首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 799 毫秒
1.
Fifteen earthquakes (Mw 4.1–6.4) occurring at ten major segments of the Sumatran Fault Zone (SFZ) were analyzed to identify their respective fault planes. The events were relocated in order to assess hypocenter uncertainty. Earthquake source parameters were determined from three-component local waveforms recorded by IRIS-DMC and GEOFON broadband lA networks. Epicentral distances of all stations were less than 10°. Moment tensor solutions of the events were calculated, along with simultaneous determination of centroid position. Joint analysis of hypocenter position, centroid position, and nodal planes produced clear outlines of the Sumatran fault planes. The preferable seismotectonic interpretation is that the events activated the SFZ at a depth of approximately 14–210 km, corresponding to the interplate Sumatran fault boundary. The identification of this seismic fault zone is significant to the investigation of seismic hazards in the region.  相似文献   

2.
The results of deep seismic profiling through Southern Sakhalin, the southern Sea of Okhotsk, and the Southern Kuril Islands allowed the identification of deep fault zones, the hypocenter locations, the features of the stress state, and the types of seismic dislocations at the earthquake sources. The east side of the fault was upthrown relative to the west side beneath the southern part of the Tatar Strait and Sakhalin Island and led, as a result of multiple thrusting events along the fault over the geologic history, to the rise and 5-8 km displacement of the seismic boundaries. The true uplift of the Greater Kuril arc block was determined using the focal mechanism solutions. The seismoctectonics and present-day dynamics of the crustal blocks were estimated using a detailed joint analysis of the position of the structural boundaries at the seismic section and the seismotectonic movements according to the earthquake focal mechanisms.  相似文献   

3.
We use acceleration data from the Observatorio Vulcanologico y Sismologico, Universidad Nacional de Costa Rica (OVSICORI-UNA) and Laboratorio de Ingenieria Sismica, Universidad de Costa Rica (LIS-UCR) seismic network for the relocation and moment-tensor solution of the September 5, 2012, 14:42:03.35 UTC, Nicoya, Costa Rica earthquake (Mw 7.6 GCMT). Using different relocation methods we found a stable earthquake hypocenter, near the original OVSICORI-UNA location in the Nicoya Peninsula, NW Costa Rica at Lat 9.6943°N, Lon 85.5689°W, depth 15.3 km, associated with the subduction of the Cocos plate under Caribbean plate. Acceleration records at OVSICORI-UNA and LIS-UCR stations (94–171 km), at 0.03 < f < 0.06 Hz were used in the waveform inversion for a single-point centroid moment tensor (CMT). Using spatial grid search the centroid position was found at the depth of 30 km, situated at Lat 10.0559°N, Lon 85.4778°W, i.e. of about 41 km NNE from the epicenter. The centroid time is 14:42:18.89 UTC, i.e. 15.54 s later relative to the location-based origin time. The nodal plane (strike 318°, dip 27° and rake 115°) is the fault plane that agrees with the geometry of the subducted slab at Nicoya, NNW Costa Rica. Increasing the maximum studied frequency from 0.06 to 0.15 Hz, the multiple point source inversion model leads to two subevents. The first one was located near the centroid and the second subevent was situated 20 km along strike and 10 km down dip from the first subevent and 6 s later. The uncertainty of the source model was carefully examined using complementary inversion methods, viz the iterative deconvolution and non-negative least squares.  相似文献   

4.
This study continues the work by Mikhail Gzovsky on geological (tectonophysical) criteria for seismic risk. It is suggested to perform seismic-risk zoning according to parameters of normal and shear stresses on fault planes converted from results of tectonophysical stress reconstructions. The approach requires the knowledge of both dip and strike of the respective fault segments. Slip geometry is estimated from stress tensor, assuming that it is directed along shear stress. The suggested approach is applied to faults in the northern Tien Shan, and the current stress parameters are reconstructed using source mechanisms of catalogued earthquakes recorded by the KNET seismological network of the RAS Science Station in Bishkek. Stress modeling is performed by the method of cataclastic analysis providing constraints on stress ellipsoids, as well as on relations between the spherical and deviatoric components of the stress tensor. Plotted on the Mohr diagram, the fault stress points allow estimating whether the respective fault segments are close to the critical state (brittle failure). The suggested seismic-risk zoning of faults in the northern Tien Shan reveals up to 25 km long hazardous fault segments.  相似文献   

