首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Neogene Yamadağ volcanics occupy a vast area between Sivas and Malatya in eastern Anatolia, Turkey. These volcanic rocks are characterized by pyroclastics comprising agglomerates, tuffs and some small outcrops of basaltic–andesitic–dacitic rocks, overlain upward by basaltic and dacitic rocks, and finally by basaltic lava flows in the Arapkir area, northern Malatya Province. The basaltic lava flows in the Arapkir area yield a 40Ar/39Ar age of 15.8 ± 0.2 Ma, whereas the dacitic lava flows give 40Ar/39Ar ages ranging from 17.6 through 14.7 ± 0.1 to 12.2 ± 0.2 Ma, corresponding to the Middle Miocene. These volcanic rocks have subalkaline basaltic, basaltic andesitic; alkaline basaltic trachyandesitic and dacitic chemical compositions. Some special textures, such as spongy-cellular, sieve and embayed textures; oscillatory zoning and glass inclusions in plagioclase phenocrysts; ghost amphiboles and fresh biotite flakes are attributable to disequilibrium crystallization related to magma mixing between coeval magmas. The main solidification processes consist of fractional crystallization and magma mixing which were operative during the soldification of these volcanic rocks. The dacitic rocks are enriched in LILE, LREE and Th, U type HFSE relative to the basaltic rocks. The basaltic rocks also show some marked differences in terms of trace-element and REE geochemistry; namely, the alkaline basaltic trachyandesites have pronounced higher HFSE, MREE and HREE contents relative to the subalkaline basalts. Trace and REE geochemical data reveal the existence of three distinct magma sources – one subalkaline basaltic trachyandesitic, one alkaline basaltic and one dacitic – in the genesis of the Yamadağ volcanics in the Arapkir region. The subalkaline basaltic and alkaline basaltic trachyandesitic magmas were derived from an E-MORB type enriched mantle source with a relatively high- and low-degree partial melting, respectively. The magmatic melt of dacitic rocks seem to be derived from an OIB-type enriched lithospheric mantle with a low proportion of partial melting. The enriched lithospheric mantle source reflect the metasomatism induced by earlier subduction-derived fluids. All these coeval magmas were generated in a post-collisional extensional geodynamic setting in Eastern Anatolia, Turkey.  相似文献   

2.
The aim of this study is to quantify the crustal differentiation processes and sources responsible for the origin of basaltic to dacitic volcanic rocks present on Cordón El Guadal in the Tatara-San Pedro Complex (TSPC). This suite is important for understanding the origin of evolved magmas in the southern Andes because it exhibits the widest compositional range of any unconformity-bound sequence of lavas in the TSPC. Major element, trace element, and Sr-isotopic data for the Guadal volcanic rocks provide evidence for complex crustal magmatic histories involving up to six differentiation mechanisms. The petrogenetic processes for andesitic and dacitic lavas containing undercooled inclusions of basaltic andesitic and andesitic magma include: (1) assimilation of garnet-bearing, possibly mafic lower continental crust by primary mantle-derived basaltic magmas; (2) fractionation of olivine + clinopyroxene + Ca-rich plagioclase + Fe-oxides in present non-modal proportions from basaltic magmas at ∼4–8 kbar to produce high-Al basalt and basaltic andesitic magmas; (3) vapor-undersaturated (i.e., P H2O<P TOTAL) partial melting of gabbroic crustal rocks at ∼3–7 kbar to produce dacitic magmas; (4) crystallization of plagioclase-rich phenocryst assemblages from dacitic magmas in shallow reservoirs; (5) intrusion of basaltic andesitic magmas into shallow reservoirs containing crystal-rich dacitic magmas and subsequent mixing to produce hybrid basaltic andesitic and andesitic magmas; and (6)␣formation and disaggregation of undercooled basaltic andesitic and andesitic inclusions during eruption from shallow chambers to form commingled, mafic inclusion-bearing andesitic and dacitic lavas flows. Collectively, the geochemical and petrographic features of the Guadal volcanic rocks are interpreted to reflect the development of shallow silicic reservoirs within a region characterized by high crustal temperatures due to focused basaltic activity and high magma supply rates. On the periphery of the silicic system where magma supply rates and crustal temperatures were lower, cooling and crystallization were more important than bulk crustal melting or assimilation. Received: 2 July 1997 / Accepted: 25 November 1997  相似文献   

