首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. Using natural volcanic rocks which acquired thermoremanence (TRM) in known fields, reliability of various palaeointensity methods using alternating field (AF) demagnetization were evaluated. Natural remanence (NRM), TRM and anhysteretic remanences (ARM's) before and after heating were stepwisely AF demagnetized following Shaw's method.
It was found that the coercivity spectra of TRM and ARM in these samples are very similar, and that even when changes occurred during heating, the changes for two remanences are quite similar in many samples. Therefore, Shaw's method of palaeointensity determination, which incorporates ARM checks to the conventional comparison of NRM and TRM coercivity spectra, gives results as reliable as those obtained by the Thellier method. Many examples were demonstrated in which TRM and ARM intensities changed substantially by heating, but without changes in the shape of their coercivity spectra. Such changes cannot normally be detected and erroneous palaeointensities with apparent internal consistency would be obtained by usual AF demagnetization methods.
Although ARM is quite similar to TRM, the rate of acquisition of ARM and TRM in weak fields varies by a factor of five among the present samples. To determine palaeointensities from the linear relation between ARM and TRM, it is necessary to determine experimentally the relative acquisition rate of these remanences. Therefore, methods based only on NRM-ARM relations would not give palaeointensities with acceptable errors.  相似文献   

2.
Summary. Continuous recordings were made of thermal demagnetizations of Isr, ARM and TRM induced in artificial rock specimens. The artificial rock specimens contained well-defined grain-size fractions of a natural titanomagnetite, which under an optical microscope was homogeneous. Using a Transmission Electron Microscope it was shown that submicroscopic inclusions exist within the titanomagnetite. Screening of the remanence of these inclusions by the surrounding titanomagnetite is thought to be responsible for the occurrence of 'peaks' in the continuous thermal decay curves of Isr and ARM; higher 'peaks' observed in the case of TRM are thought to be caused by the combined effects of screening and an anti-parallel remanence in the titanomagnetite. Further submicroscopic exsolution processes, which occur in the titanomagnetite as a result of repeated heating, can be deduced from the development of new 'peaks', from changes in the temperature at which the 'peak(s)'occur, their shape and their relative height. The use of stepwise demagnetization techniques on the titanomagnetite yielded erroneous directional results due to the screening in the titanomagnetite; the biasing effects due to screening could be avoided by using continuous thermal demagnetization techniques.  相似文献   

3.
A magnetic study was carried out on lacustrine sediments from the Zoigê basin, Tibetan Plateau, in order to obtain a better understanding of palaeoclimatic changes there. Gyromagnetic remanence (GRM) acquisition is unexpectedly observed during static three-axis alternating field (AF) demagnetization in about 20 per cent of a large number of samples. X-ray diffraction (XRD) analysis on a magnetic extract clearly shows that greigite is the dominant magnetic mineral carrier. Scanning electron microscopy (SEM) reveals that the greigite particles are in the grain size range of 200–300  nm, possibly in the single-domain state. Greigite clumps of about 3  μm size are sealed by silicates. Fitting of XRD peaks yields a crystalline coherence length of about 15  nm, indicating that the particles seen in the SEM are polycrystalline.
  GRM intensities of most samples are of the same order as the NRM, while others show much stronger GRM although their magnetic properties are similar. Variation of the demagnetization sequence confirms that GRM is mainly produced perpendicular to the AF direction. The anisotropy direction can be derived from GRM, but more systematic studies are needed for detailed conclusions. An attempt to correct for GRM failed due to high GRM intensities and because smaller GRM acquisition was also found along the demagnetization axis. Behaviours of acquisition and AF demagnetization of GRM are comparable with those of NRM, ARM, IRM, indicating fine grain sizes of remanence carriers.  相似文献   

