首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved method is developed to couple an inner domain solution of the blade element momentum theory with an outer domain solution of the Reynolds averaged Navier Stokes equations for evaluating performance of tidal current turbines. A mesh sensitivity study shows that a mesh of at least 6 M cells with at least 40% of these within the turbine wake is required to ensure satisfactory convergence of the velocity deficit. In addition to the usually applied axial momentum source terms, angular momentum and turbulence intensity source terms are shown to be required to model the near wake evolution. Three different lateral turbine spacing of 2, 4 and 6 turbine diameters are used to demonstrate the influence of the effective channel blockage on the velocity distribution in the turbine bypass region, the rate of spread of the wake and the recovery of velocity distribution. A final study shows that for a fixed number of turbines minimising the lateral spacing within each row, with a small number of staggered rows spaced as longitudinally as far apart as practical, is the most effective strategy for energy capture.  相似文献   

2.
Wake studies of a 1/30th scale horizontal axis marine current turbine   总被引:1,自引:0,他引:1  
A 0.4 m diameter (1:30th scale) horizontal axis marine current turbine (MCT) was tested in a circulating water channel. The turbine performance and wake characteristics were determined over a range of flow speeds and rotor thrust coefficients. Measurements of the water surface elevation profiles indicated increasing variation and surface turbulence with increasing flow speeds. Blockage-type effects (where the measured point velocity was greater than the inflow velocity) occurred around the sides of the rotor for all flow speeds. Although the effects were exaggerated at model scale, it is expected that reasonable variations in water level and flow velocity could also occur over a full scale MCT array.  相似文献   

3.
The response of an oscillating circular cylinder at the wake of an upstream fixed circular cylinder was classified by different researchers as galloping, wake induced galloping or wake induced vibration. Furthermore it is already known that a sharp edge square cylinder would undergo galloping if it is subjected to uniform flow. In this study the influence of the wake of a fixed circular cylinder on the response of a downstream square cylinder at different spacing ratios (S/D = 4, 8, 11) is experimentally investigated. The subject appears not to have received previous attention. The lateral displacements, lift forces and the pressure data from gauges mounted in the wake of the oscillating cylinder are recorded and analyzed. The single degree of freedom vibrating system has a low mass-damping parameter and the Reynolds number ranges from 7.7 × 102 to 3.7 × 104.In contrast to that for two circular cylinders in tandem arrangement, the freely mounted downstream square cylinder displays a VIV type of response at all spacing ratios tested. There is no sign of galloping or wake induced galloping with the square cylinder. With increase at the spacing ratio the cross-flow oscillations decrease. It is shown that the vortices arriving from the upstream fixed circular cylinder play a major role on the shedding mechanism behind the downstream square cylinder and cause the square cylinder to shed vortices with frequencies above Strouhal frequency of the fixed square cylinder (St = 0.13). The VIV type of oscillations in the downstream square cylinder is most probably caused by the vortices newly generated behind the square cylinder.  相似文献   

4.
为了助力海洋牧场减流防护工程, 研究Savonius型转轮阵列减流性能。作者建立Savonius型转轮三角阵列尾流场数值模型, 并通过水池实验验证准确性, 基于可靠数值模型探究转轮阵列尾涡减流机理, 研究三角阵列结构参数LXLY, 以及动力参数TSR、初始流速、旋向对整体减流性能的影响规律。结果表明,下游转轮产生的涡流呈现非对称分布, 并且产生更多涡流的转轮拥有更好的减流效果。另外, LX为3D和LY为2D时减流性能最佳。最后对比发现, 在叶尖速比为0.9~1.1减流效果更好; 初始流速大小不影响减流效果; 下游转子对称分布时, 随着上游转子改变旋转方向, 减流效果出现明显差异。  相似文献   

5.
Experiments employing a low-mass-damping cylinder have been conducted to determine the vortex-induced vibration (VIV) response of four suppressors of the flexible-shroud family. The VIV suppressors were inspired in the concept of the Ventilated Trousers (VT), a flexible shroud composed of a flexible net fitted with three-dimensional bobbins. Reynolds number varied between 5 × 103 and 25 × 103, while reduced velocity varied from 2 to 26. The VIV dynamic response showed that the VT suppressed the peak amplitude of vibration down to 40% of that of a bare cylinder. Other flexible shrouds also achieved suppression, but not as efficiently. Drag was reduced during the VIV synchronization range, but remained above the value for a bare static cylinder thereafter. Spectral analysis of displacement and lift revealed that, depending on the geometry and distribution of the bobbins, the flexible shroud can develop an unstable behavior, capturing energy from the wake and sustaining vibrations for higher reduced velocities. PIV measurements of the wake revealed that the entrainment flow through the mesh is necessary to extend the vortex-formation length of the wake; this mechanism only occurs for the VT mesh.  相似文献   

