首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The K?rka borate deposit was deposited in a Miocene lacustrine basin which is closely associated with volcanic activity which lasted from Paleogene to the beginning of Quaternary. Borate mineralization alternates with claystone, mudstone, tuff and fine-layered limestone and mostly shows a lenticular structure. The mineral paragenesis is composed of borax, tincalconite, ulexite, kurnakovite, probertite, tunellite, colemanite, dolomite, smectite group minerals, illite and some firstly reported minerals for the K?rka deposit including hydrochloroborite, brianroulstonite, hilgardite-4M and searlesite minerals. In comparison to average values of earth crust, concentrations of Cs, Sr, Li, As and Se were significantly enriched with respective rates of 21, 15, 14, 3 and 188 folds. Regarding KY, KS1 and KS2 locations, there are differences in both element abundances and their geochemical tendencies which are attributed to variations in discharge regime and physico-chemical conditions of the depositional environment. Independent behaviour of B2O3 might indicate that boron is not associated with clays and carbonates and, therefore, most part of boron must be derived from volcanic activity (hydrothermal solutions, gases). REE data indicate that the K?rka borate deposit was formed in a sedimentary environment where highly alkaline (high pH) hydrothermal solutions also took part in borate precipitation process.  相似文献   

2.
《Geodinamica Acta》2013,26(3-4):317-331
The Küçük Menderes Graben (KMG) is part of the horst-graben system of southwestern Anatolia (Turkey), bounded by the Bozda? horst in the north and the Ayd?n horst in the south. The Plio-Quaternary evolution of the KMG has been evaluated using the nature of the Miocene-Quaternary fill sediments and palaeostress analysis of slip data measured in different parts of the graben.

The graben is composed of five subbasins—the Kiraz, Ödemi?, Bay?nd?r, Da?k?z?lca-Torbal? and Selçuk—that are connected to each other through narrow Quaternary troughs. The Da?k?z?lca, Kiraz and Selçuk basins bear Miocene and younger sequences whereas the other subbasins are largely filled by Quaternary sediments. The maximum thickness of the Quaternary fill reaches about 270 m in the Ödemi? and Bay?nd?r subbasins.

The calculated slip results indicate multidirectional extension, three successive deformational periods, and possible counterclockwise rotation in the KMG during the post-Miocene period. The first phase was a strike-slip regime under N-S compression, followed by a second phase of deformation which resulted in ENE-WSW extension with strike-slip components. The final phase of deformation was NE-SW extension which constituted the final evolution of the KMG.

The graben gained its present morphological configuration via the onset of E-W-trending, high-angle normal faulting imposed on the regionwide synformal structure during the Plio-Quaternary. The KMG evolved as a result of rifting during the Plio-Quaternary which followed Late Miocene unroofing of the Menderes Massif and the evolution of the Büyük Menderes and Gediz grabens.  相似文献   

3.
The Havran-Bal?kesir Fault Zone (HBFZ) is one of the major active structures of the Southern Marmara Region, which has been shaped by the southern branch of North Anatolian fault since the Pliocene. HBFZ is a 10–12 km wide, 120 km long, right-lateral strike-slip fault zone that consists of two ENE-striking main faults, namely, the Havran-Balya and Bal?kesir faults. The 90-km-long Havran-Balya fault exhibits right-stepping en echelon geometry and is made up of (1) Havran, (2) Osmanlar, (3) Turplu and (4) Ovac?k fault segments. On the eastern part, the 70-km-long Bal?kesir fault is divided into two fault segments; (1) Gökçeyaz? and (2) Kepsut. We estimated the long-term slip rate between 3.59 and 3.78 mm/yr using river offset. The Kepsut, Gökçeyaz? and Ovac?k fault segments are capable of generating an earthquake with a moment magnitude of up to 7.2. Detailed palaeoseismological studies show that the HBFZ is responsible for some surface faulting earthquakes with an average recurrence interval of 1000–2000 years during the late Holocene. Considering the fact that there was no evidence of a surface-ruptured earthquake for 2000 years, it can be stated that there is a seismic gap on the Gökçeyaz? fault segment.  相似文献   

