首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Late Jurassic and Early Cretaceous charophyte assemblages from the northern part of the Aquitaine Basin in south-west France are reviewed here to understand their palaeoecological, palaeobiogeographical and biostratigraphic features. Three sites were studied: the Tithonian-lower Berriasian of Chassiron, and the Berriasian of Cherves-de-Cognac and Angeac-Charente. Abundant porocharaceans, less abundant clavatoraceans and scarce characeans recorded in Cherves-de-Cognac and Angeac-Charente indicate that brackish water environments were substituted by freshwater environments eastwards. The occurrence of Clavator grovesii var. grovesii and morphotypes intermediate with C. grovesii var. discordis in the same areas is significant from a biostratigraphic viewpoint, since these species belong to the Maillardii, Incrassatus and Nurrensis European charophyte biozones, representing the Berriasian. This observation refutes a previous dating of the Angeac-Charente site and highlights the absence of Hauterivian–Barremian records in northern Aquitaine, which is in contrast to the more complete Lower Cretaceous record in southern Aquitaine. These contrasting records could be due to differences in the available sedimentary space produced by the opening of the Bay of Biscay during the Barremian.  相似文献   

2.
The pre-Neogene Tauride fold-and-thrust belt, comprising Cretaceous ophiolites and metamorphic rocks and non-metamorphic carbonate thrust slices in southern Turkey, is flanked and overlain by Neogene sedimentary basins. These include poorly studied intra-montane basins including the Yalvaç Basin. In this paper, we study the stratigraphy, sedimentology and structure of the Yalvaç Basin, which has a Middle Miocene and younger stratigraphy. Our results show that the basin formed as a result of multi-directional extension, with NE–SW to E–W extension dominating over subordinate NW–SE to N–S extension. We show that faults bounding the modern basin also governed basin formation, with proximal facies close to the basin margins grading upwards and basinwards into lacustrine deposits representing the local depocentre. The Yalvac Basin was a local basin, but a similar, contemporaneous history recently reconstructed from the Alt?napa Basin, ~100 km to the south, shows that multi-directional extension dominated by E–W extension was a regional phenomenon. Extension is still active today, and we conclude that this tectonic regime in the study area has prevailed since Middle Miocene times. Previously documented E–W shortening in the Isparta Angle along the Aksu Thrust, ~100 km to the southwest of our study area, is synchronous with the extensional history documented here, and E–W extension to its east shows that Anatolian westwards push is likely not the cause. Synchronous E–W shortening in the heart and E–W extension in the east of the Isparta Angle may be explained by an eastwards-dipping subduction zone previously documented with seismic tomography and earthquake hypocentres. We suggest that this slab surfaces along the Aksu thrust and creates E–W overriding plate extension in the east of the Isparta Angle. Neogene and modern Anatolian geodynamics may thus have been driven by an Aegean, Antalya and Cyprus slab segment that each had their own specific evolution.  相似文献   

3.
Late Devonian (Famennian) marine successions globally are typified by organic-rich black shales deposited in anoxic and euxinic waters and the cessation of shelf carbonate sedimentation. This global ‘carbonate crisis’, known as the Hangenberg Event, coincides with a major extinction of reef-building metazoans and perturbations to the global carbon cycle, evidenced by positive carbon-isotope excursions of up to 4‰. It has been suggested that authigenic carbonate, formed as cements in sedimentary pore spaces during early burial diagenesis, is a significant mass fraction of the total global carbon burial flux, particularly during periods of low oxygen concentration. Because some authigenic carbonate could have originated from remineralization of organic carbon in sediments, it is possible for this reservoir to be isotopically depleted and thereby drive changes in the carbon isotopic composition of seawater. This study presents bulk isotopic and elemental analyses from fine-grained siliciclastics of the Late Devonian–Early Mississippian Bakken Formation (Williston Basin, USA) to assess the volume and isotopic composition of carbonates in these sediments. Carbonate in the Bakken black shales occurs primarily as microscopic disseminated dolomite rhombs and calcite cements that, together, comprise a significant mass-fraction (ca 9%). The elemental composition of the shales is indicative of a dynamic anoxic to sulphidic palaeoenvironment, likely supported by a fluctuating chemocline. Despite forming in an environment favourable to remineralization of organic matter and the precipitation of isotopically depleted authigenic carbonates, the majority of carbon isotope measurements of disseminated carbonate fall between −3‰ and +3‰, with systematically more depleted carbonates in the deeper-water portions of the basin. Thus, although there is evidence for a significant total mass-fraction of carbonate with contribution from remineralized organic matter, Bakken authigenic carbonates suggest that Famennian black shales are unlikely to be sufficiently 13C-depleted relative to water column dissolved inorganic carbon to serve as a major lever on seawater isotopic composition.  相似文献   

