首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Marine pollution bulletin》2011,62(7-12):399-412
In order to quantify the spatial and seasonal variations of sediment oxygen consumption and nutrient fluxes, we performed a spatial survey in the south west lagoon of New Caledonia during the two major seasons (dry and wet) based on a network of 11 sampling stations. Stations were selected along two barrier reef to land transects representing most types of sediments encountered in the lagoon. Fluxes were measured using ex-situ sediment incubations and compared to sediment characteristics. Sediment oxygen consumption (SOC) varied between 500 and 2000 μmol m−2 h−1, depending on season and stations. Nutrient effluxes from sediment were highly variable with highest fluxes measured in muddy sediments near the coast. Inter-sample variability was as high as seasonal differences so that no seasonally driven temperature effect could be observed on benthic nutrient fluxes in our temperature range. Nutrient fluxes, generally directed from the sediment to the water column, varied between −5.0 and 70.0 μmol m−2 h−1 for ammonia and between −2.5 and +12.5 μmol m−2 h−1 for PO4 and NO2+3. SOC and nutrient fluxes were compared to pelagic primary production rates in order to highlight the tight coupling existing between the benthic and pelagic compartments in this shallow tropical lagoon. Under specific occasions of low pelagic productivity, oxygen sediment consumption and related carbon and nutrient fluxes could balance nearly all net primary production in the lagoon. These biogeochemical estimates point to the functional importance of sediment biogeochemistry in the lagoon of New Caledonia.  相似文献   

2.
《Marine pollution bulletin》2012,64(5-12):195-200
Submarine groundwater discharge (SGD) on the reef flat of Bolinao, Pangasinan (Philippines) was mapped using electrical resistivity, 222Rn, and nutrient concentration measurements. Nitrate levels as high as 126 μM, or 1–2 orders of magnitude higher than ambient concentrations, were measured in some areas of the reef flat. Nutrient fluxes were higher during the wet season (May–October) than the dry season (November–April). Dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4) and soluble reactive phosphorus (SRP) fluxes during the wet season were 4.4 and 0.2 mmoles m−2 d−1, respectively. With the increase population size and anthropogenic activities in Bolinao, an enhancement of SGD-derived nitrogen levels is likely. This could lead to eutrophic conditions in the otherwise oligotrophic waters surrounding the Santiago reef flat.  相似文献   

3.
《Marine pollution bulletin》2014,78(1-2):274-281
Nine macroalgal blooms were studied in five coastal lagoons of the SE Gulf of California. The nutrient loads from point and diffuse sources were estimated in the proximity of the macroalgal blooms. Chlorophyll a and macroalgal biomass were measured during the dry, rainy and cold seasons. Shrimp farms were the main point source of nitrogen and phosphorus loads for the lagoons. High biomasses were found during the dry season for phytoplankton at site 6 (791.7 ± 34.6 mg m−2) and during the rainy season for macroalgae at site 4 (296.0 ± 82.4 g m−2). Depending on the season, the phytoplankton biomass ranged between 40.0 and 791.7 mg m−2 and the macroalgal biomass between 1 and 296.0 g m−2. The bulk biomass (phytoplankton + macroalgal) displayed the same tendency as the nutrient loads entering the coastal lagoons. Phytoplankton and macroalgal biomass presented a significant correlation with the atomic N:P ratio.  相似文献   

