首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Possible long-term seismic behaviour of the Northern strand of the North Anatolian Fault Zone, between western extreme of the 1999 İzmit rupture and the Aegean Sea, after 400 AD is studied by examining the historical seismicity, the submarine fault mapping and the paleoseismological studies of the recent scientific efforts. The long-term seismic behaviour is discussed through two possible seismicity models devised from M S ≥ 7.0 historical earthquakes. The estimated return period of years of the fault segments for M1 and M2 seismic models along with their standard deviations are as follows: F4 segment 255 ± 60 and 258 ± 12; F5 segment 258 ± 60 and 258 ± 53; F6 segment 258 ± 60 and 258 ± 53; F7 segment 286 ± 103 and 286 ± 90; F8 segment 286 ± 90 and 286 ± 36. As the latest ruptures on the submarine segments have been reported to be during the 1754–1766 earthquake sequence, and the 1912 mainshock rupture has been evidenced to extend almost all over the western part of the Sea of Marmara, our results imply imminent seismic hazard and, considering the mean recurrence time, a large earthquake to strike the eastern part of the Sea of Marmara in the next two decades.  相似文献   

2.
《International Geology Review》2012,54(12):1557-1567
ABSTRACT

The present-day tectonic framework of Turkey comprises mainly two strike-slip fault systems, namely dextral North Anatolian and sinistral East Anatolian faults. They are considered as the main cause of deformation patterns in Anatolia. These two mega shear systems meet at Kargapazar? village of Karl?ova county. The area to the east of the junction has a transpressional tectonic regime between the Eurasian and Arabian plates and is characterized, based on field observation, by a network of faults defining a typical horsetail splay structure. The horsetail splay is interpreted as marking the termination of the North Anatolian Fault System (NAFS), which continues eastward into the Varto Fault Zone (VFZ) and then dies out. The present study reveals that the VFZ is made up of two main parts, namely the principal displacement zone (PDZ) and the transpressional splay zone (TPSZ), both characterized by the right-lateral strike-slip with reverse motion. However, the area to the east of Varto is characterized dominantly by reverse-thrust faults and E–W-trending faults as shown by focal mechanism solutions. The generation of the VFZ as a transpressional termination to the NAFS can be related directly to the block movements of the Eurasian, Anatolian, and Arabian plates.  相似文献   

3.
The east–west-trending North Anatolian Fault makes a 17° bend in the western Marmara region from a mildly transpressional segment to a strongly transtensional one. We have studied the changes in the morphology and structure around this fault bend using digital elevation models, field structural geology, and multi-channel seismic reflection profiles. The transpression is reflected in the morphology as the Ganos Mountain, a major zone of uplift, 10 km wide and 35 km long, elongated parallel to the transpressional Ganos Fault segment west of this bend. Flat-lying Eocene turbidites of the Thrace Basin are folded upwards against this Ganos Fault, forming a monocline with the Ganos Mountain at its steep southern limb and the flat-lying hinterland farther north at the flat limb. The sharp northern margin of the Ganos Mountain coincides closely with the monoclinal axis. The strike of the bedding, and the minor and regional fold axes in the Eocene turbidites in Ganos Mountain are parallel to the trace of the Ganos Fault indicating that these structures, as well as the morphology, have formed by shortening perpendicular to the North Anatolian Fault. The monoclinal structure of Ganos Mountain implies that the North Anatolian Fault dips under this mountain at 50°, and this ramp terminates at a decollement at a calculated depth of 8 km. East of this fault bend, the northward dip of the North Anatolian Fault is maintained but it has a normal dip-slip component. This has led to the formation of an asymmetric half-graben, the Tekirdağ Basin in the western Sea of Marmara, containing a thickness of up to 2.5 km of Pliocene to Recent syn-transform sediments. As the Ganos uplift is translated eastwards from the transpressional to the transtensional zone, it undergoes subsidence by southward tilting. However, a morphological relic of the Ganos uplift is maintained as the steep northern submarine slope of the Tekirdağ Basin. The minimum of 3.5 km of fault-normal shortening in the Ganos Mountain, and the minimum of 40 km eastward translation of the Ganos uplift indicate that the present fault geometry has existed for at least the last 2 million years.  相似文献   