5.
基于区域地震台网的数字化波形资料,使用ISOLA方法对2019年5月18日吉林松原M5.1地震进行矩张量反演,研究地震的震源机制,并且收集了地震序列中ML2.5以上地震的震源机制解,采用FMSI(focal mechanism stress inversion)方法反演震中区构造应力场。结果显示:松原M5.1地震的矩震级为4.9,矩心深度为6 km,双力偶分量为91.5%,主压应力P轴方位角、倾角分别为76°和3°,主张应力T轴方位角、倾角分别为166°和16°,震源机制解显示典型的构造地震特征;震中区构造应力场理论应力轴σ1方位角、倾伏角分别为88.0°和0.9°,σ2方位角、倾伏角分别为178.2°和9.6°,σ3方位角、倾伏角分别为352.5°和80.4°,这一结果与区域构造应力场一致。推断认为区域构造应力场触发了2019年松原M5.1地震活动,地震震源机制解的北西向节面与震中区附近的第二松花江断裂现今活动性质完全一致,认为第二松花断裂可能是松原M5.1地震的发震断层。  相似文献   

6.
F. Di Luccio  E. Fukuyama  N.A. Pino   《Tectonophysics》2005,405(1-4):141-154
On October 31, 2002 a ML = 5.4 earthquake occurred in southern Italy, at the margin between the Apenninic thrust belt (to the west) and the Adriatic plate (to the east). In this area, neither historical event nor seismogenic fault is reported in the literature. In spite of its moderate magnitude, the earthquake caused severe damage in cities close to the epicenter and 27 people, out of a total of 29 casualties, were killed by the collapse of a primary school in S. Giuliano di Puglia. By inverting broadband regional waveforms, we computed moment tensor solutions for 15 events, as small as ML = 3.5 (Mw = 3.7). The obtained focal mechanisms show pure strike-slip geometry, mainly with focal planes oriented to NS (sinistral) and EW (dextral). In several solutions focal planes are rotated counterclockwise, in particular for later events, occurring west of the mainshock. From the relocated aftershock distribution, we found that the mainshock ruptured along an EW plane, and the fault mechanisms of some aftershocks were not consistent with the mainshock fault plane. The observed stress field, resulting from the stress tensor inversion, shows a maximum principal stress axis with an east–west trend (N83°W), whereas the minimum stress direction is almost N–S. Considering both the aftershock distribution and moment tensor solutions, it appears that several pre-existing faults were activated rather than a single planar fault associated with the mainshock. The finite fault analysis shows a very simple slip distribution with a slow rupture velocity of 1.1 km/s, that could explain the occurrence of a second mainshock about 30 h after. Finally, we attempt to interpret how the Molise sequence is related to the normal faulting system to the west (along the Apennines) and the dextral strike-slip Mattinata fault to the east.  相似文献   

7.
《Journal of Structural Geology》1999,21(8-9):1065-1070
If faulting is treated as a stress-controlled phenomenon, the generation of a single fault set, or two sets in conjugate arrangement are inevitably predicted implying plane strain. Alternatively, considering faulting as a strain-controlled process, multiple-set patterns can be predicted. The analysis of multiple-set patterns requires identifying the type of fault pattern from four possibilities: Coulomb, isolated, orthorhombic and complex fault patterns.There are techniques that permit a unique solution of strain tensor for Coulomb and orthorhombic fault patterns. For isolated fault patterns, the principal paleostress directions could be used to approximate the principal strain directions. In this case, we need to assume a homogeneous stress field, independence between faults, and parallelism between shear stress and slip vector on the sliding plane.For complex fault patterns, it is not possible to uniquely determine the total strain tensor without knowledge of all the slip planes. Furthermore, inverting fault-slip data to determine the stress tensor is not correct because the assumptions of the inversion methods are not satisfied. Only a rough approximation is possible assuming that strain produced by major faults represents the total strain tensor.  相似文献   