4.
The Chinese Continental Scientific Drilling (CCSD) project is located at the Sulu ultrahigh-pressure metamorphic (UHPM) belt. It offers a unique opportunity for studying the radiogenic heat production of both shallower and deeper rocks. Based on the concentrations of radiogenic elements U, Th and K on 349 samples from main hole of CCSD (CCSD MH), pilot holes and exposures, we determined radiogenic heat productions of all major rock types in the Sulu UHPM belt. Results show the mean values of orthogneiss and paragneiss are respectively 1.65 ± 0.81 and 1.24 ± 0.61 µW m? 3. Due to different composition and grade of retrogressive metamorphism, the eclogites display significant scatter in radiogenic heat production, ranging from 0.01 to 2.85 µW m? 3, with a mean of 0.44 ± 0.55 µW m? 3. The radiogenic heat production in ultramafic rocks also varies within a large range of 0.02 to 1.76 µW m? 3, and the average turns out to be 0.18 ± 0.31 µW m? 3. Based on the measurements and crustal petrologic model, the vertical distribution model of heat production in Sulu crust is established. The resulting mean heat production (0.76 µW m? 3) contributes 24 mW m? 2 to the surface heat flow. 1-D thermal model indicates that the temperature at the Moho reaches above 750 °C, and the thermal thickness of the lithosphere is ~ 75 km, in good agreement with the geophysical results. The high teat flow (~ 75 mW m? 2) together with thin lithosphere presents strong support for the extension events during the late Cretaceous and Cenozoic.  相似文献   

5.
This study assessed the levels of marine debris pollution and identified its main sources in Korea. The surveys were bimonthly conducted by NGO leaders and volunteers on 20 beaches from March 2008 to November 2009. The quantities of marine debris were estimated at 480.9 (±267.7) count  100 m−1 for number, 86.5 (±78.6) kg  100 m−1 for weight, and 0.48 (±0.38) m3  100 m−1 for volume. The level of marine debris pollution on the Korean beaches was comparable to that in the coastal areas of the North Atlantic ocean and South Africa. Plastics and styrofoam occupied the majority of debris composition in terms of number (66.7%) and volume (62.3%). The main sources of debris were fishing activities including commercial fisheries and marine aquaculture (51.3%). Especially styrofoam buoy from aquaculture was the biggest contributor to marine debris pollution on these beaches.  相似文献   

6.
In the frame of the R&D activities performed on the Boom Clay for assessing the suitability of deep clayey formations for radioactive waste disposal, the transferability of the scientific results obtained on the Boom Clay in Mol to the whole Campine Basin is investigated. Boreholes were drilled at different locations (e.g. Mol, Doel, Essen) and cores were sampled over the entire thickness of the Boom Clay formation on which the migration parameters for iodide and tritiated water (HTO) are determined.At Essen, the transport parameters in the Boom Clay can be considered as homogeneous in the range from 159 m to 241 m Below Drilling Table. The average hydraulic conductivity is (5.4 ± 1.7) × 10−12 m/s. The average ηR value for iodide is 0.25 ± 0.03 and 0.42 ± 0.05 for HTO. For HTO, this high value is mainly due to a higher value in the Putte Member (0.46 ± 0.03) compared to the other members (0.39 ± 0.02). The apparent diffusion coefficient is (1.3 ± 0.1) × 10−10 m2/s for HTO and (1.1 ± 0.2) × 10−10 m2/s for iodide. The expected effect of ionic strength (increasing with depth) on the ηR value of iodide is of the same size as the measurement error, what might explain why it was not observed.On a lateral (horizontal) level, the hydraulic conductivity at the Essen-1 borehole (5.4 × 10−12 m/s) lies between that of Boom Clay in Mol-1 (2.5 × 10−12 m/s) and that of Boom Clay in Doel-2b (1.4 × 10−11 m/s). For iodide, the higher ηR value in Essen-1 and Doel-2b (ηR  0.25) than in Mol-1 (ηR  0.16) can partly be explained by a higher ionic strength of the pore water. Apart from the Putte Member at Essen-1, the HTO porosities of the Terhagen Member and the Transition zone in Essen are in the range of the average porosities observed in Mol and Doel (ηR  0.37–0.39). For both iodide and HTO, the value of the apparent diffusion coefficient Dapp is similar in Mol-1 and in Doel-2b, with a clearly higher value for HTO than for iodide. In Essen-1, the apparent diffusion coefficients for iodide and HTO are nearly equal, and slightly smaller than the iodide value in Mol-1/Doel-2b. Accordingly, the HTO apparent diffusion coefficient is considerably smaller in Essen-1 than in Mol-1/Doel-2b.  相似文献   