4.
The Bekten Fault is 20-km long N55°E trending and oblique-slip fault in the dextral strike-slip fault zone. The fault is extending sub-parallel between Yenice-Gönen and Sar?köy faults, which forms the southern branch of North Anatolian Fault Zone in Southern Marmara Region. Tectonomorphological structures indicative of the recent fault displacements such as elongated ridges and offset creeks observed along the fault. In this study, we investigated palaeoseismic activities of the Bekten Fault by trenching surveys, which were carried out over a topographic saddle. The trench exposed the fault and the trench stratigraphy revealed repeated earthquake surface rupture events which resulted in displacements of late Pleistocene and Holocene deposits. According to radiocarbon ages obtained from samples taken from the event horizons in the stratigraphy, it was determined that at least three earthquakes resulting in surface rupture generated from the Bekten Fault within last ~1300 years. Based on the palaeoseismological data, the Bekten Fault displays non-characteristic earthquake behaviour and has not produced any earthquake associated with surface rupture for about the last 400 years. Additionally, the data will provide information for the role of small fault segments play except for the major structures in strike-slip fault systems.  相似文献   

5.
Extensive magmatic activity developed at the northwestern part of the Anatolian block and produced basaltic lavas that are situated along and between the two segments of the North Anatolian Fault zone. This region is a composite tectonic unit formed by collision of continental fragments after consumption of Neotethyan ocean floor during the late Cretaceous. Northwestern Anatolian basalts and evolved lavas exhibit both tholeiitic and calc-alkaline characteristics. Mafic lavas are moderately enriched in LILE (except depleted part of Yuvacık and İznik samples) and depleted in HFSE (but not Zr, Hf) relative to primitive mantle values, suggesting derivation from a MORB-like mantle source that is unexpected in this subduction environment. Sr and Nd isotopes are close to the mantle array and vary beyond analytical error (87Sr/86Sr 0.70404–0.70546, 143Nd/144Nd 0.51270–0.51289). These geochemical features may result from two possible processes: (1) melting of a MORB-like mantle source that was modified by subduction-released fluids and melts or (2) modification of mafic liquids derived from a dominantly MORB-like source by crustal or lithospheric mantle material. Geochemical characteristics of the lavas (e.g., Ba/Rb, Rb/Sr, Ba/Zr, 87Sr/86Sr, Sr/P) vary systematically along the fault zone from east to west, consistent with a decrease in the degree of melting from east to west or a change in the nature of the source composition itself. Thus, the difference in incompatible elements and Sr–Nd isotopic ratios seems to result from small-scale mantle heterogeneity in a post-collisional tectonic environment.  相似文献   

6.
《Geodinamica Acta》2013,26(3):219-228
The new field data obtained from the southwestern margin of the Erzincan pull-apart basin located on the eastern segment of North Anatolian Fault Zone indicate that the opening of the basin is not only controlled by pull-apart mechanism but also by a lateral ramp structure associated with SSE-NNW Late Miocene thrusting along the Sivas Basin. The fault bordering the southwestern margin of the basin is the lateral part of the Karada thrust that is the roof thrust of the Sivas fold-thrust system, rather than a segment of the North Anatolian Fault Zone. The Erzincan basin was nucleated as a lateral ramp basin during the Pliocene on the lateral ramp-related folds and expanded by the pull-apart opening mechanism between two segments of the North Anatolian Fault Zone. The WSW-ENE pull-apart opening of the basin was recorded by the Pliocene lacustrine-fluvial sediments and Quaternary volcanics as listric normal faulting.  相似文献   

7.
Deformation models used to explain the triggering mechanism often assume pure elastic behaviour for the crust and upper mantle. In reality however, the mantle and possibly the lower crust behave viscoelastically, particularly over longer time scales. Consequently, the stress field of an earthquake is in general time-dependent. In addition, if the elastic stress increase were enough to trigger a later earthquake, this triggered event should occur instantaneously and not many years after the triggering event. Hence, it is appropriate to include inelastic behaviour when analysing stress transfer and earthquake interaction.In this work, we analyse a sequence of 10 magnitude Ms > 6.5 events along the North Anatolian Fault between 1939 and 1999 to study the evolution of the regional Coulomb stress field. We investigate the triggering of these events by stress transfer, taking viscoelastic relaxation into account. We evaluate the contribution of elastic stress changes, of post-seismic viscoelastic relaxation in the lower crust and mantle, and of steady tectonic loading to the total Coulomb stress field. We analyse the evolution of stress in the region under study, as well as on the rupture surfaces of the considered events and their epicentres. We study the state of the Coulomb stress field before the 1999 İzmit and Düzce earthquakes, as well as in the Marmara Sea region.In general, the Coulomb stress failure criterion offers a plausible explanation for the location of these events. However, we show that using a purely elastic model disregards an important part of the actual stress increase/decrease. In several cases, post-seismic relaxation effects are important and greater in magnitude than the stress changes due to steady tectonic loading. Consequently, viscoelastic relaxation should be considered in any study dealing with Coulomb stress changes.According to our study, and assuming that an important part of the rupture surface must be stressed for an earthquake to occur, the most likely value for the viscosity of the lower crust or mantle in this region is 5 · 1017–1018 Pa · s. Our results cannot rule out the possibility of other time-dependent processes involved in the triggering of the 1999 Düzce event. However, the stress increase due to viscoelastic relaxation brought 22% of the 1999 Düzce rupture area over the threshold value of Δσc ≥ 0.01 MPa (0.1 bar), and took the whole surface closer to failure by an average of 0.2 MPa. Finally, we argue that the Marmara Sea region is currently being loaded with positive Coulomb stresses at a much faster rate than would arise exclusively from steady tectonic loading on the North Anatolian Fault.  相似文献   

