (>50 km; >1.5 GPa), eclogitic lower crust foundered into the underlying mantle, and underwent partial melting with minor contamination from mantle material and some shallow-level crustal contamination. The LSA samples are interpreted as melts derived from a lithospheric mantle wedge that was previously metasomatised by slab melts. Similarly, the trachyandesite lavas are interpreted as melts deriving from a subduction-enriched subcontinental lithospheric mantle. The spatial distribution of these samples implies that metasomatism likely occurred due to a southward-subducting Mongol-Okhotsk slab associated with the closure of the Mongol-Okhotsk Ocean. When this interpretation is combined with previous evidence for a northward-subducting Mongol-Okhotsk slab it advocates that the Mongol-Okhotsk Ocean closed with double-sided subduction.  相似文献   

15.
田野  黄建  回迎军  肖益林 《岩石学报》2015,31(7):1818-1840
高压-超高压变质岩中的变质脉能够反映俯冲带变质流体的组成和演化。为了探究大陆俯冲带超临界流体活动及伴随的元素迁移,本文系统地研究了苏鲁造山带南部江苏东海池庄地区的超高压榴辉岩及变质脉。变质脉主要是由石英、石榴石、绿辉石、多硅白云母、蓝晶石、黝帘石、金红石和锆石等矿物组成,与寄主榴辉岩的矿物组成类似。相比于榴辉岩,脉体中的石榴石更加富集重稀土元素(HREE);黝帘石强烈富集轻稀土元素(LREE)。变质脉和榴辉岩中各主要矿物的氧同位素组成在误差范围内一致(石英的δ18O分别为2.42‰和2.79‰;石榴石为-0.30‰和0.010‰;绿辉石为0.25‰和0.071‰),说明变质脉的形成与榴辉岩释放的内部流体有关。综合已有的研究,发现大别-苏鲁造山带不同地区的变质脉和榴辉岩具有极不均一的氧同位素组成,说明在陆壳深俯冲和折返过程中,流体活动有限。利用矿物温压计得到变质脉的峰期变质温压条件为692±65℃和3.6±0.3GPa,脉体中锆石U-Pb定年结果表明锆石的形成时代为218±2.4Ma,指示变质脉形成于深俯冲陆壳折返初期的超高压变质阶段。变质脉中矿物组合和矿物的主微量元素特征说明成脉流体富集Si、Al、Ca、K、LILE、REE和HFSE等元素,表明成脉流体可能是溶解能力极强的超临界流体。  相似文献   

16.
17.
The geological implications of granitoid magmas with high Sr/Y and La/Yb are debated because these signatures can be produced by multiple processes. This study presents comprehensive major and trace element compositions and zircon SHRIMP U-Pb age data of 81 early Cretaceous granitoids and 4 mafic enclaves from the Dabie orogen to investigate partial melting of the thickened lower continental crust (LCC). On the basis of Sr/Y ratios, granitoids can be grouped into two magma series: (i) high Sr/Y granitoids (HSG) and (ii) normal granitoids with low Sr/Y. Relative to normal granitoids, HSG display the following distinct chemical features: (1) at given SiO2 and CaO contents, the HSG have significantly higher Sr than normal granitoids, defining two different trends in Sr versus SiO2, CaO diagrams; (2) highly depleted heavy rare earth element (REE) relative to middle and light REE with (Dy/Yb)N and (La/Yb)N up to 3.2 and 151, respectively; (3) variable and higher Nb/Ta; and (4) positive correlations among Sr/Y, (Dy/Yb)N, (La/Yb)N, and Nb/Ta.High Sr/Y, (La/Yb)N, (Dy/Yb)N, and Sr/CaO of HSG do not correlate with major elements (e.g., SiO2). Large variations in these ratios at a given SiO2 content indicate that these features do not reflect magma mixing or fractionation. HSG have higher Sr at a given CaO content and larger variation of (Dy/Yb)N than old crustal rocks (including exposed basement, global mafic LCC xenoliths, high Sr/Y TTG suites, and adakites in modern arcs). This precludes inheritance of the HSG chemical features from these source rocks. Instead, the chemical features of the HSG are best explained by partial melting of the thickened LCC with garnet-dominant, plagioclase-poor, and rutile-present residual lithologies. The coupled chemical features of the HSG are not observed in post-collisional granitoids younger than ca.130 Ma, indicating removal of the eclogitic source and/or residuum of HSG underneath the orogen. These characteristic chemical relationships in the Dabie HSG may be applied to distinguish partial melts of thickened LCC from high Sr/Y intermediate-felsic magmatic rocks which do not show clear indications for melting depth.  相似文献   