4.
The Miocene Kahramanmara? Peripheral Foreland Basin (KPFB) resemble to classic foreland basin model, with small differences. In the classic model, both the accretionary wedge and foredeep extend lengthways parallel to the plate margin. In addition, accretionary wedge includes wedge top basin or piggy back basin that extends parallel to foredeep. However, the accretionary wedge of the KPFB contains small half-graben type basins that obliquely intersect the plate margin between the Arabian Plate and the Anatolide–Taurides Platform (due to the irregular shape of the plate boundary). Tectonic lineaments controlled the shape and orientation of these basins and larger main depocentre of the KFPB, which were predominantly filled with deep-sea sediments. This paper focuses on the provenance of features of the KFPB, predominantly was fed from the northern basin margin, while also aiming to resolve the complex basin evolution that occurred during the Miocene.Clasts of Palaeozoic and Mesozoic limestone and ophiolites are common components of the confined deep-water clastic systems, which evolved as elongated trenches in the north-western sector of the KPFB during the Early-Middle Miocene. During the Middle Miocene, continuous thrusting of the northern basin margin to south caused depocentre migration to south-east, through the basin interior. At that time, the north-east and central depocentres of the KPFB were filled primarily by clasts of ophiolite and metamorphic units. The tectonic control on basin fill architecture can be observed anywhere in the KFPB. The principal tectonic features controlled the geometry and orientation of the canyon, the channel geometry of the deep-water slope on the northern basin margin, the frequency and distribution of slump-slide-debris flows and the overall pattern of sedimentation cycles in the stratigraphy of the slope and the central basin floor. Some basin sectors have continuously reactivated and as a result, different sediment entry points with substantial local accumulation of sediment and deformation have evolved on the slope and basin floor. Three scales of provenance were used to investigate the source rock: (a) field-based observation and analysis of conglomerate clasts, (b) modal analysis of sandstone facies and (c) geochemical analysis, all of which were in agreement.  相似文献   

5.
The south Ardestan plutonic rocks constitute major outcrops in the central part of Iran’s Cenozoic magmatic belt and encompass a wide compositional spectrum from gabbro to granodiorite. U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) dating of zircon three granodiorites yielded ages of 24.6 ± 0.1, 24.6 ± 0.1, and 24.5 ± 0.1 Ma. For tonalitic rocks, internal Rb–Sr isochron ages (biotite, feldspars) indicate cooling ages of 20.4 ± 0.1, 20.5 ± 0.1, and 22.3 ± 0.1 Ma, which are slightly younger than the zircons’ ages. The limited variations in their Sr–Nd isotope ratios indicate derivation from an asthenospheric mantle source. A geodynamic model is presented in which late Oligocene–Miocene rollback of the Neotethyan subducting slab triggered asthenospheric upwelling and partial melting in the south Ardestan. These melts were subsequently modified through fractional crystallization and minor crustal contamination en-route to the surface. Plagioclase + orthopyroxene-dominated fractional crystallization accounts for differentiation of gabbro to gabbroic diorite, whereas fractionation of clinopyroxene, titanomagnetite, and orthopyroxene led to differentiation of gabbroic diorite to diorite. Amphibole fractionation at deeper levels led to the development of tonalites.  相似文献   