4.
The Hamamboğazi spa in western Turkey was built around natural hot springs with discharge temperatures in the range of 30–54°C; the waters have near neutral pH values of 6.50–7.10 and a TDS content between 2,694 and 2,982 mg/l. Thermal water with a temperature of 47.5–73°C has been produced at 325 l/s from five wells since 1994, causing some springs to go dry. A management plan is required in the study area to maximize the benefits of this resource, for which currently proposed direct uses include heating in the district and greenhouses, as well as balneology in new spas in the area. The best use for the water from each spring or well will depend on its temperature, chemistry and location. The thermal waters are mixed Na–Mg–HCO3–SO4 fluids that contain a significant amount of CO2 gas. The chemical geothermometers applied to the Hamamboğazi thermal waters yield a maximum reservoir temperature of 130°C. Isotope results (18O, 2H, 3H) indicate that the thermal waters have a meteoric origin: rainwater percolates downward along fractures and faults, is heated at depth, and then rises to the surface along fractures and faults that act as a hydrothermal conduit. The basement around the Banaz Hamamboğazi resort is comprised of Paleozoic metamorphic schist and marbles exposed 8 km south and 15 km north of Banaz. Mesozoic marble, limestone and ophiolitic complex are observed a few km west and in the northern part of Banaz. These units were cut at a depth of 350–480 m in boreholes drilled in the area. Overlying lacustrine deposits are composed of fine clastic units that alternate with gypsum, tuff and tuffites of 200–350 m thickness. The marble and limestones form the thermal water aquifer, while lacustrine deposits form the impermeable cap.  相似文献   

5.
6.
The present study identifies the hydrochemical and isotopic properties of the Mahmutlu and Ba?dato?lu mineralized thermal springs in K?r?ehir province, a geothermal field in central Anatolia, Turkey. Based on these properties, a hydrogeological regime is proposed in order to explain the Mahmutlu–Ba?dato?lu geothermal system. The relation between the concentrations of the environmental stable isotopes deuterium and oxygen-18 in the water is similar to the relationship in global meteoric water, indicating that the water is of meteoric origin. Evaluation of the geochemical characteristics of the water reveals that these two thermal springs belong to the same hydrogeological system. The hydrogeological system comprises a fractured limestone member of the Çevirme Formation and the Kervansaray Formation as reservoir rocks, and the Delice?rmak Formation as an overlying aquitard. The waters of the Mahmutlu and Ba?dato?lu springs are mainly of the Na-Cl-SO4 type that originate from the Pohrenk evaporite. The thermal waters are undersaturated with respect to calcite, dolomite, halite, and gypsum. The δ 18O and δ 2H contents indicate a δ 18O shift in the Mahmutlu and Ba?dato?lu waters. The temperature range of the two reservoirs is estimated to be 98–158?°C, on the basis of Na+K+Ca and SiO2 geothermometers.  相似文献   

7.
The study area is located between Çorum and Amasya along the Ezinepazar?–Sungurlu Fault Zone (ESFZ) which is regarded as the splay of the North Anatolian Fault Zone (NAFZ). By this study, the 1/25,000 scaled geological map of the study area was prepared, and its stratigraphic and tectonic characteristics were unraveled as a result of palaeontological and petrographical analyses of the samples collected from different rock units. Particularly, geologic ages of the Late Jurassic–Early Cretaceous Ferhatkaya and Carcurum and Middle Eocene Çekerek formations were provided from palaeontological determinations. Using Landsat TM and Shuttle Radar Topography Mission 3 (SRTM 3) data of the region, the borders between the rock units and the tectonic characteristics in the study area were clarified by spectral and spatial enhancement methods. Kinematic characteristics of ESFZ obtained from the young sedimentary rocks along both sides of the fault zone were also inferred in this study. Understanding the kinematic and geometrical characteristics of the faults is important in terms of the seismotectonics of the region. In the statistical study conducted on the basis of the directions of the lineaments indicates the highest concentrations in general between N 50° - 60° E and N 60° - 70° E. Band 7 of the study area was enlightened in SE direction taking into consideration the relation of the geologic structures in the region with NAFZ and ESFZ and their general strike directions. Along with the formation of NAFZ, the region has undergone a counterclockwise rotation of approximately 20°–30°, which has developed between the “splay” faults in the south block of that fault. These faults are strike-slip faults formed under the compressional regime roughly in a NW–SE direction. It is noted that this tectonic regime has developed under compression in NW–SE direction, which was dominant in similar kinematic analysis studies conducted on NAFZ.  相似文献   