3.
In the stratigraphic sequence of volcanic rocks in the Eastern Sikhote Alin, Maestrichtian-Danian predominantly andesitic volcanics are characterized by a boundary position between the Late Cretaceous subduction, mostly acid volcanic rocks and Cenozoic post-subduction basaltoids. Data on these rocks are important for elucidating the genesis of andesitic magmas, constraining and specifying the geodynamic evolutionary stages in this territory, and revealing the conditions under which the parental melts of these rocks were derived and evolved. Results of detailed mineralogical and geochemical studies, including ICP-MS analysis for trace elements point to a hybrid character of the andesitic volcanic rocks and an important role of fractional crystallization and crustal contamination in their genesis. Although geological evidence (variations in the style of volcanism, the composition of its products, and the character of their distribution) testifies to a change in the geodynamic environment in the Eastern Sikhote Alin in the Maestrichtian-Danian, geochemically the volcanics of this age range are typical subduction-related rocks with anomalously low concentrations of Nb and high contents of K, Ba, Rb, Pb, and U. The volcanic piles contain no adakites, which are indicators of the geodynamic environment in which slab windows are formed. The inconsistency between geological and geochemical indicators of the geodynamic environment suggests certain genetic features of the transitional magmatic series. The parental magmas of the andesitic volcanics were derived from the suprasubduction mantle wedge, which had been metasomatically recycled in the course of the dehydration and melting of the subducted oceanic slab. The increasing extension provided the possibility for the parental basaltic magmas to enter upper crustal levels, where they could interact with the host rocks and form hybrid andesitic melts.  相似文献   

4.
《International Geology Review》2012,54(10):1234-1252
ABSTRACT

The lower Miocene (~22–19 Ma) volcanic units in the NE–SW-trending Tunçbilek–Domaniç basin, located in the northeastern-most part of the Neogene successions in western Anatolia, are composed of (1) high-K, calc-alkaline dacitic to rhyolitic volcanic rocks of the Oklukda?? volcanics; (2) calc-alkaline low-MgO (evolved) basalts; and (3) high-MgO mildly alkaline basalts of the Karaköy volcanics. Sr isotopic ratios of the volcanic units increase from high-MgO (~0.7055–0.7057) to low-MgO basaltic rocks (~0.7066–0.7072) and then to dacitic-rhyolitic rocks (0.7081–0.7086). Geochemical features of the volcanic rocks reveal that the calc-alkaline evolved basalts were formed by mixing of basic and acidic magmas.

Geochemical studies in the last decade show that the Miocene mafic volcanic rocks in western Anatolia are mainly composed of high-MgO shoshonitic-ultrapotassic rocks (SHO-UK), of which mantle sources were variably, but also intensely metasomatized with crustally derived materials during collisional processes in the region. However, geochemical comparison of the high-MgO basalts of the Karaköy volcanics with the SHO-UK rocks in this region reveal that that the former has too low 87Sr/86Sr(i) and high 143Nd/144Nd(i) ratios, with lower LILE and LREE abundances, which are firstly described here. These features are interpreted to be derived from more slightly enriched lithospheric mantle sources than that of the SHO-UK. Accepting the SHO-UK rocks in the region were derived from mantle sources that had been metasomatized by northward subduction of crustal slices during Alpine collisional processes, it is proposed that the imbrication and direct subduction of crustal slices were not reached to, and were limited in the mantle domains beneath the basin. The dacites of the Oklukda?? volcanics might be formed either by high-degree melting of the same sources with the SHO-UK, or by melting of the lower crustal mafic sources as previously proposed, and then evolved into the rhyolites via fractional crystallization with limited crustal contribution.  相似文献   