8.
《Gondwana Research》2016,29(4):1566-1578
From October 2012 to October 2013, a seismic swarm released more than 7000 microearthquakes beneath the eastern Guadalquivir foreland basin. From double-difference relocations of 501 events (md > 1.5), we can image the active structures associated with this swarm. Most of the events occurred along two ~ N–S trending lineaments separated ~ 1 km. Relocation places most events at 4–6.5 km depth in the Iberian-massif basement below the basin. Moment tensor inversion yields strike-slip mechanisms consistent with the hypocenter alignments, attributing left-lateral motion to the N–S structures and right-lateral motion to the ESE–WNW ones, in compliance with the ~ NNW direction of the main compressive stress field in the central Betics. These structures respond to a vertical-axis bend in the mountain front associated with the protrusion of Sierra Cazorla east of the epicentral area. This bend is mimicked by concordant, gentle bends in the foreland units, which are evident from the surface geology as well as through structural elements like strike-slip faults, crisscrossing joints. In this context, the right-lateral shear zone responsible for the Torreperogil sequence is taking up deformation in the western limb of the foreland bend.  相似文献   

9.
This study presents a structural analysis based on hundreds of striated small faults (fault-slip data) in the Amman area east of the Dead Sea Transform System. Stress inversion of the fault-slip data was performed using an improved Right-Dihedral method, followed by rotational optimization (TENSOR Program, Delvaux, 1993). Fault-slip data (totaling 212) include fault planes, striations and sense of movements, are obtained from the Turonian Wadi As Sir Formation, distributed mainly along the southern side of the Amman – Hallabat structure in Jordan the study area. Results show that σ1 (SHmax) and σ3 (SHmin) are generally sub-horizontal and σ2 is sub-vertical in 8 of 11 paleostress tensors, which are belonging to a major strike-slip system with σ1 swinging around N to NW direction. The other three stress tensors show σ2 (SHmax), σ1 vertical and σ3 is NE oriented. This situation explained as permutation of stress axes σ1 and σ2 that occur during tectonic events and partitioned strike slip deformation. NW compressional stresses affected the area and produced the major Amman – Hallabat strike-slip fault and its related structures, e.g., NW trending normal faults and NE trending folds in the study area.The new paleostress results related with the active major stress field of the region the Dead Sea Stress Field (DSS) during the Miocene to Recent.  相似文献   

10.
The traditional interpretation of the Gillberga synform north of Lake Vänern in SW Sweden pictures it as a tectonically undisturbed rock sequence decreasing in age upwards. Our investigations suggest that a number of major sub-horizontal thrust planes are present in the sequence. Low-angle thrusting seems to be a major feature in the Precambrian basement of SW Sweden and adjacent parts of SE Norway. It is suggested that this may be indicative of a major global suture, be it interplate or intraplate.  相似文献   

11.
Summary. Studies of source mechanisms of mining-induced seismic events play an important role in understanding the various modes of failure observed around underground excavations and enable the geometry of likely planes of failure to be determined. These planes can be mapped using conventional techniques, for example, geological fracture mapping. However, such an approach is often problematical due to limited access to the site and/or poor exposures (if any) of the failure plane. An added difficulty is that planes of failure often do not follow faults of geological origin, but are related to the geometry of the advancing stope face. For example, the development of face-parallel shear zones ahead of deep-level stope faces. In such cases, the stresses induced by mining dominate over the geological structure in the critical region close to the stope face. Seismic methods therefore have the potential of being a practical method of studying the development of seismic shear zones underground.Slip on such a failure plane generates a three dimensional elastic wave that propagates through the rockmass, carrying a wealth of information regarding the source rupture process. The ground motions caused by the passage of the wave can be recorded by arrays of sensitive instruments called seismometers. These sets of recordings (seismograms) provide the basic data that seismologists use to study these elastic waves as they propagate through the Earth. Conventional seismic analyses provide scalar measurements of the rupture size and intensity. However, through a process known as moment tensor inversion (MTI), the seismograms recorded from a seismic event can be used to calculate a moment tensor that describes the three dimensional nature of the source mechanism. Interpretation of the moment tensor gives insight into whether the rockmass failed in tension, compression or shear and indicates the direction of movement and the failure plane.Moment tensor solutions computed using conventional MTI methods are sensitive to noise and may be biased due to systematic errors in the measurements. The primary objective of this study was to develop a robust MTI method to estimate the moment tensors of clusters of seismic events recorded in the underground environment. To achieve this, three hybrid MTI methods were developed by the author. These methods involve different iterative weighting schemes designed to enhance the accuracy of the computed moment tensors by decreasing the effect of outliers (data points whose residuals lie far from the mean or median error). The additional information required for hybrid methods is obtained by considering a spatial cluster of seismic events and assuming that the waves generated by each event in the cluster follow a similar path through the rockmass and allowing a common ray-path to be assumed. Hence the unknown effect of the heterogeneous rockmass on the waveform is similar for all the events in the cluster.The final objective was to determine whether the techniques developed could be successfully applied to real data. The hybrid MTI methods using the median and the weighted mean correction were applied to a cluster of 10 events, having remarkably similar waveforms, recorded at Oryx Gold Mine. For comparative purposes, the more conventional absolute method was also applied. The solutions computed using the hybrid MTI with a median correction displayed a distinct improvement after the iterative residual correction procedure was applied, in contrast to the solutions obtained from the absolute method. The radiation patterns and fault-plane solutions from the hybrid method showed a high degree of similarity, and were probably more accurate reflections of reality. These observations are very encouraging and point towards the potential for using the hybrid MTI method with a median correction as a standard processing tool for mine seismicity.The implications of this work are that a robust method for calculating the focal mechanisms of clusters of seismic events induced by mining activities has been developed. Regular application will lead to a better understanding of rock fracture processes and to improved safety underground.  相似文献   