8.
The central, northwestern and western Anatolian magmatic provinces are defined by a large number of late Mesozoic to late Cenozoic collision‐related granitoids. Calc‐alkaline, subalkaline and alkaline intrusive rocks in central Anatolia are mainly metaluminous, shoshonitic, I‐ to A‐types. They cover a petrological range from monzodiorite through quartz monzonite to granite/syenite, and are all enriched in LILE. Their geochemical characteristics are consistent with formation from a subduction‐modified mantle source. Calc‐alkaline plutonic rocks in northwestern Anatolia are mainly metaluminous, medium‐ to high‐K and I‐types. They are monzonite to granite, and all are enriched in LILE and depleted in HFSE, showing features of arc‐related intrusive rocks. Geochemical data reveal that these plutons were derived from partial melting of mafic lower crustal sources. Calc‐alkaline intrusive rocks in western Anatolia are metaluminous, high‐K and I‐types. They have a compositional range from granodiorite to granite, and are enriched in LILE and depleted in HFSE. Geochemical characteristics of these intrusive rocks indicate that they could have originated by the partial melting of mafic lower crustal source rocks.  相似文献   

9.
Planktonic foraminifer distributions in seventeen stratigraphic sections of Upper Cretaceous hemipelagic and pelagic sequences of northern Bey Da?lar? Autochthon (western Taurides) yield six biozones such as, Dicarinella concavata Interval Zone, Dicarinella asymetrica Range Zone, Radotruncana calcarata Range Zone, Globotruncana falsostuarti Partial Range Zone, Gansserina gansseri Interval Zone, and Abathomphalus mayaroensis Concurrent Range Zone. Two of the zones, Dicarinella concavata Zone and Dicarinella asymetrica Zone, are identified in the massive hemipelagic limestones of the Bey Da?lar? Formation, of Coniacian-Santonian age. They are characterized by scarce planktonic foraminifera and abundant calcisphaerulids. The other four biozones are determined from the cherty pelagic limestones of the Akda? Formation and indicate a late Campanian-late Maastrichtian time interval. The planktonic foraminifera observed in these four biozones are diverse, complex morphotypes (K-selection), suggesting open oceans. The assemblage of the Abathomphalus mayaroensis Zone shows that the latest Maastrichtian record is absent throughout the northern part of the autochthon. Two main sedimentary hiatuses are recognized within the Upper Cretaceous pelagic sequence. Early to middle Campanian and latest Maastrichtian-middle Paleocene planktonic foraminifera are absent in all measured stratigraphic sections. Hiatus durations differ between sections as a result of diachronism of onset of the hemipelagic and pelagic deposition and the post-Santonian and post-Maastrichtian erosional phases. Drowning event and the early-middle Campanian and latest Maastrichtian-middle Paleocene hiatuses in the pelagic sequence are attributed to regional tectonics during the Late Cretaceous.  相似文献   

10.
Abstract

Field studies on the Neogene successions in south of ?zmir reveal that subsequent Neogene continental basins were developed in the region. Initially a vast lake basin was formed during the early-Middle Miocene period. The lacustrine sediments underwent an approximately N-S shortening deformation to the end of Middle Miocene. A small portion of the basin fill was later trapped within the N-S-trending, fault-bounded graben basin, the Çubukluda? graben, opened during the Late Miocene. Oblique-slip normal faults with minor sinistral displacement are formed possibly under N–S extensional regime, and controlled the sediment deposition. Following this the region suffered a phase of denudation which produced a regionwide erosional surface suggesting that the extension interrupted to the end of Late Miocene–Early Pliocene period. After this event the E–W-trending major grabens and horsts of western Anatolia began to form. The graben bounding faults cut across the Upper Miocene–Pliocene lacustrine sediments and fragmented the erosional surface. The Çubukluda? graben began to work as a cross garden between the E–W grabens, since that period. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

11.
A palaeomagnetic study is reported from the lavas of Eocene, Miocene and Pliocene age cropping out immediately to the north of the North Anatolian Fault Zone (NAFZ) in the Re?adiye–Mesudiye region of central-eastern Anatolia. Rock magnetic investigations identify a high percentage of multi-domained magnetite as the dominant ferromagnet in these rocks and this probably accounts for a relatively poor response to alternating field and thermal demagnetisation. Thirty of 37 units yielded acceptable groupings of characteristic magnetisation directions. An earlier study indicated small anticlockwise crustal block rotation in this region since Upper Cretaceous times (D/I?=?347/50°), and our study indicates that this was overtaken by clockwise rotation in Eocene times (D/I?=?40/47°), although sample size control from the Palaeogene is poor. Results from later Miocene (D/I?=?2/62°) and Pliocene (D/I?=?0/53°) volcanic rocks indicate that no significant tectonic rotation has occurred in the north of the NAFZ in Neogene times. This contrasts with rotations in the weaker crust comprising the Anatolian collage south of the NAFZ, where differential and sometimes large anticlockwise rotations occurred during the latter part of the Neogene.  相似文献   