5.
Palaeoproterozoic intermediate to potassic felsic volcanism in volcano‐sedimentary sequences could either have occurred in continental rift or at convergent magmatic arc tectonic settings. The Vinjamuru domain of the Krishna Province in Andhra Pradesh, SE India, contains such felsic and intermediate metavolcanic rocks, whose geochemistry constrains their probable tectonic setting and which were dated by the zircon Pb evaporation method in order to constrain their time of formation. These rocks consist of interlayered quartz–garnet–biotite schist, quartz–hematite–baryte–sericite schist as well as cherty quartzite, and represent a calc‐alkaline volcanic sequence of andesitic to rhyolitic rocks that underwent amphibolite‐facies metamorphism at ~1.61 Ga. Zircons from four felsic metavolcanic rock samples yielded youngest mean 207Pb/206Pb ages between 1771 and 1791 Ma, whereas the youngest zircon age for a meta‐andesite is 1868 Ma. A ~2.43 Ga zircon xenocryst reflects incorporation of Neoarchaean basement gneisses. Their calc‐alkaline trends, higher LILE, enriched chondrite‐normalized LREE pattern and negative Nb and Ti anomalies on primitive mantle‐normalized diagrams, suggest formation in a continental magmatic arc tectonic setting. Whereas the intermediate rocks may have been derived from mantle‐source parental arc magmas by fractionation and crustal contamination, the rhyolitic rocks had crustal parental magmas. The Vinjamuru Palaeoproterozoic volcanic eruption implies an event of convergent tectonism at the southeastern margin of the Eastern Dharwar Craton at ~1.78 Ga forming one of the major crustal domains of the Krishna Province. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The Pliocene–Pleistocene northern Taiwan volcanic zone (NTVZ) is located within a trench-arc–back-arc basin and oblique arc–continent collision zone. Consequently the origin and tectonic setting of the andesitic rocks within the NTVZ and their relation to other circum-Pacific volcanic island-arc systems is uncertain. Rocks collected from the Tatun volcanic group (TTVG) include basaltic to andesitic rocks. The basalt is compositionally similar to within-plate continental tholeiites whereas the basaltic andesite and andesite are calc-alkaline; however, all rocks show a distinct depletion of Nb-Ta in their normalized incompatible element diagrams. The Sr-Nd isotope compositions of the TTVG rocks are very similar and have a relatively restricted range (i.e. ISr = 0.70417–0.70488; εNd(T) = +2.2 to +3.1), suggesting that they are derived directly or indirectly from the same mantle source. The basalts are likely derived by mixing between melts from the asthenosphere and a subduction-modified subcontinental lithospheric mantle (SCLM) source, whereas the basaltic andesites may be derived by partial melting of pyroxenitic lenses within the SCLM and mixing with asthenospheric melts. MELTS modelling using a starting composition equal to the most primitive basaltic andesite, shallow-pressure (i.e. ≤1 kbar), oxidizing conditions (i.e. FMQ +1), and near water saturation will produce compositions similar to the andesites observed in this study. Petrological modelling and the Sr-Nd isotope results indicate that the volcanic rocks from TTVG, including the spatially and temporally associated Kuanyinshan volcanic rocks, are derived from the same mantle source and that the andesites are the product of fractional crystallization of a parental magma similar in composition to the basaltic andesites. Furthermore, our results indicate that, in some cases, calc-alkaline andesites may be generated by crystal fractionation of mafic magmas derived in an extensional back-arc setting rather than a subduction zone setting.  相似文献   