4.
The time and temperature stability of various types of magnetic remanence has been measured in pottery samples containing magnetite and in a clay sample containing manganese ferrite. The time decay of rotational remanent magnetization (RRM), anhysteretic remanent magnetization (ARM) and a low-field isothermal remanent magnetization (IRM) has been measured. While the decay of the last two remanences is easily measurable at about 2 and 19 per cent per decade of time, respectively, the decay of RRM is too small to be measured, being less than about 0.1 per cent per decade of time. Thermal demagnetization of thermoremanent magnetization (TRM), ARM and RRM indicates that RRM is also the most thermally stable. The implications of these experiments are that rocks which exhibit gyromagnetic effects such as RRM contain highly stable particles and therefore are likely to be most suitable for palaeomagnetism.  相似文献   

5.
Rock magnetic parameters are often used to recognize variations in the original magnetic mineralogy and for normalizing purposes in palaeointensity studies. Incipient weathering, however, is shown to have a profound but partly reversible influence on the rock magnetic properties of the marls of the Early Pliocene Trubi formation in southern Sicily (Italy). The remanence in the marls resides in single-domain (SD) magnetite grains, but the remanent coercive force (Hcr) shows a strong variation and most values observed are anomalously high ( Hcr) range 36–188 mT).
The enhanced coercivities are attributed to stress in the magnetite grains induced by surface oxidation at low temperature. Upon heating to 150 °C a reduction of coercivities occurs that can be explained by a stress reduction as a result of a reduction of Fe2- gradient due to a higher diffusion rate at elevated temperature. After heating to 150 °C, coercivities are quite uniform throughout the outcrop and the values are characteristic of SD magnetite (Hcr range 30–38 mT). The bulk susceptibility increases by 4–24 per cent, and the isothermal remanent magnetization (IRM) decreases by 5–11 per cent. The increase in anhysteretic remanent magnetization (ARM) is large: 20–242 per cent. The magnitude of the changes is related to the degree of weathering.
Another effect of heating the marl samples to 150 °C is a substantial reduction of the coercivities of the secondary overprint in the natural remanent magnetization. After heating. separation of the secondary and primary components by alternating-field demagnetization is more efficient. The usual difficulties of thermal demagnetization above 300 °C may thus be avoided by a combination of moderate heating to 150 °C and subsequent alternating-field demagnetization.  相似文献   

6.
Summary. TRM, ARM and Isr stabilities with respect to alternating fields and high- and low-temperature treatment are compared for a set of artificial rock specimens. The specimens contain grain-size fractions of a homogeneous natural magnetite and a natural magnetite showing exsolution lamellae. The grain-size fractions are in the PSD-MD range and vary between < 5 and 250 μm. For large MD grains the coercivity spectra of ARM are similar to those of Isr but differ from those of TRM particularly in the lower part of the spectrum. For small (< 5μm) grains the coercivity spectrum of ARM is similar to that of TRM, and both spectra are different from the coercivity spectrum of Isr. The use of ARM instead of TRM to determine palaeo-intensities is discussed in relation to the results obtained. During high- and low-temperature treatment ARM behaves similarly to Isr but unlike TRM for all grain sizes studied. The results of this study are discussed in terms of a remanence composed of PSD surface moments and MD and PSD bulk moments.  相似文献   

7.
Summary. Palaeomagnetic investigations are reported from 24 sites in the Proterozoic Zig-Zag Dal Basalt Formation and 12 sites in the Midsominersø Dolerites of eastern North Greenland. The Zig-Zag Dal Basalt is a typical tholeiitic flood basalt sequence, and dolerite intrusions in the underlying sandstones are thought to be genetically related to the basalts.
After a detailed AF demagnetization programme 19 sites in the basalts and 10 sites in the dolerites reveal one stable component of magnetization, probably of TRM and/or CRM origin residing in small single domain titano-magnetite grains. The degree of anisotropy has not affected the direction of the remanent magnetization. The maximum axis of the anisotropy ellipsoid is parallel to the flow direction of the magma, whereas the minimum axis is perpendicular to the flow plane.
Only one polarity of the geomagnetic field was found. The mean palaeomagnetic pole positions for the two rock types are not significantly different (basalt: 12.2°S, 62.8°E with A 95= 3.8°; dolerites: 6.9°S, 62.0°E with A 95 = 5.1°). After correction for Phanerozoic drift of Greenland the two mean poles compare closely to a relevant North American APW-curve for 1250–1350 Ma, in good agreement with Rb-Sr isochron ages of 1250 Ma obtained for the intrusives. The palaeogeographical position of Greenland was near equator with the major geographical axis orientated E-W.  相似文献   