6.
In this work we study experimentally the flow dynamics inside the rotor of a three straight-bladed Cross-Flow Turbine (CFT). The CFT model used in the experiments is based on symmetric NACA-0015 profiles, with a chord to rotor diameter ratio of 0.16. The turbine model was designed in order to quantify the flow inside and around the rotor using planar Digital Particle Image Velocimetry (DPIV). Tests were made by forcing the rotation of the turbine with a DC motor, which provided precise control of the Tip Speed Ratio (TSR), while being towed in a still-water tank at a constant turbine diameter Reynolds number of 6.1 × 104. The range of TSRs covered in the experiments went from 0.7 to 2.3.The focus is given to the analysis of the blade-wake interactions inside the rotor. The investigation has allowed us to relate the interactions with the performance differences in this type of turbines, as a function of the operational tip speed ratio.  相似文献   

7.
Many existing practical sand transport formulae for the coastal marine environment are restricted to a limited range of hydrodynamic and sand conditions. This paper presents a new practical formula for net sand transport induced by non-breaking waves and currents. The formula is especially developed for cross-shore sand transport under wave-dominated conditions and is based on the semi-unsteady, half wave-cycle concept, with bed shear stress as the main forcing parameter. Unsteady phase-lag effects between velocities and concentrations, which are especially important for rippled bed and fine sand sheet-flow conditions, are accounted for through parameterisations. Recently-recognised effects on the net transport rate related to flow acceleration skewness and progressive surface waves are also included. To account for the latter, the formula includes the effects of boundary layer streaming and advection effects which occur under real waves, but not in oscillatory tunnel flows. The formula is developed using a database of 226 net transport rate measurements from large-scale oscillatory flow tunnels and a large wave flume, covering a wide range of full-scale flow conditions and uniform and graded sands with median diameter ranging from 0.13 mm to 0.54 mm. Good overall agreement is obtained between observed and predicted net transport rates with 78% of the predictions falling within a factor 2 of the measurements. For several distinctly different conditions, the behaviour of the net transport with increasing flow strength agrees well with observations, indicating that the most important transport processes in both the rippled bed and sheet flow regime are well captured by the formula. However, for some flow conditions good quantitative agreement could only be obtained by introducing separate calibration parameters. The new formula has been validated against independent net transport rate data for oscillatory flow conditions and steady flow conditions.  相似文献   

8.
《Coastal Engineering》2005,52(9):745-770
New experiments were carried out in the Large Oscillating Water Tunnel of WL|Delft Hydraulics (scale 1:1) using asymmetric 2nd-order Stokes waves. The main aim was to gain a better understanding of size-selective sediment transport processes under oscillatory plane-bed/sheet-flow conditions. The new data show that for uniform sand sizes between 0.2 < D < 1.0 mm, measured net transport rates are hardly affected by the grain size and are proportional to the third-order velocity moment. However for finer grains (D = 0.13 mm) net sand transport rates change from the ‘onshore’ direction into the ‘offshore’ direction in the high velocity range. A new measuring technique for sediment concentrations, based on the measurement of electro-resistance (see [McLean, S.R., Ribberink, J.S., Dohmen-Janssen, C.M. and Hassan, W.N.M., 2001. Sediment transport measurements within the sheet flow layer under waves and currents. J. Waterw., Port, Coast., Ocean Eng., ISSN 0733-950X]), was developed further for the improved measurement of sediment dynamics inside the sheet-flow layer. This technique enabled the measurements of particle velocities during the complete wave cycle. It is observed that for long period waves (T = 12.0 s), time-dependent concentrations inside the sheet-flow layer are nearly in phase with the time-dependent flow velocities. As the wave period decreases, the sediment entrainment from the bed as well as the deposition process back to the bed lags behind the wave motion more and more. The new data show that size-gradation has almost no effect on the net total transport rates, provided the grain sizes of the sand mixture are in the range of 0.2 < D < 1.0 mm. However, if very fine grains (D = 0.13 mm) are present in the mixture, net total transport rates of graded sand are generally reduced in comparison with uniform sand with the same D50. The transport rates of individual size fractions of a mixture are strongly influenced by the presence of other fractions in a mixture. Fine particles in sand mixtures are relatively less transported than in that uniform sand case, while the opposite occurs for coarse fractions in a mixture. The relative contribution of the coarse grains to the net total transport is therefore larger than would be expected based on their volume proportion in the original sand mixture. This partial transport behaviour is opposite to what is generally observed in uni-directional (e.g. river) flows. This is caused by vertical sorting of grain sizes in the upper bed layer and in the sheet flow and suspension layers. Kinematic sorting is believed to be responsible for the development of a coarse surface layer on top of a relatively fine sub-layer, providing in this way a relatively large flow exposure for the coarser sizes. Furthermore fine grains are suspended more easily than coarse grains to higher elevations in the flow where they are subject to increasing phase-lag effects (settling lags). The latter also leads to reduced net transport rates of these finer sizes.  相似文献   