7.
The high plant richness in riparian zones of tropical forest streams and the relationship with an input of organic matter in these streams are not well understood. In this study, we assessed (i) the annual dynamics of inputs of coarse particulate organic matter (CPOM) in a tropical stream; and (ii) the relationship of species richness on riparian vegetation biomass. The fluxes and stock of CPOM inputs (vertical-VI = 512, horizontal-HI = 1912, and terrestrial-TI = 383 g/m2/year) and the benthic stock (BS = 67 g/m2/month) were separated into reproductive parts, vegetative parts and unidentified material. Leaves that entered the stream were identified and found to constitute 64 morphospecies. A positive relationship between species richness and litterfall was detected. The dynamics of CPOM were strongly influenced by rainfall and seasonal events, such as strong winds at the end of the dry season. Leaves contributed most to CPOM dynamics; leaf input was more intense at the end of the dry season (hydric stress) and the start of the rainy season (mechanical removal). Our study show an increase of litter input of CPOM by plant diversity throughout the year. Each riparian plant species contributes uniquely to the availability of energy resources, thus highlighting the importance of plant conservation for maintaining tropical streams functioning.  相似文献   

8.
《Continental Shelf Research》2008,28(18):2594-2600
We analyzed the temporal and vertical distribution of biogenic (BSi) and lithogenic (LSi) silica, and diatom abundance in the upwelling center off Concepción, Chile, from April 2004 to May 2005. Measurements were performed at the FONDAP COPAS Time Series Station 18 (36°30.8′S, 73°07.7′W; 88 m water depth), and were combined with primary production estimates and river runoff data to assess the relationships between water column BSi and primary production, and between LSi and river runoff. Throughout the sampling period, water-column-integrated (0–80 m) BSi averaged 252±287 mmol m−2, and was about six times higher than average LSi (44±30 mmol m−2). The highest water column BSi observed during the upwelling season (786±281 mmol m−2) coincided with increments in total diatom abundance, and high integrated chlorophyll a concentration and primary production. In contrast, LSi was nearly two times higher in winter (85±43 mmol m−2) than the annual average, in agreement with the period of substantial discharges from the Itata and Bio-Bio rivers. The observed temporal patterns in BSi and LSi are coincident with primary production-related factors and riverine outflow, respectively, suggesting that the BSi and LSi pools are separate. With respect to the vertical distribution in the water column, most of the BSi and diatoms were found in surface waters (0–30 m depth), whereas LSi was most abundant at depth. Our study attempts to make an inventory of both BSi and LSi in the water column off Concepción, and gives the present-day background information necessary to assess potential future changes in the hydrological cycle that, in turn, may induce modifications in the Si path from the watersheds to the ocean.  相似文献   

9.
Organic matter production and nitrogen fixation in the central Baltic Sea were studied on the basis of high-resolution CO2 partial pressure data that were obtained from an automated measurement system deployed on a cargo ship. The net organic carbon (OC) production was calculated from a surface water CO2 mass balance and used to estimate the nitrogen uptake by organic matter during the period March to August 2005. It was shown that the net OC production continued despite the exhaustion of dissolved inorganic nitrogen (DIN) after the spring bloom in April. The nitrogen demand for this production was calculated on the basis of the C/N ratio of organic matter. It was of the same order of magnitude than the winter DIN concentration that fuelled the spring bloom. Since the atmospheric DIN deposition was negligible and no indications of alternative DIN sources were found, it was assumed that N2 fixation had taken place despite the low temperatures (4–8 °C) in April/May. This “cold fixation” amounted to 74 mmol m?2 whereas a value of 99 mmol m?2 was obtained for the summer N2 fixation during June/July. Due to the contribution of the April/May N2 fixation, a total annual rate (173±35 mmol m?2) was obtained for 2005 which is considerably higher than presently accepted estimates. These findings were confirmed by a nitrogen budget based on long-term data (1993–2006) for total nitrogen and total phosphorus concentrations. Furthermore, these data revealed a 30% increase in N2 fixation during the years 1994–2006.  相似文献   