8.
Tectonic elements controlling the evolution of the Gulf of Saros have been studied based upon the high-resolution shallow seismic data integrated with the geological field observations. Evolution of the Gulf of Saros started in the Middle to Late Miocene due to the NW–SE compression caused by the counterclockwise movement of the Thrace and Biga peninsulas along the Thrace Fault Zone. Hence, the North Anatolian Fault Zone is not an active structural element responsible for the starting of the evolution of the Gulf of Saros. The compression caused by the rotational movement was compensated by tectonic escape along the pre-existing Ganos Fault System. Two most significant controllers of this deformation are the sinistral Ganos Fault and the dextral northern Saros Fault Zone both extending along the Gulf of Saros. The most important evidences of this movement are the left- and right-oriented shear deformations, which are correlated with structural elements, observed on the land and on the high-resolution shallow seismic records at the sea. Another important line of evidence supporting the evolution of this deformation is that the transgression started in the early-Late Miocene and turned, as a result of regional uplift, into a regression on the Gelibolu Peninsula during the Turolian and in the north of the Saros Trough during the Early Pliocene. The deformation on the Gelibolu Peninsula continued effectively until the Pleistocene. Taking into account the fact that this deformation affected the Late Pleistocene units of the Marmara Formation, the graben formation of the Gulf of Saros is interpreted as a Recent event. However, at least a small amount of compression on the Gelibolu Peninsula is observed. It is also evident that compression ceased at the northern shelf area of the Gulf of Saros.  相似文献   

9.
The Eastern Pontides (EP), which is the under transpressional deformation zone, is an active mountain belt that has been rising rapidly since the Cenozoic era because of the Arabian-Eurasian convergence. Morphometric studies have been performed to investigate the tectonic activity of this region and better understand the characteristics of the faults geomorphologically; the faults control the mountain fronts in the drainage basin of the EP. The results show the Hypsometric Curve (HC)-Hypsometric Integral (0.37-HI-0.67), Basin-Shaped Analysis (1.2-Bs-7), Valley-Floor-Width to Height-Ratio (0.4-Vf-1.2) and Asymmetry Factor (35-AF-81) applied to 46 drainage basins together with 9 tectonically controlled geomorphic indices (1.2-Smf-1.5) and a Stream Length Gradient (30-SL-120) indicate that the EP is tectonically active, and when the areas are evaluated according to Smf and Vf analyses, the tectonic level is relatively high. According to our conceptual model for the uplifting of the EP, with respect to field studies and morphometric analysis, (i) the EP is the active deformation zone and has a “push-up” geometry in conjunction with the North Anatolian Fault; (ii) the EP is progressively uplifting at a rate of more than 0.5 mm/yr in along with the thrust faults of the Black Sea Fault (BSF) and Borjomi-Kazbegi Fault (BKF).  相似文献   

10.
The western part of the North Anatolian Shear Zone at the southern boundary of the Central Pontides in Turkey, was investigated in the Kurşunlu-Araç area by means of a geological-structural field study. In this area the North Anatolian Shear Zone results in a transpressional deformation zone that extends between two master faults striking parallel to the main shear direction. The main systems of structures identified in the deformation zone appear to be oriented parallel to the directions predicted by Riedel theoretical model. Nevertheless, the strain partitioning is more complicated than predicted by theory. The structural analysis suggests a polyphase deformation characterized by a steady component of transcurrence associated with alternance of compression and extension. Along each of theoretical directions the combination of double verging structures can be observed, with folds and thrust surfaces root into high-angle shear zones, according to flower-type geometries. The discrepancies of directions, kinematics and geometries from theoretical models are due to transpressive and/or transtensive nature of the deformation. According to the observed outcropping structures, we propose a conceptual model for the North Anatolian Shear Zone, interpreting it as a crustal-scale positive flower structure.  相似文献   