6.
International Journal of Earth Sciences - Two petroleum systems are present in the eastern (Austrian) sector of the Alpine Foreland Basin. Whereas oil and thermogenic gas in Mesozoic and Eocene...  相似文献   

7.
The study area is located between Çorum and Amasya along the Ezinepazar?–Sungurlu Fault Zone (ESFZ) which is regarded as the splay of the North Anatolian Fault Zone (NAFZ). By this study, the 1/25,000 scaled geological map of the study area was prepared, and its stratigraphic and tectonic characteristics were unraveled as a result of palaeontological and petrographical analyses of the samples collected from different rock units. Particularly, geologic ages of the Late Jurassic–Early Cretaceous Ferhatkaya and Carcurum and Middle Eocene Çekerek formations were provided from palaeontological determinations. Using Landsat TM and Shuttle Radar Topography Mission 3 (SRTM 3) data of the region, the borders between the rock units and the tectonic characteristics in the study area were clarified by spectral and spatial enhancement methods. Kinematic characteristics of ESFZ obtained from the young sedimentary rocks along both sides of the fault zone were also inferred in this study. Understanding the kinematic and geometrical characteristics of the faults is important in terms of the seismotectonics of the region. In the statistical study conducted on the basis of the directions of the lineaments indicates the highest concentrations in general between N 50° - 60° E and N 60° - 70° E. Band 7 of the study area was enlightened in SE direction taking into consideration the relation of the geologic structures in the region with NAFZ and ESFZ and their general strike directions. Along with the formation of NAFZ, the region has undergone a counterclockwise rotation of approximately 20°–30°, which has developed between the “splay” faults in the south block of that fault. These faults are strike-slip faults formed under the compressional regime roughly in a NW–SE direction. It is noted that this tectonic regime has developed under compression in NW–SE direction, which was dominant in similar kinematic analysis studies conducted on NAFZ.  相似文献   

8.
Evidence of rifting and continental break-up to form the S Neotethys is found within the volcanic-sedimentary Koçali Complex. This is a folded, thrust-imbricated succession that includes lavas, volcaniclastic sediments, pelagic carbonates, radiolarites and manganiferous deposits. Interbedded ribbon cherts contain radiolarians of Late Triassic to Late Jurassic age. The lower part of the succession of Mid?-Late Triassic age (Tarasa Formation) is dominated by enriched mid-ocean ridge basalt (E-MORB). The overlying Late Triassic to Mid-Jurassic interval (Konak Formation) is characterised by intercalations of ocean island basalt and E-MORB. Taking account of structural position, the basalts erupted within the outer part of a continent–ocean transition zone. Continental break-up probably occurred during the Late Triassic (Carnian–Norian). Early to Mid-Jurassic lavas and volcaniclastic sediments record volcanism probably after continental break-up. In addition, the Karadut Complex is a broken formation that is located at a relatively low structural position just above the Arabian foreland. Pelagic carbonates, redeposited carbonates and radiolarites predominate. Radiolarians are dated as Early to Mid-Jurassic and Late Cretaceous in age. The pelagic carbonates include planktic foraminifera of Late Cretaceous age. The Karadut Complex resulted from the accumulation of calcareous gravity flows, pelagic carbonate and radiolarites in a relatively proximal, base-of-slope setting. After continental break-up, MORB and ophiolitic rocks formed within the S Neotethys further north. Tectonic emplacement onto the Arabian platform took place by earliest Maastrichtian time. Regional interpretation is facilitated by comparisons with examples of Triassic rifting and continental break-up in the eastern Mediterranean region and elsewhere.  相似文献   