10.
This study examines the recent evolution of the Greenland ice sheet and its six major drainage basins. Based on laser altimetry data acquired by the Ice, Cloud and Land Elevation Satellite (ICESat), covering the period September–November 2003 to February–March 2008, ice surface height changes and their temporal variations were inferred. Our refined repeat track analysis is solely based on ICESat data and is independent of external elevation models, since it accounts for both ice height changes and the local topography. From the high resolution ice height change pattern we infer an overall mean surface height trend of −0.12 ± 0.006 m yr−1. Furthermore, the largest changes could be identified at coastal margins of the ice sheet, exhibiting rates of more than −2 m yr−1. The total ice volume change of the entire ice sheet amounts to −205.4 ± 10.6 km3 yr−1. In addition, we assessed mass changes from 78 monthly Gravity Recovery and Climate Experiment (GRACE) solutions. The Release-04 gravity field solutions of GeoForschungsZentrum Potsdam cover the period between August 2002 and June 2009. We applied an adjusted regional integration approach in order to minimize the leakage effects. Attention was paid to an optimized filtering which reduces error effects from different sources. The overall error assessment accounts for GRACE errors as well as for errors due to imperfect model reductions. In particular, errors caused by uncertainties in the glacial isostatic adjustment models could be identified as the largest source of errors. Finally, we determined both seasonal and long-term mass change rates. The latter amounts to an overall ice mass change of −191.2 ± 20.9 Gt yr−1 corresponding to 0.53 ± 0.06 mm yr−1 equivalent eustatic sea level rise. From the combination of the volume and mass change estimates we determined a mean density of the lost mass to be 930 ± 11 kg m−3. This value supports our applied density assumption 900 ± 30 kg m−3 which was used to perform the volume–mass-conversion of our ICESat results. Hence, mass change estimates from two independent observation techniques were inferred and are generally in good agreement.  相似文献   

11.
《Marine pollution bulletin》2012,65(12):2857-2859
Baseline Hg concentration in bycatch fish from the SE Gulf of California were determined in muscle and liver of 19 species. Levels of Hg in muscle were compared with legal limits of this element in national and international legislation. Considering all fish species, mean concentrations in liver (2.458 ± 1.997 μg g−1) were significantly higher (p < 0.05) than in muscle (0.993 ± 0.670 μg g−1). The sequence of averaged Hg concentrations in most ichthyofauna was liver > muscle. Highest level of Hg in muscle (2.556 μg g−1) and liver (7.515 μg g−1) corresponded to Diapterus peruvianus and Ophioscion strabo, respectively. Considering muscle samples, none of the species had levels of Hg above the limit (1.0 μg g−1 wet weight) in the Mexican legislation; with respect to the Japanese (0.4 μg g−1 wet weight) and British (0.3 μg g−1 wet weight) legislations, 26.3% and 31.6% of the species respectively, were above the corresponding limits.  相似文献   

12.
《Continental Shelf Research》2007,27(10-11):1584-1599
Historic data from the Russian-American Hydrochemical Atlas of Arctic Ocean together with data from the TRANSDRIFT II 1994 and TUNDRA 1994 cruises have been used to assess the spatial and inter-annual variability of carbon and nutrient fluxes, as well as air–sea CO2 exchange in the Laptev and western East Siberian Seas during the summer season. Budget computations using summer data of dissolved inorganic phosphate (DIP), dissolved inorganic nitrogen (DIN) and dissolved inorganic carbon (DIC) gives that the Laptev Sea shelf is a net sink of DIP and DIN of 2.5×106, 23.2×106 mol d−1, respectively, while it is a net source of DIC (excluding air–sea exchange) of 1249×106 mol d−1. In the East Siberian Seas the budget computations give 0.5×106, −11.4×106 and −173×106 mol d−1 (minus being a sink) for DIP, DIN, and DIC, respectively. In summers, the Laptev Sea Shelf is net autotrophic while the East-Siberian Sea Shelf is net heterotrophic, and both systems are weak net denitrifying. The Laptev Sea Shelf takes up 2.1 mmol CO2 m−2 d−1 from atmosphere, whereas the western part of the East-Siberian Sea Shelf loose 0.3 mmol CO2 m−2 d−1 to the atmosphere. The variability of DIP, DIN and DIC fluxes during summer in the different regions of the Laptev and East Siberian Seas depends on bottom topography, river runoff, exchange with surrounding seas and wind field.  相似文献   