11.
Detailed reviews of multichannel seismic reflection, sparker, chirp and multibeam data that were collected on the southern Marmara Sea shelf revealed various shallow gas indicators and related sedimentary structures, including enhanced reflections, seismic chimneys, acoustic blanking, bright spots, pockmarks, mound-like features and seeps. Seismic attribute analyses were applied to characterise the existence of gas-bearing sediments. The distribution of shallow gas indicators provides important insights into their origin and the geological factors that control them. Prominent gas accumulations and seeps are observed along the profiles that cross the branches of the central segment of the North Anatolian Fault Zone, which indicates that the gas seeps are controlled by active faulting. This indicates that the faults act as conduits through the sedimentary column. The dense occurrences of gas directly off the river mouths along the shallow bays provide clues about the organic-rich carbon content of the sediments and biogenic methane generation. In some areas, the gas-related acoustic anomalies are mostly located in the upper sediments below the marine unit, which indicates that the gas emissions in these areas were terminated as a result of the increased overburden pressure after the Holocene sea level rise and the deposition of the marine unit.  相似文献   

12.
The shelf area is the largest morphological unit of the Marmara Sea and is subjected to increasing population, urbanization, and industrial activities. Metal contents (Al, Fe, Mn, Cu, Pb, Zn, Ni, Cr, Co and Hg) of the surface sediments from the shelf areas of the Marmara Sea generally do not indicate shelf-wide pollution. The variability of the metal contents of the shelf sediments is mainly governed by the geochemical differences in the northern and southern hinterlands. Northern shelf sediments contain lower values compared to those of the southern shelf, where higher Ni, Cr, Pb, Cu and Zn are derived from the rock formations and mineralized zones. However, besides from the natural high background in the southern shelf, some anthropogenic influences are evident from EF values of Pb, Zn and Cu, and also from their high mobility in the semi-isolated bay sediments. Anthropogenic influences are found to be limited at the confluence of Istanbul Strait in the northern shelf. However, suspended sediments along the shallow parts of the northern shelf were found to be enriched in Pb and Hg and to a lesser degree in Zn, reflecting anthropogenic inputs from Istanbul Metropolitan and possibly from the Black Sea via the Istanbul Strait.  相似文献   

13.
The East Anatolian Fault Zone (EAFZ) is among the most important active continental transform fault zones in the world as testified by major historical and minor instrumental seismicity. The first paleoseismological exploratory trenching study on the EAFZ was done on the Palu–Lake Hazar segment (PLHS), which is one of the six segments forming the fault zone, in order to determine its past activity and to assess its earthquake hazard.The results of trenching indicate that the latest surface rupturing earthquakes on this segment may be the Ms=7.1+ 1874 and Ms=6.7 1875 events, and there were other destructive earthquakes prior to these events. The recurrence interval for a surface rupturing large (M>7) earthquake is estimated as minimum 100±35 and maximum 360 years. Estimates for the maximum possible paleoearthquake magnitude are (Mw) 7.1–7.7 for the Palu–Lake Hazar segment based on empirical magnitude fault rupture relations.An alluvial fan dated 14,475–15,255 cal years BP as well as another similar age fan with an abandoned stream channel on it are offset in a left-lateral sense 175 and 160.5 m, respectively, indicating an average slip rate of 11 mm/year. Because 127 years have elapsed since the last surface rupturing event, this slip rate suggests that 1.4 m of left-lateral strain has accumulated along the segment, ignoring possible creep effects, folding and other inelastic deformation. A 2.5 Ma age for the start of left-lateral movement on the segment, and in turn the EAFZ, is consistent with a slip rate of 11 mm/year and a previously reported 27 km total left-lateral offset. The cumulative 5–6 mm/year vertical slip rate near Lake Hazar suggests a possible age of 148–178 ka for the lake. Our trenching results indicate also that a significant fraction of the slip across the EAFZ zone is likely to be accommodated seismically. The present seismic quiescence compared with the past activity (paleoseismic and historic) indicate that the EAFZ may be “locked” and accumulating elastic strain energy but could move in the near future.  相似文献   