7.
孙渺  陈伟  曲晓明  马旭东  丁吉顺 《地球科学》2018,43(9):3234-3251
江巴组火山岩是西藏雄梅地区近年来发现的火山岩,但其岩石成因尚不明确.通过开展系统的岩相学、地球化学、同位素定年示踪研究,结果表明英安质火山岩锆石U-Pb年龄为85.1±1.0 Ma,为晚白垩世.安山质和英安质火山岩显示出明显的埃达克质岩特征,主量元素显示出较高的SiO2和Al2O3含量及Mg#值;稀土元素整体呈轻稀土元素富集,重稀土元素强烈亏损,轻重稀土元素分异明显,(La/Yb)N值较高,无明显Eu异常;微量元素具有明显的高Sr,低Y、Yb和高Sr/Y值,相对富集Th、Zr和Hf,亏损Nb、Ta和Ti的特点;英安质火山岩锆石εHf(t)值均为正值,在+2.7~+7.1之间,指示有亏损地幔物质参与成岩作用;以上表明安山质和英安质火山岩可能形成于加厚新生下地壳拆沉的部分熔融并有亏损地幔物质的加入.流纹质火山岩具相对低的MgO、TiO2含量;LREEs富集、HREEs亏损,但轻重稀土元素分馏明显较安山质和英安质火山岩弱,微量元素富集Rb、Th和K,强烈亏损Eu,Sr,Ba,P和Ti,明显的负Eu异常,表明流纹质火山岩为地壳发生深熔而形成.综合对比江巴组火山岩的地球化学性质,表明班公湖-怒江缝合带中段昂龙岗日-班戈弧地区在晚白垩世期间存在一期板内加厚下地壳拆沉减薄事件.   相似文献   

8.
The geochemical characteristics of the Cenozoic volcanic rocks from the north Pulu, east Pulu and Dahongliutan regions in the west Kunlun Mountains are somewhat similar as a whole. However, the volcanic rocks from the Dahongliutan region in the south belt are geochemically distinguished from those in the Pulu region (including the north and east Pulu) of the north belt. The volcanic rocks of the Dahongliutan region are characterized by relatively low TiO2 abundance, but more enrichment in alkali, much more enrichment in light rare earth elements and large ion lithosphile elements than those from the Pulu region. Compared with the Pulu region, volcanic rocks from the Dahongliutan region have relatively low 87Sr/86Sr ratios, and high εNd, 207Pb/204Pb and 208Pb/204Pb. Their trace elements and isotopic data suggest that they were derived from lithospheric mantle, consisting of biotite- and hornblende-bearing garnet lherzolite, which had undertaken metasomatism and enrichment. On the primitive mantle-normali  相似文献   

9.
The island of Sumba, presently located in the southern row of islands of the Eastern Nusa Tenggara province of Eastern Indonesia, has a unique position, being part of the Sunda-Banda magmatic arc and subduction system. It represents a continental crustal fragment located at the boundary between the Sunda oceanic subduction system and the Australian arc–continent collision system, separating the Savu Basin from the Lombok Basin. New data on magmatic rocks collected from Sumba are presented in this paper, including bulk rock major and trace element chemistry, petrography and whole rock and mineral 40K–40Ar ages.Three distinct calc–alkaline magmatic episodes have been recorded during Cretaceous–Paleogene, all of them characterized by similar rock assemblages (i.e. pyroclastic rocks, basaltic–andesitic lava flows and granodioritic intrusions). They are: (i) the Santonian–Campanian episode (86–77 Ma) represented by volcanic and plutonic rock exposures in the Masu Complex in Eastern Sumba; (ii) the Maastrichtian–Thanetian episode (71–56 Ma) represented by the volcanic and plutonic units of Sendikari Bay, Tengairi Bay and the Tanadaro Complex in Central Sumba; and (iii) the Lutetian–Rupelian episode (42–31 Ma) of which the products are exposed at Lamboya and Jawila in the western part of Sumba. No Neogene magmatic activity has been recorded.  相似文献   

10.
青山群火山岩是华北克拉通破坏期间最具代表性的地幔或地壳熔融产物,记录了华北深部地质演化的重要信息。本文对胶东青山群基性火山岩进行了40Ar/39Ar定年和岩石地球化学分析,结合前人报道的胶东青山群酸性火山岩资料,发现:(1)基性火山岩喷发年龄为122~113Ma,早于青山群酸性火山岩(110~98Ma);(2)基性和酸性火山岩显示了不同的元素和同位素地球化学特征。岩石成因分析表明,基性火山岩为交代富集地幔部分熔融作用的产物,而酸性火山岩为古老下地壳和中生代底侵岩浆的熔融产物(Ling et al.,2009)。因此,胶东地区青山群火山岩记录了岩浆熔融源区从地幔向下地壳的转变。这与长时间尺度的岩石圈减薄过程中热能由地幔向地壳传递过程相吻合,而不同于地壳拆沉作用所预测的岩浆演化趋势。  相似文献   