13.
At the appropriate times, silica diffusion in clay is possibly the rate determining process for the dissolution of vitrified waste disposed of in a clay layer. For testing this hypothesis, combined glass dissolution/silica diffusion experiment are performed. SON68 glass coupons doped with the radioactive tracer 32Si are sandwiched between two cores of humid Boom Clay, heated to 30 °C. Due to glass dissolution, 32Si is released and diffuses into the clay. At the end of an experiment, the mass loss of the glass coupon is measured and the clay core is sliced to determine the diffusion profile of the 32Si released from the glass in the clay.Both mass loss and the 32Si diffusion profile in the clay are described well by a model combining glass dissolution according to a linear rate law with silica diffusion in the clay. Fitting the experiments to this model leads to an apparent silica diffusion coefficient in the clay between 7 × 10−13 m2/s and 1.2 × 10−12 m2/s. Previously determined values from diffusion experiments at 25 °C are around 6 × 10−13 m2/s (In-Diffusion experiments) and 2 × 10−13 m2/s (percolation experiments). The maximal glass dissolution rate for glass next to clay is around 1.6 × 10−7 g glass/m2 s (i.e. 0.014 g glass/m2 day). In undisturbed clay, the measured silica concentration is around 5 mg/L. Combining these values with the previously measured (In-Diffusion experiments) product of accessible porosity and retardation factor, leads in two ways to a silica glass saturation concentration in clay between 8 and 10 mg Si/L.Another candidate for the rate determining process of the dissolution of vitrified waste disposed in a clay layer is silica precipitation. Although silica precipitation due to glass dissolution has been shown experimentally at 90 °C, extending the model with silica precipitation does not lead to much better fits, nor could meaningful values of a possible precipitation rate be obtained.  相似文献   

14.
40Ar / 39Ar incremental heating ages for twenty one grains of cryptomelane, collected at 0, 42, 45, and 60 m depths in the Cachoeira Mine weathering profile, Minas Gerais, permit calculating long-term (10 Ma time scale) weathering rate (saprolitization rate) in SE Brazil. Pure well-crystallized cryptomelane grains with high K contents (3–5 wt.%) yield reliable geochronological results. The 40Ar / 39Ar plateau ages obtained decrease from the top to the bottom of the profile (12.7 ± 0.1 to 7.6 ± 0.1 Ma at surface; 7.6  ± 0.2 to 6.1 ± 0.2 Ma at 42 m; and 7.1 ± 0.2 to 5.9 ± 0.1 Ma at 45 m; 6.6 ± 0.1 to 5.2 ± 0.1 Ma at 60 m), yielding a weathering front propagation rate of 8.9 ± 1.1 m/m.y. From the geochronological results and the mineral transformations implicit by the current mineralogy in the weathering profiles, it is possible to calculate the saprolitization rate for the Cachoeira Mine lithologies and for adjacent weathering profiles developed on granodiorites and schists. The measured weathering front propagation rate yields a saprolitization rate of 24.9 ± 3.1 t/km2/yr. This average long-term (> 10 Ma) saprolitization rate is consistent with mass balance calculations results for present saprolitization rates in weathering watersheds. These results are also consistent with long-term saprolitization rates estimated by combining cosmogenic isotope denudation rates with mass balance calculations.  相似文献   