12.
The Mustafakemalpa?a Fault (MF), located among Manyas, Ulubat and Orhaneli faults, is a right lateral strike-slip and 47 km in length. The MF begins with a pressure ridge at the west and exhibits complex jog terminations at east ends in restraining left stepovers. The western section of the fault bounds Miocene and Quaternary units and continues towards ?lyasç?lar. The central segment of the fault, starts with approximately 750-m leftward stepover, exhibits a sinusoidal geometry between Kapakl?oluk and Kabulbaba. In this section, MF traverses mountainous terrain and cuts Ophiolite, Jurassic limestones and Miocene detritals, forming dextral faulting features and gaining reverse component. The eastern section exhibits left stepping en-echelon pattern and consists 2.5-km offset on the Orhaneli River. In this study, palaeoseismological findings related to the Holocene activity and active tectonic properties of the MF are presented. The trenches exposed mismatched stratigraphy, demonstrating evidence of events across the fault. We identified three events (before BC 2190, later AD 1425 and 1850) that have occurred during the past 4000 years. We suggest a long non-characteristic recurrence interval and ~0.7 mm/y slip-rate for MF, based on trench data and offset of the Late Pliocene drainage of Orhaneli River.  相似文献   

13.
《Geodinamica Acta》2001,14(1-3):45-55
Field studies on the Neogene successions in south of İzmir reveal that subsequent Neogene continental basins were developed in the region. Initially a vast lake basin was formed during the Early–Middle Miocene period. The lacustrine sediments underwent an approximately N–S shortening deformation to the end of Middle Miocene. A small portion of the basin fill was later trapped within the N–S-trending, fault-bounded graben basin, the Çubukludağ graben, opened during the Late Miocene. Oblique-slip normal faults with minor sinistral displacement are formed possibly under N–S extensional regime, and controlled the sediment deposition. Following this the region suffered a phase of denudation which produced a regionwide erosional surface suggesting that the extension interrupted to the end of Late Miocene–Early Pliocene period. After this event the E–W-trending major grabens and horsts of western Anatolia began to form. The graben bounding faults cut across the Upper Miocene–Pliocene lacustrine sediments and fragmented the erosional surface. The Çubukludağ graben began to work as a cross graben between the E–W grabens, since that period.  相似文献   

14.
《International Geology Review》2012,54(10):1246-1275
The Maçka subvolcanic intrusions (MSIs) in the eastern part of the Sakarya zone, northeastern Turkey, play a critical role in understanding the petrogenetic and geodynamic processes that took place during the growth of Late Cretaceous arc crust of this region. U–Pb zircon (79.97 ± 0.97 Ma) and two 40Ar–39Ar amphibole ages (average 81.37 ± 0.5 Ma) indicate that the MSIs were emplaced in Late Cretaceous (Campanian) time into the coeval volcanic rocks. A slightly younger zircon fission track (FT) age (73 ± 9 Ma) points to a rapid exhumation and cooling after crystallization. The intrusions are observed in areas less than 1 km2 in the field and contain abundant mafic microgranular enclaves (MMEs). The host rocks (HRs) are entirely composed of tonalite (SiO2 = 63–65 wt.%, Mg# = 43–52), and the MMEs are gabbro-diorite in composition (SiO2 = 53–57 wt.%, Mg# = 45–48). Both the HRs and the MMEs are I-type, high-K calc-alkaline in composition and display a metaluminous character. They are characterized by geochemical features typical for magmas of subduction-related environments. Chondrite-normalized REE patterns are moderately fractionated [(La/Yb)N = 6–11] and display slightly negative Eu anomalies (Eu/Eu* = 0.7–0.9), with weak concave-upward REE patterns, suggesting that amphibole fractionation played a role during their evolution. The MMEs have slightly different ISr (0.7081–0.7085) and εNd (?5.0 to ?5.4) values compared with those of their HRs (ISr = 0.7084–0.7087 and εNd = ?5.7 to ?6.9), indicating that variable amounts of crustal and mantle components were involved in the generation of parental magma to these rocks. All of these data, combined with those of previous regional studies, suggest that the MSIs are hybrid in origin, produced by the mixing of enriched lithospheric mantle- and lower crust-derived melts in an extensional arc setting that was caused by slab rollback.  相似文献   