12.
We have analyzed the Nojima fault NIED 1800 m drill core samples by ESR (Electron Spin Resonance) to detect seismic frictional heating events, especially during the 1995 Kobe Earthquake. Dark gray fault gouge with foliation > 10 cm away from the fault plane at about 1140 m in depth, which was produced by ancient fault movements, has a FMR (ferrimagnetic resonance) signal. Heating experiments show that this FMR signal is derived from ferrimagnetic trivalent ion oxides (γ-Fe2O3: maghemite) with imperfect crystallinity, which is produced by thermal dehydration of γ-FeOOH (lepidocrocite) or Fe(OH)3 (limonite). The existence of the FMR signal means that dry heating such as frictional heating once occurred, and that the frictional heat temperature along the dark gray fault gouge may have risen to over 350 °C during ancient seismic fault slip. In order to detect frictional heating events in fault zones, the increase of the FMR signal and the color change of fault gouge into dark gray or black are important indexes. On the other hand, no FMR signal is detected from the fault gouges just on two fault planes at about 1140 m and 1300 m in depth, which are considered to be possible main fault planes in the 1995 Kobe Earthquake. These two fault planes may not have played an important role of fault slip in the Earthquake.  相似文献   

13.
14.
M 《Tectonophysics》2004,387(1-4):65-79
Broadband data from the Greek National Seismological Network are used to study the moderate size (M5.5) earthquake, which occurred on 2 December 2002 near the town of Vartholomio, in western Peloponnese (Greece). Time domain moment tensor inversion applied to retrieve the focal mechanism of the mainshock and of three of the larger aftershocks of the sequence, revealed almost pure strike-slip faulting along NW–SE or NE–SW trending nodal planes. The relative source time functions for the mainshock, obtained from an empirical Green's function analysis, do not reveal any clear directivity to any of the stations. A careful observer might suggest directivity towards NW, if any. Optimum values are 0.4 s for the rise time and 2.7 km/s for the rupture velocity. The spatial and temporal distribution of fault slip showed that the major part of the resolved slip occurred beneath the mainshock's epicenter, 20 km underneath the western coast of Peloponnese. This probably accounts for the considerable damage observed to the nearby towns. The resolution between the two nodal planes does not permit an identification of the fault plane; however the statistics on the slip distribution model, the preliminary analysis of aftershock locations and macroseismic data favour the NW–SE trending plane as the fault plane, which is connected with sinistral strike-slip motions. These are the first implications for sinistral strike-slip motions in this area and more data are needed in the future to get more reliable resolution of the motions.  相似文献   

15.
On March 10 and September 13, 2007 two earthquakes with moment magnitudes 3.66 and 3.94, respectively, occurred in the eastern part of the United Arab Emirates (UAE). The two events were widely felt in the northern Emirates and Oman and were accompanied by a few aftershocks. Ground motions from these events were well recorded by the broadband stations of Dubai (UAE) and Oman seismological networks and provide an excellent opportunity to study the tectonic process and present day stress field acting in this area. In this study, we report the focal mechanisms of the two main shocks by two methods: first motion polarities and regional waveform moment tensor inversion. Our results indicate nearly pure normal faulting mechanisms with a slight strike slip component. We associated the fault plane trending NNE–SSW with a suggested fault along the extension of the faults bounded Bani Hamid area. The seismicity distribution between two earthquake sequences reveals a noticeable gap that may be a site of a future event. The source parameters (seismic moment, moment magnitude, fault radius, stress drop and displacement across the fault) were also estimated from displacement spectra. The moment magnitudes were very consistent with waveform inversion. The recent deployment of seismic networks in Dubai and Oman reveals tectonic activity in the northern Oman Mountains that was previously unknown. Continued observation and analysis will allow for characterization of seismicity and assessment of seismic hazard in the region.  相似文献   