9.
Terrestrial plants and insects currently account for the majority of the Earth's biodiversity, and approximately half of insect species are herbivores. Thus, insects and plants share ancient associations that date back more than 400 Myr. However, investigations of their past interactions are at the preliminary stages in Western Europe. Herein, we present the first results of our study of various feeding damage based on a dataset of nearly 3500 examined plant specimens from the Lower Miocene of the Lagerst?tte Bílina Mine in the Most Basin, Czech Republic. This site provides a unique view of the Neogene freshwater ecosystems. It has long been studied by scientists working in different branches of sedimentology, paleobotany, and paleozoology. The fossils are preserved in three characteristic horizons overlaying the coal seam (Clayey Superseam Horizon, Delta Sandy Horizon, and Lake Clayey Horizon), reflecting paleoenvironmental changes in a short time period of development. The trace fossils are classified as functional feeding groups or “guilds”, without searching for a direct cause or a recent analog host relation. Approximately 23% of specimens of dicotyledonous plant leaves were found to be damaged and associated with some leaf “morphotypes”. Deciduous plant–host taxa, and those with a chartaceous texture typical of riparian habitats, were frequently damaged, such as Populus, recorded with two species Populus zaddachii and Populus populina (57.9% and 31% herbivory levels, respectively), followed by Acer, Alnus, and Carya, averaging almost 30% of damaged leaves/leaflets. There has been evidence of 60 damage types (DT) representing all functional feeding groups recorded at the Bílina Mine, including 12 types of leaf mines and 16 gall-type DT. In total, Lower Miocene of the Lagerst?tte Bílina Mine exhibits a high level of external foliage feeding types (23.7%), and a low level of more specialized DT, such as galls (4.3%) and leaf mines (<1%). A broader comparison based on DT of the main sedimentary environments shows significance supporting different biomes by frequency of damage levels and DT diversities.  相似文献   

10.
Pollen grains found on, or within, pistillate reproductive structures are described for numerous gymnosperms and angiosperms. Attribution of these pollen grains to the macrofossils is often risky and requires additional evidence. This study, based on the material from the Cenomanian–Turonian of Kazakhstan, is the first to document in detail different types of pollen adhering to platanoid infructescences of Friisicarpus sarbaensis. Infructescence parts were examined under SEM in search of pollen. Pollen grains were removed from SEM stubs and studied with LM and TEM. About 250 pollen grains adhering to infructescence axes and carpels were studied; they are small, reticulate (rarely foveolate), tricolpate or tricolporate, and columellate. At least nine pollen types have been distinguished based mainly on the details of the exine sculpturing. The exine ultrastructure was characterized for four prevailing types. Considering pollen morphology and ultrastructure, three types were shown to be produced by platanoids and one was probably ranunculid. Other pollen types are harder to refer to a certain group, though one of them probably belongs to Hamamelidaceae and another one shows exine sculpturing similar to Chloranthaceae pollen. One of the types prevails (about 170 pollen grains) and resembles pollen found on inflorescences of other Friisicarpus species, so we consider that this type was produced by the parent plant. Pollen grains of another type are identical to pollen of Sarbaya radiata from the same locality. The diversity and abundance of different pollen types of the similar size and sculpture found on the infructescences of Friisicarpus sarbaensis favour entomophily of this plant but challenge specific plant-insect specialization.  相似文献   