8.
Summary. The Precambrian basement under east-central Kansas was drilled at two circular aeromagnetic positives, one at Osawattamie and one at Big Springs. The core retrieved from these sites is a coarse to medium grained granite which has been dated by U-Pb to be 1350 Ma old. The palaeomagnetism of these azimuthally unoriented cores was studied to see if a technique which uses low-coercivity, low-temperature magnetization components to orient the cores would allow an independent confirmation of the core's mid-Proterozoic age. Orthogonal projection plots of the alternating field (af) and thermal demagnetization data show that the magnetization of these cores is relatively simple, having only two components: a low-temperature, low-coercivity magnetization with steep positive inclinations and a shallow, negative inclination characteristic magnetization for the Osawattamie core or a positive, moderate inclination characteristic magnetization for the Big Springs core. If the declination of the low-temperature, low-coercivity component is aligned parallel to the present field declination, the characteristic directions may be azimuthally oriented. This allows the calculation of palaeomagnetic poles for the Big Springs core (lat. = 4.5°S, long. = 29.9°E) and the Osawattamie core (lat.= 20.2°N, long. = 39.3°E) which are consistent with Irving's apparent polar wander path for Laurentia at about 1300–1400 Ma. Comparison of anhysteretic remanent magnetization (ARM), viscous remanent magnetization (VRM), and isothermal remanent magnetization af demagnetization curves with a natural remanent magnetization (NRM) demagnetization curve suggests that the Osawattamie core probably acquired a piezoremanent magnetization (PRM) parallel to the core axis during drilling.  相似文献   

9.
Summary. This study covers detailed thermal, chemical and alternating field demagnetization from 50 sites distributed through all units of the Longmyndian sedimentary succession (with the exception of the Stretton Shales), and eight sites in the tuff bands comprising the Batch Volcanics. The resultant effect of treatment is to remove a low blocking temperature steep component and isolate a coherent remanence direction D = 116°, I = 76° the total NRM is composite and not an adequate indicator of the palaeofield. Chemical demagnetization indicates that both hematite and magnetite grains contribute to this component and these two phases are magnetized in the same direction. A negative fold test shows that this remanence was acquired during or after the Longmyndian folding. Formation of the major magnetic constituent, authigenic magnetite, is linked to dewatering during rapid uplift following the folding which is dated by both the Rb–Sr and fission track methods at c . 525 Ma. The study defines a palaeopole of this age remote from the later APW path for Britain and links the Late Precambrian–Lower Cambrian path defmed from basement rocks of England and Wales with the Ordovician and younger results. Palaeomagnetic results from tuff bands within the sediments and Lower Silurian age intrusions cutting the outcrop are also reported.  相似文献   

10.
Summary. In palaeomagnetic studies of volcanic rocks it is often considered that, if the direction of NRM does not change much and the intensity de-creases gradually and smoothly during ac cleaning, then the remanent magnetization is stable and chiefly composed of TRM. This argument is extended as a consistency check to detect unwanted effects during laboratory heating. A simple procedure which employs orientated samples and a short heating (15 min) for TRM acquisition in the laboratory has been used for determining the ancient geomagnetic field intensity using seven volcanic rocks of Late Cenozoic age from central Mexico. The main reliability tests are based on the stability of direction, the close correspondence of the entire coercitivity spectra of both NRM and TRM to ac demagnetization, the low scatter of TRM directions, close correspondence of the TRM directions and the direction of the laboratory magnetic field, proportionality of TRM intensities to applied field, susceptibility comparison before and after heating, and the within-unit consistency of palaeointensity determinations.  相似文献   