15.
Summary A large number of podiform chromitite bodies of massive, disseminated and nodular type have been located in ultramafic units, composed of depleted mantle harzburgite and dunite of the Marmaris Peridotite from Ortaca (Mula, SW Turkey). The chromite ore bodies are surrounded by dunite envelopes of variable thickness, exhibiting transitional boundaries to harzburgite host rocks. Chromitites, containing a large number of inclusions, i.e. silicates, base metal sulphides and alloys, and platinum-group minerals (PGM) have a wide range of chemical composition. The Cr# [Cr/(Cr+Al)] values of most chromitites are high (0.61–0.81) and Mg# [Mg/(Mg+Fe2+)] values range between 0.65 and 0.71 with TiO2 content lower than 0.24wt.%, which may reflect the crystallization of chromites from boninitic magmas in supra-subduction setting environment.Platinum-group minerals (PGM) such as laurite, erlichmanite and Os–Ir alloys, silicates such as olivine, clinopyroxene and amphibole, and base metal sulphides (BM-S), alloys (BM-A) and arsenides (BM-As) are found as inclusions in chromite or in the serpentine matrix. Platinum-group element (PGE) concentrations of the Ortaca chromitites (OC) are low in all samples. Total PGE (Ir+Ru+Rh+Pt+Pd) ranges from 63ng/g to 266ng/g and Pd/Ir ratios range between 0.23 and 4.75. PGE content is higher and the Pd/Ir ratio lower in Cr-rich chromitites compared to Al-rich ones. There is a strong negative correlation between the Cr# and Pd/Ir ratios (r=–0.930). The PGE patterns show a negative slope from Ru to Pt and a positive slope from Pt to Pd. The low PGE content in the majority of the OC may reflect a lack of sulphur saturation during an early stage of their crystallization. The laurite compositions show a wide range of Ru–Os substitution caused by relatively low temperature and increasing f(S2) during the chromite crystallization. The high Cr# of and hydrous silicate mineral inclusions in chromite imply that chromite crystallized in a supra-subduction setting.  相似文献   

16.
The late Neogene to Quaternary Cappadocian Volcanic Province (CVP) in central Anatolia is one of the most impressive volcanic fields of Turkey because of its extent and spectacular erosionally sculptured landscape. The late Neogene evolution of the CVP started with the eruption of extensive andesitic-dacitic lavas and ignimbrites with minor basaltic lavas. This stage was followed by Quaternary bimodal volcanism. Here, we present geochemical, isotopic (Sr–Nd–Pb and δ18O isotopes) and geochronological (U–Pb zircon and Ar–Ar amphibole and whole-rock ages) data for bimodal volcanic rocks of the Ni?de Volcanic Complex (NVC) in the western part of the CVP to determine mantle melting dynamics and magmatic processes within the overlying continental crust during the Quaternary. Geochronological data suggest that the bimodal volcanic activity in the study area occurred between ca. 1.1 and ca. 0.2 Ma (Pleistocene) and comprises (1) mafic lavas consisting of basalts, trachybasalts, basaltic andesites and scoria lapilli fallout deposits with mainly basaltic composition, (2) felsic lavas consisting of mostly rhyolites and pumice lapilli fall-out and surge deposits with dacitic to rhyolitic composition. The most mafic sample is basalt from a monogenetic cone, which is characterized by 87Sr/86Sr = 0.7038, 143Nd/144Nd = 0.5128, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68, suggesting a moderately depleted signature of the mantle source. Felsic volcanic rocks define a narrow range of 143Nd/144Nd isotope ratios (0.5126–0.5128) and are homogeneous in Pb isotope composition (206Pb/204Pb = 18.84–18.87, 207Pb/204Pb = 15.64–15.67 and 208Pb/204Pb = 38.93–38.99). 87Sr/86Sr isotopic compositions of mafic (0.7038–0.7053) and felsic (0.7040–0.7052) samples are similar, reflecting a common mantle source. The felsic rocks have relatively low zircon δ18O values (5.6 ± 0.6 ‰) overlapping mantle values (5.3 ± 0.3 %), consistent with an origin by fractional crystallization from a mafic melt with very minor continental crustal contamination. The geochronological and geochemical data suggest that mafic and felsic volcanic rocks of the NVC are genetically closely related to each other. Mafic rocks show a positive trend between 87Sr/86Sr and Th, suggesting simultaneous assimilation and fractional crystallization, whereas the felsic rocks are characterized by a flat or slightly negative variation. High 87Sr/86Sr gneisses are a potential crustal contaminant of the mafic magmas, but the comparatively low and invariant 87Sr/86Sr in the felsic volcanics suggests that these evolved dominantly by fractional crystallization. Mantle-derived basaltic melts, which experienced low degree of crustal assimilation, are proposed to be the parent melt of the felsic volcanics. Geochronological and geochemical results combined with regional geological and geophysical data suggest that bimodal volcanism of the NVC and the CVP, in general, developed in a post-collisional extensional tectonic regime that is caused by ascending asthenosphere, which played a key role during magma genesis.  相似文献   