14.
Bends that locally violate plate-motion-parallel geometry are common structural elements of continental transform faults. We relate the vertical component of crustal motion in the western Marmara Sea region to the NNW-pointing 18° bend on the northern branch of the North Anatolian Fault (NAF-N) between the Ganos segment, which ruptured in 1912, and the central Marmara segment, a seismic gap. Crustal shortening and uplift on the transpressive west side of the bend results in the Ganos Mountain; crustal extension and subsidence on the transtensional east side produce the Tekirdağ Basin. We propose that this vertical component of deformation is controlled by oblique slip on the non-vertical north-dipping Ganos and Tekirdağ segments of the North Anatolian Fault. We compare Holocene with Quaternary structure across the bend using new and recently published data and conclude the following. First, bend-related vertical motion is occurring primarily north of the NAF-N. This suggests that this bend is fixed to the Anatolian side of the fault. Second, current deformation is consistent with an antisymmetric pattern centered at the bend, up on the west and down on the east. Accumulated deformation is shifted to the east along the right-lateral NAF-N, however, leading to locally opposite vertical components of long- and short-term motion. Uplift has started as far west as the landward extension of the Saros trough. Current subsidence is most intense close to the bend and to the Ganos Mountain, while the basin deepens gradually from the bend eastward for 28 km along the fault. The pattern of deformation is time-transgressive if referenced to the material, but is stable if referenced to the bend. The lag between motion and structure implies a 1.1–1.4 Ma age for the basin at current dextral slip rate (2.0–2.5 cm/year). Third, the Tekirdağ is an asymmetric basin progressively tilted down toward the NAF-N, which serves as the border fault. Progressive tilt suggests that the steep northward dip of the fault decreases with depth in a listric geometry at the scale of the upper crust and is consistent with reactivation of Paleogene suture-related thrust faults. Fourth, similar thrust-fault geometry west of the bend can account for the Ganos Mountain anticline/monocline as hanging-wall-block folding and back tilting. Oblique slip on a non-vertical master fault may accommodate transtension and transpression associated with other bends along the NAF and other continental transforms.  相似文献   

15.
Eastern Marmara region consists of three different morphotectonic units: Thrace–Kocaeli Peneplain (TKP) and Çamdağ–Akçakoca Highland (ÇAH) in the north, and Armutlu–Almacık Highland in the south of the North Anatolian Fault Zone (NAFZ). The geologic‐morphologic data and seismic profiles from the Sakarya River offshore indicate that the boundary between the TKP in the west and ÇAH in the east is a previously unrecognized major NNE–SSW‐trending strike‐slip fault zone with reverse component. The fault zone is a distinct morphotectonic corridor herein named the Adapazarı–Karasu corridor (AKC) that runs along the Sakarya River Valley and extends to its submarine canyon along the southern margin of the Black Sea in the north. It formed as a transfer fault zone between the TKP and ÇAH during the Late Miocene; the former has been experiencing extensional forces and the latter compressional forces since then. East–West‐trending segments of the NAFZ cuts the NE–SW‐trending AKC and their activity has resulted in the formation of a distinct fault‐bounded morphology, which is characterized by alternating E–W highlands and lowlands in the AKC. Furthermore, this activity has resulted in the downward motion of an ancient delta and submarine canyon of the Sakarya River in the northern block of the NAFZ below sea level so that the waters of the Black Sea invaded them. The NE–SW‐trending faults in the AKC were reactivated with the development of the NAFZ in the Late Pliocene, which then caused block motions and microseismic activities throughout the AKC. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
《Geodinamica Acta》2013,26(4):167-183
The Eastern Anatolian Plateau (EAP) of Turkey, with an elevation ranging from 1700 to 2000 m, is located between the Eastern Pontide Arc to the north and the Arabian Platform to the south. In this region, pre-Maastrichtian tectonic units representing the crust crop out in only a few localities. As they are covered by Maastrichtian-Quaternary rock units, it is difficult to study the nature and mutual relationships of these pre-Maastrichtian tectonic units.

The palaeotectonic units of the EAP comprise two different levels in the present study: (1) The lower level consists of platform-type carbonates and their metamorphic equivalents. These units may represent the Taurus Platform and its metamorphic equivalents. (2) The upper level consists of an ophiolitic-mélange prism which is made up mainly of oceanic crust; the prism comprises a complex of ophiolite, ophiolitic mélange, and fore-arc deposits. This upper unit represents a subduction-accretion prism and may have originated partly from the North Anatolian Suture to the north, and partly from the South-eastern Anatolian Suture to the south.