15.
《Marine pollution bulletin》2012,65(12):2829-2833
This study reports the first evidence of the quantification of two dominant perfluorinated compounds (PFCs), namely perfluorooctanesulfate (PFOS) and perfluorooctannoate (PFOA), in surface sediment samples (0–5 cm; n = 13) from the Ganges (Hugli) River including Sundarban wetland, India using HPLC–MS/MS. The concentrations of PFOA exhibited a wide range of concentrations from <0.5 to 14.09 ng/g dry wt, whereas the concentration of PFOS was always below the detection limit of <0.5 ng/g dry wt. A consistent enrichment of PFOA was recorded in all the five sites of Sundarban (mean value 11.61 ± 1.86) whereas it was of moderate concentration or below the detection level in the seven sites along with the lower stretch of the Ganges (Hugli) River estuary (mean value 5.96 ng/g dry wt ± 5.36). Wastewater and untreated effluents are likely the major causes of accumulation of PFCs in sediments. The present paper could be used as baseline study to assess future monitoring programs of the ecosystem.  相似文献   

16.
《Marine pollution bulletin》2009,58(6-12):889-894
As basic research for the effect of heavy oil on the fish immune system, in this study, the number of leukocyte was counted in Japanese flounder Paralichthys olivaceus, after exposure to heavy oil at a concentration of 30 g/8 L for 3 days. To compare the numbers of bacteria in the skin mucus between oil-exposed and control fish, viable bacteria were enumerated by counting colony forming unit (CFU). Compared with 5.79 ± 1.88 × 107 leukocytes/mL in the controls, the exposed fish demonstrated higher counts, averaging 1.45 ± 0.45 × 108 cells/mL. The bacterial numbers of control fish were 4.27 ± 3.68 × 104 CFU/g, whereas they were 4.58 ± 1.63 × 105 CFU/g in the exposed fish. The results suggest that immune suppression of the fish occurred due to heavy oil stressor, and bacteria could invade in the mucus, resulting in the increasing leukocyte number to prevent infectious disease.  相似文献   

17.
Wind-driven processes exert an important impact on aquatic ecosystems, especially on shallow reservoirs. Flow and heat transport under wind in the Douhe reservoir in China were simulated by a two-dimensional mathematical model. Areas corresponding to different temperature rises were calculated for different wind speed conditions with high frequency. It is shown that high temperature rise areas increase for maximum wind speed conditions while low temperature rise areas keep constant for various wind speed conditions. The concentration of Chl.a decreases with the increase of wind speed, indicating that low wind speed is suitable for algae blooming in the Douhe reservoir. The effects of wind on Bacillariophyta biomass growth become more obvious with the increase of temperature rise areas. The influenced areas of lower temperature rise (0.2–1.49 °C) and higher temperature rise (1.5–2 °C) zone are 8.57 × 106 m2 and 5.18 × 106 m2, respectively, and corresponding total variation amounts of Bacillariophyta biomass are 2.24 × 105/m2 and 0.42 × 105/m2, respectively. Results show that wind has a significant impact on ecological effects due to thermal discharge from thermal power plant into shallow reservoirs.  相似文献   

18.
We report a large cyst bed of the potentially toxic and bloom-forming dinoflagellate Alexandrium tamarense species complex in bottom sediments from the port of Halifax, Nova Scotia, Canada. The average cyst concentrations of that species ranged from 4033 ± 2647 to 220 872 ± 148 086 cysts g?1 of dry sediments and the highest concentrations were found near ship terminals in Bedford Basin. Although this species is endemic to this region, our work strongly suggests that some of the cysts of A. tamarense species complex found in the port of Halifax were introduced through discharged ballast water and sediments.  相似文献   