11.
Summary. Susceptibility, thermo-remanent magnetization (TRM) and isothermal remanent magnetization (IRM) anisotropy ellipsoids have been determined for several rock samples. The results indicate that the ellipsoid of initial susceptibility is less anisotropic than the TRM and low field IRM ellipsoids which are found experimentally to be of identical shape. This suggests that palaeomagnetic data for anisotropic rocks may be corrected by using the anisotropy ellipsoid determined from magnetically non-destructive low field IRM measurements. Such IRM measurements can also be used to obtain anisotropy axes of samples which are inherently anisotropic but which have a susceptibility which is too weak to be accurately measured. The results for a series of artificial anisotropic samples containing magnetite particles of different sizes (in the range 0.2–90 μm) were very similar to those for the rocks. In contrast, a comparison of the susceptibility and IRM ellipsoids for anisotropic samples containing particles from a magnetic tape gave very different results in accordance with theory. Such results imply that susceptibility and IRM ellipsoids could be used to determine whether anisotropic rocks contain uniaxial single-domain particles (magnetization confined to the easy axis) or whether the particles are essentially multidomain.  相似文献   

12.
Summary. Recent experimental work by Edwards has demonstrated that rotational remanent magnetization (RRM) is not a maximum when the alternating field is normal to the rotation axis of the sample (a rock) but is greatest when the angle is about 75°. Experiments involving the production of ARM during sample rotation gave a similar result with a maximum at about 60°. These results are explained here in terms of the response of an isotropic assembly of identical single-domain particles to a strong alternating magnetic field.  相似文献   

13.
Palaeomagnetic and geochronological measurements have been carried out on the late Pleistocene basaltic–andesitic unit of Monte Chirica–Costa Rasa, on the island of Lipari (Aeolian Archipelago). The lava flow sequence is about 10  m thick and has been sampled in detail. Magnetic properties are rather uniform; Curie temperatures of 540° to 580 °C, and the saturation IRM reached at applied values of 0.1  T point to titanomagnetite as the main magnetization carrier. Thermal and AF demagnetization have shown the presence of secondary magnetization components. These were removed mostly at 450°–500 °C or 20–30  mT, indicating a highly stable ChRM with directions from transitional to reverse. Where a ChRM could not be isolated by application of the demagnetization techniques, the converging remagnetization circles method gave a mean ChRM value fully comparable with that obtained from other methods. 40Ar/39Ar determinations were performed on two lava flows, in the lower and upper parts of the sequence. The former shows a transitional ChRM direction and a whole-rock age of 157±12  ka, the latter a reverse direction, a whole-rock age of 143±17  ka and a ground-mass age of 128±23  ka. The radiometric data and the reconstructed stratigraphy, which indicate ages of 150±10  ka and 104±3.5  ka, respectively, for the volcanic units at the bottom and top of the Monte Chirica–Costa Rasa unit, suggest that the reverse directions recorded in Lipari are related to the Blake event.  相似文献   

14.
Repeated laboratory-induced weak mechanical shocking ( c .  0.57  kg  m  s1 ) of marine sandstone samples showing drilling-induced remanence, from commercial bore cores from the North Sea and Prudhoe Bay, causes increases in their low-field susceptibility ( χ ) and their ability to acquire an isothermal remanent magnetization (IRM). These enhancements are reduced by some 20 per cent by AF demagnetization in 100  mT. Doubling the intensity of the shock doubles the susceptibilities and IRMs acquired. The susceptibility increase ceases after 300 to 400 shocks for the North Sea samples and 20 to 30 shocks for those from Prudhoe Bay, while the IRM saturates after 800–1000 and 30–50 shocks respectively. Continental, haematite-bearing sandstones from commercial bore cores with no drilling-induced remanence subjected to the same shocks do not show these effects. Differences in the magnetic mineralogy of shocked and unshocked marine samples suggest that the magnetic enhancement is predominantly due to the creation of pyrrhotite by shock-induced irreversible crystallographic changes in iron-bearing sulphides. When shocked during commercial drilling, these new ferromagnetic minerals acquire strong chemical (crystalline) remanences, associated with a wide spectrum of grain sizes, in the magnetic field of the drill string, and these are resistant to both thermal and AF demagnetization. Similar processes are likely in any situation involving the shock of physically metastable iron-bearing minerals, particularly anoxic sediments. A 5  cm non-magnetic collar between the drill stem and crown should drastically reduce the magnetic intensity of this effect under commercial conditions, but would not prevent its occurrence.  相似文献   