18.
在华北克拉通中部的山西云中山地区,新太古代花岗闪长质片麻岩中存在一些超镁铁质岩-镁铁质岩块及由斜长角闪岩、角闪变粒岩、石英岩和石榴夕线黑云片岩等岩石类型构成的变质表壳岩残片,其中的超镁铁质-镁铁质岩、斜长角闪岩和角闪变粒岩构成一套高镁火成岩组合。超镁铁质岩已变质为橄榄绿泥阳起片岩等岩石类型,呈变余斑状结构,橄榄石斑晶仍有保存;岩石SiO_2含量为39.22%~44.99%,Al_2O_3为8.82%~13.47%,Mg O为19.24%~22.13%,Na_2O+K_2O=0.71%~1.11%,CaO为5.75%~8.42%;Al_2O_3/TiO_2=14.8~17.4,CaO/Al_2O_3=0.60~0.84;化学成分上与科马提岩有一定的相似性。与之紧密伴生的斜长角闪岩也具有高镁特征,Mg O含量为11.28%~15.09%,铝、硅和碱质均偏低,具正铕异常,显示堆晶辉长岩的特征。非高镁斜长角闪岩有相对高的铝、硅和碱质,其原岩应为钙碱性玄武岩。角闪变粒岩样品的SiO_2含量为54.21%~55.71%,Al_2O_3为14.24%~15.49%,Mg O为6.26%~8.28%,Fe OT/Mg O=1.11~1.58,高钠低钾,Na_2O+K_2O=3.7%~4.78%,Na_2O/K_2O=5.15%~13.13,Mg#=53.0~61.5,属于高镁安山岩。由超镁铁质质岩-斜长角闪岩-角闪变粒岩构成的变质高镁火山岩组合具有钙碱性系列趋势。超镁铁质岩稀土元素含量总量较低,具有轻稀土富集和重稀土亏损的稀土型式;斜长角闪岩与超镁铁质岩比较,除富集大离子亲石元素和Cr、Ni明显较低外,具有相似的微量元素图谱形态。三种岩石类型在微量元素蛛网图上均显示出Ta、Nb、Ti负异常和Pb正异常。野外产状和岩石地球化学特征表明超镁铁质岩和高镁斜长角闪岩属于阿拉斯加型杂岩体,角闪变粒岩属于赞岐岩质高镁安山岩。在Zr/Nb-Nb/Th和Nb/Y-Zr/Y构造环境判别图解上显示出与俯冲相关的演化趋势,在Hf-Th-Ta、Nb/La-(La/Sm)N和Th/Yb-Nb/Yb图解上也落在岛弧钙碱性岩石区域。以上特征表明高镁火成岩组合形成于与板块俯冲相关的岛弧构造背景。野外地质关系和锆石U-Pb年龄限定高镁火成岩组合形成时代在~2.5Ga。云中山地区阿拉斯加型镁铁质-超镁铁质杂岩与赞岐岩质高镁安山岩共生,表明该地区存在新太古代的板块俯冲作用,为太古宙存在板块构造机制提供了新证据。  相似文献   

19.
Geochemical and geochronological evidence was obtained from granitoids of the South Tianshan orogen and adjacent regions, which consist of three individual tectonic domains, the Kazakhstan–Yili plate, the Central Tianshan Terrane and the Tarim plate from north to south. The Central Tianshan Terrane is structurally bounded by the Early Paleozoic ‘Nikolaev Line–North Nalati Fault’ and Late Paleozoic ‘Atbashy–Inyl’chek–South Nalati–Qawabulak Fault’ zones against the Kazakhstan–Yili and Tarim plates, respectively. The meta-aluminous to weakly peraluminous granitic rocks, which are exposed along the Kekesu River and the Bikai River across the Central Tianshan Terrane, have a tholeiitic, calc-alkaline or high-potassium calc-alkaline composition (I-type). Geochemical trace element characteristics and the Y versus Rb–Nb or Y versus Nb discrimination diagrams favor a continental arc setting for these granitoid rocks. SHRIMP U–Pb and LA-ICP-MS U–Pb zircon age data indicate that the magmatism started at about 480 Ma, continued from 460 to 330 Ma and ended at about 275 Ma. The earlier magmatism (>470 Ma) is considered to be the result of a simultaneous southward and northward subduction of the Terskey Ocean beneath the northern margin of the Tarim plate and the Kazakhstan–Yili plate, respectively. The later magmatism (460–330 Ma) is related to the northward subduction of the South Tianshan Ocean beneath the southern margin of the Kazakhstan–Yili–Central Tianshan plate. The dataset presented here in conjunction with previously published data support a Late Paleozoic tectonic evolution of the South Tianshan orogen, not a Triassic one, as recently suggested by SHRIMP U–Pb zircon dating for eclogites.  相似文献   

20.
Geological, petrological and geochemical studies indicated that there are two distinct types of granitoid rocks: older quartz diorites to granodiorite assemblage and younger granitoids, the latter occurring in two phases. The older granitoids have a meta-aluminous chemistry and a calc-alkaline character, with high MgO, Fe2O3, TiO2, CaO, P2O5, Sr and low SiO2, K2O, and Rb. Their major and trace elements data, together with low 87Sr/ 86Sr ratios (0.7029±0.0008) are indicative of I-type affinities. The second-...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号