11.
The western Anatolian volcanic province formed during Eocene to Recent times is one of the major volcanic belts in the Aegean–western Anatolian region. We present new chemical (whole-rock major and trace elements, and Sr, Nd, Pb and O isotopes) and new Ar/Ar age data from the Miocene volcanic rocks in the NE–SW-trending Neogene basins that formed on the northern part of the Menderes Massif during its exhumation as a core complex. The early-middle Miocene volcanic rocks are classified as high-K calc-alkaline (HKVR), shoshonitic (SHVR) and ultrapotassic (UKVR), with the Late Miocene basalts being transitional between the early-middle Miocene volcanics and the Na-alkaline Quaternary Kula volcanics (QKV). The early-middle Miocene volcanic rocks are strongly enriched in large ion lithophile elements (LILE), have high 87Sr/86Sr(i) (0.70631–0.71001), low 143Nd/144Nd(i) (0.512145–0.512488) and high Pb isotope ratios (206Pb/204Pb = 18.838–19.148; 207Pb/204Pb = 15.672–15.725; 208Pb/204Pb = 38.904–39.172). The high field strength element (HFSE) ratios of the most primitive early-middle Miocene volcanic rocks indicate that they were derived from a mantle source with a primitive mantle (PM)-like composition. The HFSE ratios of the late Miocene basalts and QKV, on the other hand, indicate an OIB-like mantle origin—a hypothesis that is supported by their trace element patterns and isotopic compositions. The HFSE ratios of the early-middle Miocene volcanic rocks also indicate that their mantle source was distinct from those of the Eocene volcanic rocks located further north, and of the other volcanic provinces in the region. The mantle source of the SHVR and UKVR was influenced by (1) trace element and isotopic enrichment by subduction-related metasomatic events and (2) trace element enrichment by “multi-stage melting and melt percolation” processes in the lithospheric mantle. The contemporaneous SHVR and UKVR show little effect of upper crustal contamination. Trace element ratios of the HKVR indicate that they were derived mainly from lower continental crustal melts which then mixed with mantle-derived lavas (~20–40%). The HKVR then underwent differentiation from andesites to rhyolites via nearly pure fractional crystallization processes in the upper crust, such that have undergone a two-stage petrogenetic evolution.  相似文献   

12.
辽西北票蓝旗组火山岩锆石U-Pb年龄和Hf同位素组成   总被引:6,自引:1,他引:5  
马强  郑建平 《岩石学报》2009,25(12):3287-3297
辽西北票常河营子地区有中生代蓝旗组火山岩分布,其中上部安山质角砾熔岩的锆石LA-ICPMS U-Pb年龄分析结果表明,其结晶年龄为159.4±3.4Ma,属晚侏罗世.锆石~(176)Hf/~(177)Hf比值介于0.282098~0.282789之间,ε_(Hf)(t)值为-20.4~+4.1,主体分布在华北克拉通地壳演化线之上,位于古元古代地壳演化范围内,所给出的亏损地幔年龄(t_(DM))和平均地壳模式年龄(t_(crust))分别为0.7~1.6Ga和0.9~2.5Ga.结合已发表蓝旗组中酸性火山岩的岩石地球化学及Sr-Nd同位素组成特征,我们认为安山质火山岩源于古老(如晚太古代)下地壳玄武质岩石的部分熔融,其形成过程可能与中生代幔源岩浆底侵作用有关.  相似文献   