11.
The temporal coincidence between the Late Permian mass extinction (LPME) and the emplacement of Siberian Trap basalts suggests a causal link between the two events. Here, we discuss stratigraphic changes of organic and inorganic (including isotopic) geochemical properties of marine sediments across the Permian–Triassic boundary (PTB) in the Hovea-3 core, Western Australia, a key PTB section in the southern Neo-Tethys ocean. These data are compared with published data from the Meishan section, southern China, and from the Opal Creek section in western Canada, providing a view of Tethys and Panthalassa changes at the PTB. Trace metal and N-isotopic data, together with organic matter properties suggest that anoxic conditions were established prior to the LPME, intensified close to the LPME, and continued with photic-zone euxinia into the Early Triassic. For the Hovea-3 section, Re-Os ages confirm Changhsingian (253.5 ± 1.4 Ma) deposition of the dated interval sampled immediately below the stratigraphic level characterized by major lithological and isotopic changes. Evaluation of Re-Os, N, and Hg elemental and isotopic data for Hovea-3 suggests that anoxic conditions in the latest Permian were generally unrelated to direct magmatic contributions. A major increase in the initial Os isotopic ratio of Lower Triassic shales suggest an ~8× increase in the Early Triassic continental runoff, based on moderately conservative assumptions for end-members contributing Os to the Permian–Triassic ocean. Comparison to other PTB sections confirms a global signal of increasing Re/Os ratios in the Late Permian, and major and long-lived changes in the isotopic composition of the post-extinction ocean. A distinct peak in Hg concentrations carrying a volcanic isotopic signature, also identified in other PTB sections, likely represents a major pulse of Siberian Trap volcanism. This Hg peak in the Hovea-3 section, however, is detected above the stratigraphic level containing multiple other widely recognized and more permanent geochemical changes. Therefore, direct volcanic inputs to the Permian–Triassic Ocean likely post-date the LPME in this Western Australian section.  相似文献   

12.
Early Miocene (ca.?21–18 Ma) volcanism in the Karacada? area comprises three groups of volcanic rocks: (1) calcalkaline suite (andesitic to rhyolitic lavas and their pyroclastics), (2) mildly-alkaline suite (alkali basalt, hawaiite, mugearite, benmoreite and trachydacite), and (3) a single trachyandesitic flow unit. Field observations, 40Ar/39Ar ages and geochemical data show that there was a progressive temporal transition from group 1 to 3 in a post-collisional tectonic setting. The calcalkaline suite rocks with medium-K in composition resemble those of subduction-related lavas, whereas the mildly-alkaline suite rocks having a sodic tendency (Na2O/K2O=1.5–3.2) resemble those of within-plate lavas. Incompatible element and Sr-Nd isotopic characteristics of the suites suggest that the lithospheric mantle beneath the Karacada? area was heterogeneously enriched by two processes before collision: (1) enrichment by subduction-related processes, which is important in the genesis of the calcalkaline volcanism, (2) enrichment by small degree melts from the astenosphere, which dominates the mildly alkaline volcanism. Perturbation of the enriched lithosphere by either delamination following collision and uplift or removal of the subducted slab following subduction and collision (i.e., slab breakoff) is the likely mechanism for the initiation of the post-collision volcanism.  相似文献   

13.
The Emet basin is one of the Neogene basins in western Turkey containing significant amounts of borate minerals, mainly colemanite. The petrologic study of core samples from two exploratory wells in the Do?anlar sector, under optic and electron microscopy, reveals a complex mineral association in which probertite, glauberite, and halite constitute the major primary phases (without mineral precursors) precipitated in a saline lake placed in a volcano-sedimentary context. Other sulfates (anhydrite, gypsum, thenardite, celestite and kalistrontite), borates (colemanite, ulexite, hydroboracite, tunellite, kaliborite and aristarainite), and sulfides (arsenopyrite, realgar and orpiment) are attributed to early diagenesis. So far, the Do?anlar deposit is the most important deposit of probertite known up to now.Chemical changes in the groundwater inflow led to the precipitation of Ca-bearing borates (colemanite) in the tuff-flat environment surrounding the lake, while Na–Ca sulfates and borates (glauberite and probertite) precipitated in the center of the lake. Fluid inclusion compositions in halite indicate that the advanced brines correspond to the Na-K-Cl-SO4 type. During restricted stages of the saline lake, the residual brines seeped through the tuff-flat sediments, leading to transformations of previous precipitates that resulted in the formation of K-bearing minerals.The abundance of coccoid-like biogenic dolomite, colloidal arsenopyrite and the isotopic composition of sulfates are indicative of bacterial sulfate reduction. In contrast, arsenic sulfides are attributed to acidophilic micro-organisms in oxidizing conditions. Fluctuations of redox conditions in both free and interstitial brines control the biological influence in some diagenetic transformations.  相似文献   