15.
b
Sixteen samples representing eight Tertiary volcanic units from north-east Jalisco, Mexico were studied in an attempt to estimate the palaeointensity of the Earth's magnetic field. The experimental technique used was similar to that proposed by Shaw (1974) and an attempt was made to incorporate further criteria using the directional behaviour of the NRM, TRM and two ARMs during the af treatment and measuring the rate of ARM acquisition before and after heating. The directional information was used for checking the stability of all remanent magnetizations involved and for correcting the ARM test values. In addition the TRM directional behaviour could be a valuable yet simple test to detect the problem of insufficient heating. The use of the ARM acquisition test in the palaeointensity determination permits the full investigation of the coercive force spectrum and could lead to a more reliable palaeointensity method. This combined ARM method was applied to one sample. Further work is needed to understand the NRM—ARM1 and TRM—ARM2 relationships if the ARM tests are to be used for correcting TRM alteration effects. Whole rock K—Ar age determinations were carried out on samples from four selected units. Ten samples, representing six of the units, are considered to yield reliable palaeointensity values. Mean values were computed for each unit and reduced to the palaeoequator. The mean palaeoequatorial values and K—Ar ages determined are: I (13 |Mp 2 Myr), 0.504 Oe; II, 0.453 Oe; III, 0.439 Oe; VI (52 |Mp 10 Myr), 0.074 Oe; VII (14 |Mp 2 Myr), 0.187 Oe and VIII (12 |Mp 2 Myr), 0.251 Oe. These results agree reasonably well with those from previous studies. A large number of palaeointensity estimations, many more than currently available, are required to obtain an average estimate of the behaviour of the Earth's magnetic field during the Tertiary.  相似文献   

16.
Summary. Two late Mesozoic dolerite sills, situated near Agardhbukta on the east coast of Vestspitsbergen and dated radiométrically at 100 ± 4 Myr BP, have been sampled in five localities and subjected to detailed mineralogical and rock magnetic studies to determine the direction and origin of their magnetization. Although the sills lie outside the Tertiary orogenic belt, one locality (no. 4) has undergone strong hydrothermal alteration and a small part of another locality (no. 3) has also been affected. A conventional procedure based on examination of Zijderveld diagrams, applied to specimens demagnetized by alternating fields and thermally, yielded similar remanence directions at all five localities, except at the altered part of locality 3. Using a least squares computer méthod of analysis of step demagnetization data, comparable directions were isolated from all localities, including the altered part of locality 3. Except in this last case, all directions were reversed. The adjusted mean direction obtained from this analysis is D = 159.0°, I = 62.2°, α95= 9.0° yielding a palaeomagnetic pole situated at 225.0°, 54.3°N comparable with pole positions obtained from other late Mesozoic igneous rocks on Spitsbergen and distinct from palaeopoles derived from Mesozoic rocks in North America and Eurasia. This suggests that during the late Mesozoic Svalbard existed as a semi-independent microplate.  相似文献   

17.
A continental sequence of red beds and interbedded basaltic layers crops out in the Sierra Chica of Córdoba Province, Argentina (31.5°S, 64.4°W). This succession was deposited in a half-graben basin during the Early Cretaceous. We have carried out a palaeomagnetic survey on outcrops of this basin (147 sites in seven localities). From an analysis of IRM acquisition curves and detailed demagnetization behaviour, three different magnetic components are identified in the volcanic rocks: components A, B and X are carried by single- or pseudo-single-domain (titano) magnetite, haematite and multidomain magnetite, respectively. Component A is interpreted as a primary component of magnetization because it passes conglomerate, contact, tilt and reversal tests. The carrier of the primary magnetization, fine-grained (titano)magnetite, is present in basalts with a high degree of deuteric oxidation. This kind of oxidation is interpreted to have occurred during cooling. Components B and X are discarded because they are interpreted as recent magnetizations. In the sedimentary rocks, haematite and magnetite are identified as the carriers of remanence. Both minerals carry the same component, which passes a reversal test. The calculated palaeomagnetic pole, based on 55 sites, is Lat. 86.0°S, Long. 75.9°E ( A 95=3.3, K =35). This palaeomagnetic pole supersedes four with anomalous positions reported in previous papers.  相似文献   