9.
The evolution of size, sinking velocity, and dry weight of aging discarded appendicularian houses, a component of marine snow, were examined in laboratory experiments. The sizes of discarded houses decrease over time, with a rapid deflation during the first hour, followed by a slower rate of compression leading to a total of 60% and 87% decrease in diameter after 1 h and 5 d, respectively. The initial rapid deflation of the houses is accompanied by a massive loss of its particle content and a 10–63% loss in weight. The initial weight loss is left as a trail of elevated particle and solute concentration in the wake of the sinking house. Subsequently the house weight decreases at a much lower rate that is consistent with bacterial degradation. The combined effect of weight losses and deflation–compression process is an increase in the sinking speed of the houses, by a factor of 1.7–6 after 1.5–3 d. These processes can provide a new insight on the sinking dynamic and flux of appendicularian produced marine snow from in situ observations. We applied our laboratory derived rates to field data from the East Atlantic Ocean and estimate that large (2000–4000 μm) houses account for about 1/3 of the 300–500 μm particles in the upper 100 m and loose 30% of their mass before leaving the upper 200 m. The observed deflation–compression process may have several consequences on the dynamics of appendicularian-derived marine snow particles. First, it may explain field observations that marine snow sinking velocities increase with depth. Second, an initial rapid loss of weight and particles will decrease the potential vertical flux of particulate carbon due to appendicularians. And finally, the trail of particles and solutes may guide zooplankton to the sinking house, and further increase its degradation due to grazing by detrivorous organisms.  相似文献   

10.
A flat plate in pitching motion is considered as a fundamental source of locomotion in the general context of marine propulsion. The experimental as well as numerical investigation is carried out at a relatively small Reynold number of 2000 based on the plate length c and the inflow velocity U. The plate oscillates sinusoidally in pitch about its 1/3  c axis and the peak to peak amplitude of motion is 20°. The reduced frequency of oscillation k = πfc/U is considered as a key parameter and it may vary between 1 and 5. The underlying fluid-structure problem is numerically solved using a compact finite-differences Navier–Stokes solution procedure and the numerical solution is compared with Particle Image Velocimetry (PIV) measurements of the flow field around the pitching foil experimental device mounted in a water-channel. A good agreement is found between the numerical and experimental results and the threshold oscillation frequency beyond which the wake exhibits a reverse von Kármán street pattern is determined. Above threshold, the mean velocity in the wake exhibits jet-like profiles with velocity excess, which is generally considered as the footprint of thrust production. The forces exerted on the plate are extracted from the numerical simulation results and it is shown, that reliable predictions for possible thrust production can be inferred from a conventional experimental control volume analysis, only when besides the wake's mean flow the contributions from the velocity fluctuation and the pressure term are taken into account.  相似文献   