19.
There are many areas of uncertainty when solving the inverse problems of snow water equivalent (SWE) reconstruction. These include (i) the ability to infer the Final Date of the Seasonal Snow (FDSS) cover, particularly from remote sensing; (ii) errors in model forcing data (such as air temperature or radiation fluxes); and (iii) weaknesses in the snow model used for the reconstruction, associated with both the fidelity of the equations used to simulate snow processes (structural uncertainty) and the parameter values selected for use in the model equations. We investigate the trade-offs among these sources of uncertainty using 10,000 station-years worth of data from the western US SNOTEL network. Model structural and parameter uncertainty are eliminated by using a perfect model scenario i.e. comparing results to modelled control runs. The model was calibrated for each station-year to ensure that the model simulations reflect reality. Results indicate that for a temperature index model, a ±5 days error in FDSS gives a median −25%/+32% error in maximum SWE. A 1 °C air temperature bias produces a SWE error larger than a 5 days error in the FDSS for 50% of the 10,000 cases. Similarly, a 5 days error in FDSS could be accounted for by a net radiation error of 13 W m−2 or less during the melt period, in 50% of cases. Mean absolute errors of 1 °C or more are typically reported in the literature for air temperature interpolations at high elevations. Observed solar radiation during the melt season can differ by 30 W m−2 over relatively short distances, while estimates from reanalysis (NARR, ERA-Interim, MERRA, CFSRR) and GOES satellites typically span more than 40 W m−2. Using data from both MODIS sensors (Terra & Aqua) at all snow covered points in the western US, a consecutive 5 days gap in imagery at time of FDSS is likely to occur only 5–10% of the time. This work shows that errors in model forcing data are at least as important, if not more, than image availability when reconstructing SWE.  相似文献   

20.
The mass-induced sea level variability and the net mass transport between Mediterranean Sea and Black Sea are derived for the interval between August 2002 and July 2008 from satellite-based observations and from model data. We construct in each basin two time series representing the basin mean mass signal in terms of equivalent water height. The first series is obtained from steric-corrected altimetry while the other is deduced from GRACE data corrected for the contamination by continental hydrology. The series show a good agreement in terms of annual and inter-annual signals, which is in line with earlier works, although different model corrections influence the consistency in terms of seasonal signal and trend.In the Mediterranean Sea, we obtain the best agreement using a steric correction from the regional oceanographic model MFSTEP and a continental hydrological leakage correction derived from the global continental hydrological model WaterGAP2. The inter-annual time series show a correlation of 0.85 and a root mean square (RMS) difference of 15 mm. The two estimates have similar accuracy and their annual amplitude and phase agree within 3 mm and 23 days respectively. The GRACE-derived mass-induced sea level variability yields an annual amplitude of 27 ± 5 mm peaking in December and a trend of 5.3 ± 1.9 mm/yr, which deviates within 3 mm/yr from the altimetry-derived estimate.In the Black Sea, the series are less consistent, with lower accuracy of the GRACE-derived estimate, but still show a promising agreement considering the smaller size of the basin. The best agreement is realized choosing the corrections from WaterGAP2 and from the regional oceanographic model NEMO. The inter-annual time series have a correlation and RMS differences of 0.68 and 55 mm, their annual amplitude and phase agree within 4 mm and 6 days respectively. The GRACE-derived seawater mass signal has an annual amplitude of 32 ± 4 mm peaking in April. On inter-annual time scales, the mass-induced sea level variability is stronger than in the Mediterranean Sea, with an increase from 2003 to 2005 followed by a decrease from 2006 to 2008.Based on mass conservation, the mass-induced sea level variations, river runoff and precipitation minus evaporation are combined to derive the strait flows between the basins and with the Atlantic Ocean. At the Gibraltar strait, the net inflow varies annually with an amplitude of 52 ± 10 × 10−3 Sv peaking end of September (1 Sv = 106 m3 s−1). The inflow through the Bosphorus strait displays an annual amplitude of 13 ± 3 ×10−3 Sv peaking in the middle of March. Additionally, an increase of the Gibraltar net inflow (3.4 ± 0.8 × 10−3 Sv/yr) is detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号