13.
The series of two papers presents a comprehensive isotope-geochronological and petrologicalgeochemical study of the Late Quaternary Tendürek Volcano (Eastern Turkey), one of the greatest volcanoes within the Caucasian–Eastern Anatolian segment of the Alpine foldbelt. The second article discusses the results of petrogenetic modeling, role of AFC-processes in the petrogenesis of magmas and the nature of mantle source of the Tendürek Volcano. Based on geochronological data, geochemical and isotopegeochemical (Sr-Nd-Pb) characteristics of the studied rocks we suggest the petrological model which well describe the evolution of magmatic system of the Tendürek Volcano during the whole period of its activity. The data obtained indicate that the igneous rocks of the Tendürek Volcano belong to the same homodromous volcanic series (trachybasalt–tephrite–phonotephrite–tephriphonolite–trachyandesite–trachyte–phonolite), which are dominated by the intermediate and moderately-acid varieties of the eruption products. The leading role in the petrogenesis of the lavas was played by the fractional crystallization processes, which, according to isotope-geochemical data, were sometimes complicated by the assimilation of upper crustal material. The mantle reservoir responsible for the magmatic activity within the major part of the Eastern Anatolia in the Late Quaternary time was represented by the OIB-type mantle. It was subject to slight metasomatic changes as a result of earlier deepening and remelting of the Arabian Plate slab, which was subducted under the region through the end of the Miocene. The depth of the magma-generating source is estimated at around 80 km, which corresponds to the upper part of the asthenospheric wedge under the region, based on geophysical data.  相似文献   

14.
In northeastern Sanandaj-Sirjan structural zone, the Takab-Ghorveh belt comprises a volcanic province which related to the collision between the Eurasian and Arabian continents. It contains almost Quaternary andesitic basalt to alkali basalt. These alkali basaltes show Strombolian type eruptions. The volcanic rocks in Bijar area represent a range of mafic magmas, re-vealed by mingling and mixing textures. A variety of features suggest that the lava flows before eruption from magma chambers, contaminated by continental crust.  相似文献   

15.
The chemical and trace-element features of the Late Cretaceous and Early Paleogene ignimbrite complexes of East Sikhote Alin are discussed. The Turonian-Campanian volcanic rocks of the Primorsky Complex compose linear structure of the Eastern Sikhote Alin volcanic belt. They are represented by crystalrich rhyolitic, rhyodacitic, and dacitic S-type plateau ignimbrites produced by fissure eruptions of acid magmas. The Maastrichtian-Paleocene volcanic rocks occur as isolated volcanic depression and caldera structures, which have no structural and spatial relations with the volcanic belt. This period is characterized by bimodal volcanism. The Samarginsky, Dorofeevsky, and Severyansky volcanic complexes are made up of basalt-andesite-dacite lavas and pyroclastic rocks, while the Levosobolevsky and Siyanovsky complexes are comprised of rhyolitic and dacitic tuffs and ignimbrites. Petrogeochemically, the felsic volcanic rocks are close to the S-type plateau ignimbrites of the Primorsky Complex. The Paleocene-Early Eocene silicic volcanics of the Bogopolsky Complex are represented by S- and A-type dacitic and rhyolitic tuffs and ignimbrites filling collapsed calderas. The eruption of A-type ferroan hyaloignimbrites occurred at the final stage of the Paleogene volcanism (Bogopolsky Complex). The magmatic rocks show well expressed mineralogical and geochemical evidence for the interaction between the crustal magmas and enriched sublithospheric mantle. It was shown that the revealed differences in the mineralogical and geochemical composition of the ignimbrite complexes are indicative of a change in the geodynamic regime of the Asian active continental margin at the Mesozoic-Cenozoic transition.  相似文献   