11.
《Marine Geology》2001,172(3-4):287-307
Submarine volcaniclastic deposits, both modern and ancient, pose a conundrum in distinguishing between syn- and post-eruptive processes. High-standing, submarine volcanic edifices of the late Quaternary southern Kermadec arc (SW Pacific) are point sources of pyroclastic/hyaloclastic deposits that are bathed and modified by a complex current system of the South Pacific gyre flowing southeast along the northern margin of New Zealand, which in part comprises the anticyclonic flow of the warm-cored East Cape Eddy (ECE). Flow of the ECE across the southern Kermadec arc provides a present-day case of extensive and in situ, post-eruptive, textural modification of modern pyroclastic/hyaloclastic deposits on the crests and upper flanks of submarine stratovolcanoes. Photographic observations (and limited textural data) from seven Kermadec volcanoes reveal pervasive evidence of sediment winnowing (including crag and tail structures, scour and moating around volcanic blocks, coarse sand-granule lag deposits, epifaunal deflection, lineated mud streaking, and moulded bioturbation mounds) and asymmetric current-ripple bedforms at water-depths of at least 1500 m. All bedforms indicate increasing current speed at progressively higher elevations (decreasing water-depth) for each volcano. Current-ripples mostly have discontinuous, asymmetric, shorted-crested, linguoid–lunate forms below 1000 m water-depth, progressing to semi-continuous, asymmetric, shorted-crested, linear-sinuous forms above 500 m. Current elutriation of the Kermadec deposits progressively removes fines with decreasing water-depth resulting in relatively fines-depleted, volcaniclastic sands and granules. This post-eruptive process overprints syn-eruptive processes that notionally generate more comminuted fine-grained clasts with decreasing water-depth as phreatomagmatic explosive eruptions become more vigorous. Current-elutriation also modifies volcaniclastic detritus prior to subsequent removal by episodic, mass-gravity flow. In addition the sand-granule traction load, driven by current-flow, moves sediment nearly continuously to gully and rill heads for removal down-slope, independently of syn-eruptive sediment flux. The underlying observation is that volcaniclastic deposits rarely reflect just syn-eruptive processes, and that significant in situ current-elutriation of at the least surficial pyroclastic/hyaloclastic eruption products can occur on submarine volcanoes.Threshold current velocities, derived assuming unidirectional flow over cohesionless sand-lapilli grainsizes, and accounting for bed friction, yield current velocities (at 100 cm above the bed) of ≤15 cm s−1 for water-depths >1500 m through to ∼70 cm s−1 for depths <500 m at the crests of Rumble III and V volcanoes. Estimated velocities are consistent with short-term current velocities of 30–40 cm s−1, measured directly from either acoustic doppler current profile data or relative geostrophic flow, since the latter do not account for seafloor topographic intensification. The variable hydrographic climatology of the ECE, known from sea-surface dynamic heights and repeat CTD surveys, is possibly recorded by seafloor substrates as evinced by worm-trails post-dating ripple formation and differing orientations of winnowed structures and ripples.  相似文献   

12.
The results of two oceanographic surveys designed to delineate the flow response near Cato Island (155°32′E, 23°15′S) in the Western Coral Sea are presented. The surveys were conducted in October 1992 and February 1993 and coincided with conditions of strong, steady incident currents and relatively weak, variable currents, respectively. For the strong inflow case study, a surface-intensified cyclonic eddy observed in the wake of the island was co-incident with a zone of strong upwelling. Isotherm displacements within the eddy were in excess of 90 m. The lee side response was strongly depth dependent, with recirculation confined to the upper 120 m. A dynamical systems approach incorporating ADCP data was used to compute Lagrangian trajectories numerically for particles released at various locations in the wake zone. There was no evidence of enhanced chlorophyll concentrations downstream of the island. Comparisons with other dynamically similar studies indicate that eddy shedding is likely during periods of steady incident currents. During the second survey, weaker incident currents resulted in a less pronounced flow disturbance. Small isothermal displacements were capped beneath the strong seasonal thermocline. Lee side currents were weak and variable, with recirculation confined to the upper 50 m. A strong biological response was observed downstream, with increased integrated chlorophyll content and zooplankton biomass in the lee providing evidence of the island mass effect.  相似文献   