18.
Summary. Magnetic extracts were prepared from samples of Upper Jurassic and Lower Cretaceous pelagic limestones from France and Spain. Thermomagnetic analysis of the magnetic extracts using a microbalance required careful monitoring of base weight changes during heating. Heating in argon gas atmosphere induced production of magnetite during heating while slight oxidation occurred during heating in air. the dominant Curie temperature detected by the thermomagnetic analyses was the 585°C Curie temperature of magnetite. the 680°C Curie temperature of haematite was only detected when isothermal remanent magnetism (IRM) data indicated large concentrations of haematite. Even when IRM data indicated its presence, the thermomagnetic analyses did not detect the Neel temperature of goethite. Although thermomagnetic analyses of magnetic extracts provide more direct identification of the dominant, strongly ferromagnetic minerals, IRM acquisition and subsequent thermal demagnetization is a superior technique in detecting high coercivity, weakly ferromagnetic minerals such as goethite and haematite.  相似文献   

19.
Summary Nine basic dykes were sampled near Angmagssalik, east Greenland. Specimens have been treated by alternating field demagnetization in 11 steps up to 3000 (peak) oersted (300 ml). The 'cleaned' direction at all sites is recognized after treatment at 150 oersted. All specimens are reversely magnetized. The mean of the site mean directions has declination = 182°.0, inclination =−66°.9, it = 45, α95= 7°.7. This direction yields a palaeomagnetic pole (reversed) at 73°.4N, 139°.5E ( dp = 10°.7, dm = 12°.9) which is near, but significantly different from, that derived from lower Tertiary rocks in Greenland, namely 63°.2N, 184°.6E ( A 95= 4°.5). K-Ar ages of the nine dykes, based upon whole-rock and mineral separates, range from mid-Tertiary to Cambrian. It is impossible to reconcile these ages with the palaeomagnetic results. The palaeomagnetic evidence, supported by geological inference, suggests that all nine dykes are members of the east Greenland lower Tertiary dyke swarm, designated THOL1, of probable age c. 52 Ma.
The difference between the poles given above can be explained by supposing that the sampling area has tipped about a horizontal axis directed along 013°/193°, the angle of rotation being 13° (± 11°) anti-clockwise, when the axis is viewed along 013°. This local effect could have been due to block faulting when the north-east Atlantic started to open, or may be attributed to upwarping of the coast due to the weight of the ice-cap inland.  相似文献   

20.
Summary. Palaeomagnetic results are presented from the c . 160 km2 Caledonian synorogenic layered Fongen-Hyllingen gabbro complex (of probable late Silurian age) located about 75 km SE of Trondheim, Norway, in the allochthonous Seve-Kdli Nappe Complex. A total of 80 oriented samples from eight sites in the northern part of the gabbro were investigated. After detailed af demagnetization two stable high coercivity components emerge: one with a well defined NW direction with D =325°, I =−21° (α95=8°, N =8), and another, less well defined, probably younger, SW direction with D = 237°, I = 6° (α95= 9°, N = 8). Correction for dip of these two directions gives D = 329°, I =−7° (α95= 10°) and D = 238°, I =−11° (α95= 12°), respectively. The corresponding pole positions are P 1 : 19° N, 225° E and P 2: 19° S, 308° E, respectively. The reversed pole -P 2 of the SW direction lies close to other NW European palaeomagnetic poles of Caledonian, Upper Silurian-Lower Devonian age. However, the dominant pole PI is far away from these, and could be due to a late Caledonian geomagnetic excursion of considerable duration; or it could record a c . 90° rotation around a vertical axis of a crustal block within the Scandinavian Caledonides. Block rotation could have been related to nappe translation, although geological observations do not at present appear to support the occurrence of such an event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号