16.
 Isotopic and trace element data from mantle and granulite xenoliths are used to estimate the relative contributions of mantle and crustal components to a large ignimbrite, referred to as the upper ignimbrite, that is representative of the voluminous mid-Cenozoic rhyolites of northwestern Mexico. The study also uses data from the volcanic rocks to identify deep crustal xenoliths that are samples of new crust created by the Tertiary magmatism. The isotopic composition of the mantle component is defined by mantle-derived pyroxenites that are interpreted to have precipitated from mid-Cenozoic basaltic magmas. This component has ɛNd≈+1.5, 87Sr/86Sr≈0.7043 and 206Pb/204Pb≈18.6. Within the upper ignimbrite and associated andesitic and dacitic lavas, initial 87Sr/86Sr is positively correlated with SiO2, reaching 0.7164 in the ignimbrite. Initial 206Pb/204Pb ratios also show a positive correlation with silica, whereas ɛNd values have a crude negative correlation, reaching values as low as −2. Of the four isotopically distinct crustal components identified from studies of granulite xenoliths, only the sedimentary protolith of the paragneiss xenoliths can be responsible for the high initial 87Sr/86Sr of the upper ignimbrite. The Nd, Sr, and Pb isotopic compositions of the upper ignimbrite can be modeled with relatively modest assimilation (≤20%) of the sedimentary component ± Proterozoic granulite. Gabbroic composition granulite xenoliths have distinctive Nd, Sr, and Pb isotope ratios that cluster closely within the range of compositions found in the andesitic and dacitic lavas. These mafic granulites are cumulates, and their protoliths are interpreted to have precipitated from the intermediate to silicic magmas at 32–31 Ma. These mafic cumulate rocks are probably representative of much of the deep crust that formed during mid-Cenozoic magmatism in Mexico. Worldwide xenolith studies suggest that the relatively great depth (≤20 km) at which assimilation-fractional crystallization took place in the intermediate to silicic magma systems of the La Olivina region is the rule rather than the exception. Oligocene ignimbrites of the southwestern United States (SWUS) have substantially lower ɛNd values (e.g. <−6) than the upper ignimbrite and other rhyolites from Mexico. This difference appears to reflect a greater crustal contribution to ignimbrites of the SWUS, perhaps due to a higher temperature of the lower crust prior to the emplacement of the Oligocene basaltic magmas. Received: 16 December 1994 / Accepted: 13 September 1995  相似文献   

17.
 Cerro Panizos, a large caldera in the central Andes Mountains, produced two large dacitic ignimbrites at 7.9 Ma and 6.7 Ma and many andesitic and dacitic lava flows and domes. The older rhyodacitic Cienago Ignimbrite represents the most silicic magma erupted by the system. The younger, much larger volume dacitic Cerro Panizos Ignimbrite is very crystal-rich, containing up to 50% biotite, plagioclase, and quartz crystals in the pumice. It is weakly zoned, with most of the zoning apparent between two main cooling units. Major and most trace elements show little variation through the Cerro Panizos Ignimbrite, but the small range of composition is consistent with typical fractionation trends. Sr, Nd, and Pb isotopic ratios are very “crustal”, with initial 87Sr/86Sr values of 0.711 to 0.715, ɛNd values of –7.5 to –10.2, and nearly invariant Pb isotopic ratios (206Pb/204Pb=18.85, 207Pb/204Pb=15.67, and 208Pb/204Pb=38.80). The limited zonation observed in the Cerro Panizos Ignimbrite is explained by impeded crystal settling due to high crystal content. The magma body was a crystal-liquid mush before ascent to the pre-eruption crustal levels. Crystals formed, but did not separate easily from the magma. Limited fractionation of plagioclase and biotite may have occurred, but the composition was largely controlled by lower crustal MASH processes. AFC modeling shows that the Cerro Panizos magmas resulted from a mixture of roughly equal proportions of late Miocene mantle-derived basalts and melts from ∼1.0 Ga (Grenville age) lower crust. This occurred in a MASH zone in the lower crust, and set the crustal isotopic ratios observed in the Cerro Panizos magmas. The great thickening of the crust beneath the central Andes Mountains sent upper and middle crustal rock types to lower crustal (and deeper) depths, and this explains the “upper crustal” isotopic signatures of the Cerro Panizos rocks. Minor upper crustal assimilation of early Miocene volcanic or subvolcanic rocks produced much of the isotopic variation seen in the system. The nearly invariant high Pb isotopic values and high Pb concentrations indicate that Pb came almost entirely from the crustal source, and was little altered by any subsequent upper crustal assimilation. This Pb signature is isotopically similar to that of the southern Bolivian Tin Belt, suggesting a widely distributed Pb source. The great difference between compositions of Miocene and Quaternary central Andean volcanic rocks is explained by crustal thickening in early Miocene time leading to abundant lower crustal water and associated fluxed melting during the time of the earlier eruptions. The lower crust dried out considerably by Quaternary time, so less crustal component is present. Received: 22 December 1994 / Accepted: 13 September 1995  相似文献   