13.
Data from seven moorings deployed across the East Greenland shelfbreak and slope 280 km downstream of Denmark Strait are used to investigate the characteristics and dynamics of Denmark Strait Overflow Water (DSOW) cyclones. On average, a cyclone passes the mooring array every other day near the 900 m isobath, dominating the variability of the boundary current system. There is considerable variation in both the frequency and location of the cyclones on the slope, but no apparent seasonality. Using the year-long data set from September 2007 to October 2008, we construct a composite DSOW cyclone that reveals the average scales of the features. The composite cyclone consists of a lens of dense overflow water on the bottom, up to 300 m thick, with cyclonic flow above the lens. The azimuthal flow is intensified in the middle and upper part of the water column and has the shape of a Gaussian eddy with a peak depth-mean speed of 0.22 m/s at a radius of 7.8 km. The lens is advected by the mean flow of 0.27 m/s and self propagates at 0.45 m/s, consistent with the topographic Rossby wave speed and the Nof speed. The total translation velocity along the East Greenland slope is 0.72 m/s. The self-propagation speed exceeds the cyclonic swirl speed, indicating that the azimuthal flow cannot kinematically trap fluid in the water column above the lens. This implies that the dense water anomaly and the cyclonic swirl velocity are dynamically linked, in line with previous theory. Satellite sea surface temperature (SST) data are investigated to study the surface expression of the cyclones. Disturbances to the SST field are found to propagate less quickly than the in situ DSOW cyclones, raising the possibility that the propagation of the SST signatures is not directly associated with the cyclones.  相似文献   

14.
The paper examines the dependency between total sediment transport, q, and grain size, D (i.e. q  Dp) under dam break generated swash flows. Experiments were performed in a dam break flume over a sloping mobile sand bed with median grain sizes ranging from 0.22 mm to 2.65 mm. The total sediment transport was measured by truncating the flume bed and collecting the sediment transported over the edge. The experiments were designed to exclude pre-generated turbulence and pre-suspended sediment so as to focus solely on the swash flow. The magnitude and nature of the grain size dependency (i.e. p value) were inferred for different flow parameters; the initial dam depth, do, the integrated depth averaged velocity cubed, ∫ u3dt, and against the predicted transport potential, qp, using the Meyer-Peter Muller (MPM) transport model and variations of that model. The data show that negative dependencies (p < 0) are obtained for do and qp, whilst positive dependencies (p > 0) are obtained for ∫ u3dt. This indicates that a given do and qp transport less sediment as grain size increases, whereas transport increases with grain size for a given ∫ u3dt. The p value is found to be narrowly ranged, 0.5  p   0.5. On average, the incorporation of a pressure gradient term via the piezometric head into the MPM formulation reduces qp by 4% (fine sand) to 18% (coarse sand). The measured total transport for fine and coarse sands is best predicted using MPM and MPM + dp*/dx respectively. However, the inferred optimum transport coefficient in the MPM formulation is about 30, much higher than the standard coefficient in a steady flow and this is not due to the presence of the pre-suspended sediment. The optimum transport coefficient indicates some sensitivity to grain size, suggesting that some transport processes remain unaccounted for in the model.  相似文献   

15.
16.
Data from array for real-time geostrophic oceanography (ARGO) profiling floats, oil tanker thermosalinographs, shipboard ADCP and towed-CTD surveys, and satellite altimetry are used to examine properties of two ∼200 km diameter, anticyclonic Yakutat Eddies that propagated westward at ∼1.5 km day−1 along the continental slope of the northern Gulf of Alaska (GOA) in 2001 and 2003. The eddies had lifetimes of up to 5 years, remained close to the shelfbreak, and had relatively constant size and strength until they encountered the Alaskan Stream where they appeared to spawn smaller, shorter-lived anticyclones. The azimuthal velocity field was vigorous (25–40 cm s−1) and in gradient wind balance with Rossby numbers of ∼0.05. Conservation of salt and azimuthal mass transports (between 20 m and the depth of the 32.2 isohaline) from shipboard surveys in May and August 2003 suggest little mass exchange occurred between the surface layers of the eddy and ambient waters. Chlorophyll concentrations were greater in the eddy than in ambient waters in both May and August. In May, the chlorophyll was patchily distributed, while in August dense chlorophyll concentrations occurred in and beneath the seasonal thermocline within 50 km of the eddy center. The high August chlorophyll concentrations might have been fostered by a broad and shallow (<∼150 m) upwelling of the eddy center between May and August.It appears likely that as Yakutat Eddies approach the shelfbreak non-linear processes will modify the slope flow field (and the stability and structure of the shelfbreak front), leading to cross-slope flows and flow reversals. This interaction may induce ∼30 km-wide streamers of shelf water to flow around the trailing edge of the anticyclone. The role of streamers in the freshwater and nutrient budgets of the GOA shelf and basin is unknown, but their contribution to these budgets will depend on the trajectory of a Yakutat Eddy, especially its proximity to the shelfbreak as the eddy propagates along the GOA continental slope.  相似文献   