Continental crustal rocks were thrust over by the ophiolitic mélange prism; thus outcrops of them are scarce in the region as they are exposed in tectonic windows through the ophiolitic thrust sheets. The pre-Maastrichtian tectonic units of the EAP are blanketed by Maastrichtian to Quaternary volcanic and sedimentary rock units; these sequences include successive transgressive and regressive intervals and overlie the palaeotectonic units along a pronounced unconformity. Olistostromal units are abundant in the Eocene sedimentary units and were derived from the ophiolites and ophiolitic mélange. The Maastrichtian-Quaternary cover is made up of collisional and post-collisional deposits across the whole region.

Although the EAP has been experiencing considerable N-S compression, it has not been affected by significant crustal thickening because of the strike-slip tectonic regime that is dominant in the region.  相似文献   

17.
18.
Natural Hazards - The Northern Branch of the North Anatolian Fault System controls and deforms the Izmit Basin and the Sapanca Lake Basin in the study area. Unlike the Sapanca Lake Basin, the...  相似文献   

19.
ABSTRACT

At the end of the Cenozoic, western Turkey was fragmented by intense intra-continental tectonic deformation resulting in the formation of two extensional areas: a transtensional pull-apart basin systems in the northwest, and graben systems in the central and southwest areas. The question of the connection of this Late Cenozoic extensional tectonics to plate kinematics has long been an issue of discussion. This study presents the results of the fault slip data collected in Bak?rçay Basin in the west of Turkey and addresses changes in the direction of extensional stresses over the Plio-Quaternary. Field observations and quantitative analysis show that Bak?rçay Basin is not a simple graben basin that has evolved during a single phase. It started as a graben basin with extensional regime in the Pliocene and was transformed into a pull-apart basin under the influence of transtensional forces during the Quaternary. A chronology of two successive extensional episodes has been established and provides reasoning to constrain the timing and location of subduction-related back-arc tectonics along the Aegean region and collision-related extrusion tectonics in Turkey. The first NW–SE trending extension occurred during the Pliocene extensional phase, characterized by slab rollback and progressive steepening of the northward subduction of the African plate under the Anatolian Plate. Western Turkey has been affected, during the Middle Quaternary, by regional subsidence, and the direction of extension changed to N–S, probably in relation with the propagation of the North Anatolian Fault System. Since the Late Quaternary, NE–SW extension dominates northwest Turkey and results in the formation and development of elongated transtensional basin systems. Counterclockwise rotation of Anatolian block which is bounded to the north by the right-lateral strike-slip North Anatolian Fault System, accompanies to this extensional phase.  相似文献   

20.
We perform a broadband frequency bedrock strong ground motion simulation in the Marmara Sea region (Turkey), based on several fault rupture scenarios and a source asperity model. The technique combines a deterministic simulation of seismic wave propagation at low frequencies with a semi-stochastic procedure for the high frequencies. To model the high frequencies, we applied a frequency-dependent radiation pattern model, which efficiently removes the effective dependence of the pattern coefficient on the azimuth and take-off angle as the frequency increases. The earthquake scenarios considered consist of the rupture of the closest segments of the North Anatolian Fault System to the city of Istanbul. Our scenario earthquakes involve the rupture of the entire North Anatolian Fault beneath the Sea of Marmara, namely the combined rupture of the Central Marmara Fault and North Boundary Fault segments. We defined three fault rupture scenarios based on the location of the hypocenter, selecting a preferred hypocentral location near a fault bend for each case. We analysed the effect of location of the asperity, within the Central Marmara Fault, on the subsequent ground motion, as well as the influence of anelasticity on the high-frequency attenuation characteristics. The fault and asperity parameters for each scenario were determined from empirical scalings and from results of kinematic and dynamic models of fault rupture. We calculated the resulting time series and spectra for ground motion at Istanbul and evaluated the sensitivity of the predictions to choice of model parameters. The location of the hypocenter is thus shown to be a critical parameter for determining the worst scenario earthquake at Istanbul. We also found that anelasticity has a significant effect on the regional attenuation of peak ground accelerations. Our simulated ground motions result in large values of acceleration response spectra at long periods, which could be critical for building damage at Istanbul during an actual earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号