16.
Although a minimum of four independent, single-phase fault data are required to solve for a unique reduced stress tensor, we prove in this paper that a smaller number of fault data are sufficient in some instances to solve for part of the reduced stress tensor. One of the principal stress directions is determinable from either two faults with a common null shear direction on the fault planes or three faults with a common intersection in a principal stress plane of the fault planes. This direction is combined with the fault data to determine the possible ranges of other principal stress directions. Determining whether the direction is for the maximum, intermediate or minimum principal stress depends upon constraints provided by slip tendency or more fault data. This approach can also be applied to a set of four or more fault data with low orientation diversity. This new method is finally applied to two different sets of fault data from along the active Chelungpu fault, western Taiwan. The stress orientations determined from the method lie in acceptable ranges for the maximum/minimum principal stresses using other existing and comparable methods, such as the right dihedra/trihedra methods. They differ moderately in the maximum/minimum principal stress directions when compared to the moment tensor method for fault kinematic analysis. The new method has advantages over the right dihedra/trihedra methods in the accuracy of stress estimate and the independence of stress estimate upon the small number of faults that are not parallel to the dominant fault set(s).  相似文献   

17.
Seismic events can take place due to the interaction of stress waves induced by stope production blasts with faults located in close proximity to stopes. The occurrence of such seismic events needs to be controlled to ensure the safety of the mine operators and the underground mine workings. This paper presents the results of a dynamic numerical modelling study of fault slip induced by stress waves resulting from stope production blasts. First, the calibration of a numerical model having a single blast hole is performed using a charge weight scaling law to determine blast pressure and damping coefficient of the rockmass. Subsequently, a numerical model of a typical Canadian metal mine encompassing a fault parallel to a tabular ore deposit is constructed, and the simulation of stope extraction sequence is carried out with static analyses until the fault exhibits slip burst conditions. At that point, the dynamic analysis begins by applying the calibrated blast pressure to the stope wall in the form of velocities generated by the blast holes. It is shown from the results obtained from the dynamic analysis that the stress waves reflected on the fault create a drop of normal stresses acting on the fault, which produces a reduction in shear stresses while resulting in fault slip. The influence of blast sequences on the behaviour of the fault is also examined assuming several types of blast sequences. Comparison of the blast sequence simulation results indicates that performing simultaneous blasts symmetrically induces the same level of seismic events as separate blasts, although seismic energy is more rapidly released when blasts are performed symmetrically. On the other hand when nine blast holes are blasted simultaneously, a large seismic event is induced, compared to the other two blasts. It is concluded that the separate blasts might be employed under the adopted geological conditions. The developed methodology and procedure to arrive at an ideal blast sequence can be applied to other mines where faults are found in the vicinity of stopes.  相似文献   

18.
唐然  许强  范宣梅 《工程地质学报》2021,29(5):1437-1451
近水平岩层斜坡中的张性结构面的存在是产生平推式滑坡的前提。滑坡发生后,充水的张性结构面大幅张开拓宽形成拉陷槽。统计大部分中型、中层以上的平推式新滑坡发育特征后发现,拉陷槽的展布方向总体与盆地边缘构造带近于垂直。综合前人研究成果,通过水系分析反演四川盆地新构造应力场,得到滑坡拉陷槽展布方向与新构造主应力方向相近,认为其形成发育与新构造运动以来的应力场关系密切。构造应力场对平推式滑坡形成演化的影响主要表现在对岩体结构的改造、对结构面渗透性的控制和对斜坡水文条件的影响等方面。构造主应力方向的转换使与其近于平行的压(剪)性质结构面转变为张性,产生张裂延伸作用,扩大规模,结构面沿走向相互贯通,沿倾向跨层。并且使具有这种三维应力状态的结构面渗透性得到显著提高。结构面的渗透性、规模、连通性、张开度等同时被扩大。垂向和水平运移特征是平推式滑坡发生的主要因素之一,为滑坡的产生提供了形成演化条件。受构造应力场改造和影响的近水平岩层斜坡给水性和导水性得到改善,由于跨层张性结构面的存在,地下水有条件垂向运移到斜坡深处,与深层的软弱层产生物理化学作用,为形成规模和厚度更大的平推式滑坡提供条件。解释了中层、中型以上的平推式滑坡拉陷槽与构造主应力方向相近的缘由。  相似文献   