17.
《Geodinamica Acta》2001,14(1-3):169-175
To the east of the Sea of Marmara, the North Anatolian fault (NAF) branches into two strands, namely the northern and the southern strands. The Adapazarı pull-apart basin is located in the overlapping zone of the Dokurcun and the İzmit–Adapazarı segments of the northern strand. The combined temporal ranges of the arvicolids from the Karapürçek formation (the first unit of the basin fill), deposited in the primary morphology of the Adapazarı pull-apart basin, cover the latest Villanyian (latest Pliocene) and the Biharian (Early Pleistocene) time interval. The Değirmendere fauna collected from the lowermost sediments of this formation suggests that the Adapazarı pull-apart basin started to form in the latest Pliocene. This, in turn, suggests that the dextral movement along the northern strand of the NAF commenced during the latest Pliocene. A new species, Tibericola sakaryaensis is also described.  相似文献   

18.
Cambro-Ordovician palaeogeography and fragmentation of the North Gondwana margin is still not very well understood. Here we address this question using isotopic data to consider the crustal evolution and palaeogeographic position of the, North Gondwana, Iberian Massif Ossa–Morena Zone (OMZ). The OMZ preserves a complex tectonomagmatic history: late Neoproterozoic Cadomian orogenesis (ca. 650–550 Ma); Cambro-Ordovician rifting (ca. 540–450 Ma); and Variscan orogenesis (ca. 390–305 Ma). We place this evolution in the context of recent North Gondwana Cambro-Ordovician palaeogeographic reconstructions that suggest more easterly positions, adjacent to the Sahara Metacraton, for other Iberian Massif zones. To do this we compiled an extensive new database of published late Proterozoic–Palaeozoic Nd model ages and detrital and magmatic zircon age data for (i) the Iberian Massif and (ii) North Gondwana Anti-Atlas West African Craton, Tuareg Shield, and Sahara Metacraton. The Nd model ages of OMZ Cambro-Ordovician crustal-derived magmatism and Ediacaran-Ordovician sedimentary rocks range from ca. 1.9 to 1.6 Ga, with a mode ca. 1.7 Ga. They show the greatest affinity with the Tuareg Shield, with limited contribution of more juvenile material from the Anti-Atlas West African Craton. This association is supported by detrital zircons that have Archaean, Palaeoproterozic, and Neoproterozoic radiometric ages similar to the aforementioned Iberian Massif zones. However, an OMZ Mesoproterozoic gap, with no ca. 1.0 Ga cluster, is different from other zones but, once more, similar to the westerly Tuareg Shield distribution. This places the OMZ in a more easterly position than previously thought but still further west than other Iberian zones. It has been proposed that in the Cambro-Ordovician the North Gondwana margin rifted as the Rheic Ocean opened diachronously from west to east. Thus, the more extensive rift-related magmatism in the westerly OMZ than in other, more easterly, Iberian Massif zones fits our new proposed palaeogeographic reconstruction.  相似文献   

19.
We studied the geometry, intensity of deformation and fluid–rock interaction of a high angle normal fault within Carrara marble in the Alpi Apuane NW Tuscany, Italy. The fault is comprised of a core bounded by two major, non-parallel slip surfaces. The fault core, marked by crush breccia and cataclasites, asymmetrically grades to the host protolith through a damage zone, which is well developed only in the footwall block. On the contrary, the transition from the fault core to the hangingwall protolith is sharply defined by the upper main slip surface. Faulting was associated with fluid–rock interaction, as evidenced by kinematically related veins observable in the damage zone and fluid channelling within the fault core, where an orange–brownish cataclasite matrix can be observed. A chemical and isotopic study of veins and different structural elements of the fault zone (protolith, damage zone and fault core), including a mathematical model, was performed to document type, role, and activity of fluid–rock interactions during deformation. The results of our studies suggested that deformation pattern was mainly controlled by processes associated with a linking-damage zone at a fault tip, development of a fault core, localization and channelling of fluids within the fault zone. Syn-kinematic microstructural modification of calcite microfabric possibly played a role in confining fluid percolation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号