17.
Air–sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA–COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA–COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO2 of 16.4 ± 5.6 cm h?1 when using global mean winds of 6.89 m s?1 from the NCEP/NCAR Reanalysis 1 1954–2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h?1 whilst for less soluble methane the estimate is 18.0 cm h?1.  相似文献   

18.
The North Atlantic Deep Western Boundary Current (DWBC) was surveyed at the Blake Outer Ridge over 14 days in July and August 1992 to determine its volume transport and to investigate its bottom boundary layer (BBL). This site was chosen because previous investigations showed the DWBC to be strong and bottom-intensified on the ridge’s flanks and to have a thick BBL. The primary instrument used was the Absolute Velocity Profiler, a free-falling velocity and conductivity–temperature–depth device. In two sections across the width of the DWBC, volume transports of 17±1 Sv and 18±1 Sv were measured for all water flowing equatorward below a potential temperature of 6°C (1 Sv=1×106 m3 s-1). Transport values were derived using both absolute velocities and AVP-referenced geostrophic velocities and were the same within experimental uncertainty. Good agreement was found between our results and historical ones when both were similarly bounded and referenced. Although this was a short-term survey, the mean of a 9-day time series of absolute velocity profiles was the same as the means of year-long current-meter records at three depths in the same location. A turbulent planetary BBL was found everywhere under the current. The thickness of the bottom mixed layer (BML), where concentrations of density, nutrients, and suspended sediments were vertically uniform, was asymmetrical across the current and up to 5 times thicker than the BBL. There was no velocity shear above the BBL within the thicker BMLs, and the across-slope density gradient was very small. The extra-thick BML is perhaps maintained by a combination of processes, including turbulence, downwelling Ekman transport, a weak up-slope return flow above the BBL, and buoyant convection from the BBL into the BML. The frictional bottom stress was mostly balanced by a down-stream change in the current’s external potential energy evidenced by a drop in the velocity core of the current.  相似文献   

19.
The paper presents the effects of blade twist and nacelle shape on the performance of horizontal axis tidal current turbines using both analytical and numerical methods. Firstly, in the hydrodynamic design procedure, the optimal profiles of untwisted and twisted blades and their predicted theoretical turbine performance are obtained using the genetic algorithm method. Although both blade profiles produce desired rated rotational speed, the twisted blade achieves higher power and thrust performance. Secondly, numerical simulation is performed using sliding mesh technique to mimic rotating turbine in ANSYS FLUENT to validate the analytical results. The Reynolds-Averaged Navier-Stokes (RANS) approximation of the turbulence parameters is applied to obtain the flow field around the turbine. It is found that power and axial thrust force from BEMT (Blade Element Momentum Theory) method are under-predicted by 2% and 8% respectively, compared with numerical results. Afterwards, the downstream wake field of the turbine is investigated with two different nacelle shapes. It is found that the rotor performance is not significantly affected by the different nacelle shapes. However, the structural turbulence caused by the conventional nacelle is stronger than that by the NACA-profiled shape, and the former can cause detrimental effect on the performance of the downstream turbines in tidal farms.  相似文献   

20.
From August 2002 to September 2004 a high-resolution mooring array was maintained across the western Arctic boundary current in the Beaufort Sea north of Alaska. The array consisted of profiling instrumentation, providing a timeseries of vertical sections of the current. Here we present the first-year velocity measurements, with emphasis on the Pacific water component of the current. The mean flow is characterized as a bottom-intensified jet of O (15 cm s−1) directed to the east, trapped to the shelfbreak near 100 m depth. Its width scale is only 10–15 km. Seasonally the flow has distinct configurations. During summer it becomes surface-intensified as it advects buoyant Alaskan Coastal water. In fall and winter the current often reverses (flows westward) under upwelling-favorable winds. Between the storms, as the eastward flow re-establishes, the current develops a deep extension to depths exceeding 700 m. In spring the bottom-trapped flow advects winter-transformed Pacific water emanating from the Chukchi Sea. The year-long mean volume transport of Pacific water is 0.13±0.08 Sv to the east, which is less than 20% of the long-term mean Bering Strait inflow. This implies that most of the Pacific water entering the Arctic goes elsewhere, contrary to expected dynamics and previous modeling results. Possible reasons for this are discussed. The mean Atlantic water transport (to 800 m depth) is 0.047±0.026 Sv, also smaller than anticipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号