18.
Most large Archean greenstone belts ( 2.7 Ga), comprise thick (12–15 km) mafic to felsic metavolcanics sequences which exhibit consistent but discontinuous geochemical patterns resulting from mantle-crust processes. In a typical Archean metavolcanic sequence, thick (5–8 km) uniform tholeiitic basalt is followed by geochemically evolved rock units (4–7 km thick) containing intermediate and felsic calc-alkaline rocks. This major geochemical discontinuity is marked by a change from LIL-element depleted basalts which show unfractionated REE abundance patterns, to overlying andesites with higher LIL-element contents, fractionated REE patterns and relatively depleted HREE. A less well marked discontinuity separates andesitic rocks from still later more felsic dacite-rhyolite extrusive assemblages and their intrusive equivalents, and is identified by a further increase in LIL element content and REE fractionation. The major geochemical discontinuity apparently separates rocks derived by partial melting of mantle (either directly or through shallow fractionation processes) from those which originated either by partial melting of mantle material modified by crustal interactions or by partial melting of crustal material.We suggest that accumulation of a great thickness of mantle derived volcanic rocks can lead to sagging and interaction of the lower parts of the volcanic piles with upper mantle material. The resulting modified mantle acts as a source for some of the geochemically evolved rocks observed in volcanic successions. Subsequent direct melting of the volcanic pile produces the felsic magmas observed in the upper parts of Archean volcanic successions. This process, termed sag-subduction, is the inferred tectonic process operating in the comparatively thin, hot Archean crustal regime. By this process, large masses of ultimately mantle-derived material were added to the crust.  相似文献   

19.
Extensional-tectonic processes have generated extensive magmatic activity that produced volcanic/plutonic rocks along an E-W-trending belt across north-western Turkey; this belt includes granites and coeval volcanic rocks of the Ala?amdağ volcano-plutonic complex. The petrogenesis of the Early Miocene Ala?amdağ granitic and volcanic rocks are here investigated by means of whole-rock Sr–Nd isotopic data along with field, petrographic and whole-rock geochemical studies. Geological and geochemical data indicate two distinct granite facies having similar mineral assemblages, their major distinguishing characteristic being the presence or absence of porphyritic texture as defined by K-feldspar megacrysts. I-type Ala?amdağ granitic stocks have monzogranitic-granodioritic compositions and contain a number of mafic microgranular enclaves of monzonitic, monzodioritic/monzogabbroic composition. Volcanic rocks occur as intrusions, domes, lava flows, dykes and volcanogenic sedimentary rocks having (first episode) andesitic and dacitic-trachyandesitic, and (second episode) dacitic, rhyolitic and trachytic-trachydacitic compositions. These granitic and volcanic rocks are metaluminous, high-K, and calc-alkaline in character. Chondrite-normalised rare earth element patterns vary only slightly such that all of the igneous rocks of the Ala?amdağ have similar REE patterns. Primitive-mantle-normalised multi-element diagrams show that these granitic and volcanic rocks are strongly enriched in LILE and LREE pattern, high (87Sr/86Sr)i and low ε Nd(t) ratios suggesting Ala?amdağ volcano-plutonic rocks to have been derived from hybrid magma that originated mixing of co-eval lower crustal-derived more felsic magma and enriched subcontinental lithospheric mantle-derived more mafic magmas during extensional processes, and the crustal material was more dominant than the mantle contribution. The Ala?amdağ volcano-plutonic complex rocks may form by retreat of the Hellenic/Aegean subduction zone, coinciding with the early stages of back-arc extension that led to extensive metamorphic core-complex formation.  相似文献   

20.
西秦岭合作—美武地区郎木寺组火山岩主要以中性的安山质火山岩为主,其次为英安岩及英安质火山碎屑岩和酸性的流纹质火山岩,为一套高K、低Ti、准铝质的钙碱性系列火山岩,微量元素总体富集Rb、亏损Th、La、Nd,Nb,稀土总量不高,含量不稳定,变化范围较大,轻重稀土分馏较明显,Eu存在微弱的负异常。通过对岩石学、岩石地球化学分析,表明其形成于活动大陆边缘弧环境,岩浆来源于地幔楔或俯冲板块上升过程中产生的俯冲岩浆带,为合作—美武地区火山岩岩石成因及构造环境研究提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号