19.
对紧邻发震断裂带的崩滑体进行动力响应分析时,考虑断裂带宏观破裂机制,即带状震源形成的地震动力作用对斜坡的影响更符合实际。依据汶川地震震源破裂机制与其空间位置差异,将该带状震源从发震断裂起破点至终破点依次分段为逆冲震源、逆冲兼少量走滑震源、逆冲兼走滑震源与走滑兼少量逆冲震源,基于此对汶川地震触发的四川安县大光包崩滑体在龙门山发震断裂带即带状震源作用下的动力响应特征进行了离散元数值模拟,揭示了其动力形成机制、触发主控因素和损伤、崩滑及堆积动态特征。研究表明:(1)依据该崩滑体离散元数值模型临界崩滑状态形成时间与此时发震断裂带破裂前锋所处位置关系,可判断其临界破坏是受到逆冲兼少量走滑震源引起的地震动力作用所致,而临界崩滑之前的坡体损伤主要由纯逆冲震源所致,其后的抛射碰撞破碎与堆积则主要受临界破坏时的地震惯性力和自身重力耦合作用所致,但由逆冲兼走滑与走滑兼少量逆冲震源形成的地震力仅对上述两个破坏过程起到了一定影响;(2)该崩滑体在带状震源作用下的动力响应过程为:在损伤至崩滑临界破坏阶段,坡体整体向其临空面发生了较大程度的水平位移后,潜在滑床又向坡体临空面反方向发生了一定程度的水平位移,致使潜在滑体完全破碎并处于与滑床彻底分离的临界状态;在坡体崩滑抛射阶段,坡体滑床发生了相当规模的反方向水平位移,其后滑床又开始做向坡体临空面方面的水平位移并直至其总体位移为0,而在此过程中竖向位移相对较小。对滑体而言,其在损伤、临界崩滑和抛射阶段则主要做向其临空面的水平位移,直至堆积自稳阶段其位移趋于稳定;(3)该坡体的损伤和临界崩滑破坏主要受纯逆冲震源及其少量走滑震源形产生的水平地震力作用所致,而在坡体抛射碰撞破碎与堆积阶段,滑体的动力响应主要是基于地形因素控制上的地震惯性力与自身重力作用所致,而后两种类型震源机制形成的水平和竖向地震力仅起到一定影响。  相似文献   

20.
Mauro Alberti   《Tectonophysics》2006,421(3-4):231-250
The spatial properties of events in the 1997 Colfiorito–Sellano seismic sequence (Northern Apennines, Italy) were investigated using coherence, a parameter derived from seismic moment tensors that quantifies the kinematic similarity between focal mechanisms. The 1997 Colfiorito–Sellano seismic sequence predominantly consists of normal faulting earthquakes, with a few strike-slip and reverse faulting episodes. This kinematic heterogeneity is possibly related to the contemporaneous activity of two different sets of faults: NW–SE normal faults and NNE–SSW sub-vertical faults, the latter inherited from the previous Miocene compressional phase. The study used two independently-derived data sets of the same seismic sequence characterized by a different number of events and by different precision of spatial localisation. Their statistical significances, assessed through a reshuffling procedure, reveal that data sets with at least some hundreds of events and good positional precision are required to obtain significant results through coherence analysis. Results from the better quality data set indicate that this seismic sequence is characterized by a rapid decrease in the kinematic similarity between earthquake pairs within 2 km of separation, particularly along directions sub-perpendicular to the normal fault strike. The decrease rate seems to be controlled by the geometric characteristics of the normal faults, given that the mean along-dip distance between fault segments is 2 km. In proximity to pre-existing tectonic lineaments the relative abundance of strike-slip and reverse faults tends to decrease the kinematic similarity between events but does not influence the coherence decrease rate. The presence of mixed focal mechanisms (normal, reverse and strike-slip) in a single seismic phase implies that mixed fault types are not restricted to polyphase tectonic histories: such heterogeneous kinematics during a single phase may be induced by the presence of inherited discontinuities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号