14.
In the Northern Apennines of Italy, mud-rich olistostromes (sedimentary mélanges) occur at different stratigraphic levels within the late Oligocene–early Miocene sedimentary record of episutural/wedge-top basins. They are widely distributed along the exhumed outer part of the Ligurian accretionary complex, atop the outer Apenninic prowedge, over an area about 300 km long and 10–15 km wide. Olistostromes represent excellent examples of ancient submarine mass-transport complexes (MTCs), consisting of stacked cohesive debris flows that can be directly compared to some of those observed in modern accretionary wedges. We describe the internal arrangement of olistostrome occurrences in the sector between Voghera and the Monferrato area, analysing their relationships with mesoscale liquefaction features, which are commonly difficult to observe in modern MTCs. Slope failures occurred in isolated sectors along the wedge front, where out-of-sequence thrusting, seismicity, and different pulses of overpressured tectonically induced fluid flows acted concomitantly. Referring to the Northern Apennines regional geology, we also point out a gradual lateral rejuvenation (from late Oligocene to early Miocene) toward the SE and an increasing size and thickness of the olistostromes along the strike of the frontal Apenninic prowedge. This suggests that morphological reshaping of the outer prowedge via mass-transport processes balanced, with different pulses over a short time span, the southeastward migration and segmentation of accretionary processes. The latter were probably favoured by the occurrence in the northwestern part of the Northern Apennines of major, inherited palaeogeographic features controlling the northward propagation of the prowedge. Detailed knowledge of olistostromes, as ancient examples of MTCs related to syn-sedimentary tectonics and shale diapirism, and of their lateral variations in term of age and size, provides useful information in regard to better understanding of both the tectono-stratigraphic evolution of the Apenninic prowedge and the submarine slope failures in modern accretionary wedges.  相似文献   

15.
For the first time, the calcareous nannofossils of marly deposits near Kerman (Bardsir area) have been studied. This study presents the integrated (calcareous nannofossils) biostratigraphy of the Bardsir section in the Kerman basin, Central Iran. In most parts of Central Iran, the Upper Cretaceous sequence is complete and continuous and is divided into two groups: Cenomanian–Touronian flysch and Campanian–Maastrichtian flysch. Flyschs composed of sets of green marl sequences (Coniacian–Santonian) have been separated to reduce the basin depth and refer to the relative calm. Bardsir is located 57.6 km from Kerman (Central Iran). The lithology of this area includes light green marl with layers of calcareous siltstone, limestone, and flysch rocks. In this study, 24 samples were taken and prepared with smear slide. Most species were photographed with a light microscope. As a result of this study, 30 genera and 42 species of nannofossils have been identified. A high-resolution calcareous nannofossil biostratigraphic study has been carried out, allowing the division of the studied section into eight biozones of Late Santonian to Early Maastrichtian age (CC17–CC24).  相似文献   

16.
Combined subsidence and thermal 1D modelling was performed on six well-sections located in the north-western Mid-Polish Trough/Swell in the eastern part of the Central European Basin system. The modelling allowed constraining quantitatively both the Mesozoic subsidence and the magnitude of the Late Cretaceous–Paleocene inversion and erosion. The latter most probably reached 2,400 m in the Mid-Polish Swell area. The modelled Upper Cretaceous thickness did not exceed 500 m, and probably corresponded to 200–300 m in the swell area as compared with more than 2,000 m in the adjacent non-inverted part of the basin. Such Upper Cretaceous thickness pattern implies early onset of inversion processes, probably in the Late Turonian or Coniacian. Our modelling, coupled with previous results of stratigraphic and seismic studies, demonstrates that the relatively low sedimentation rates in the inverted part of the basin during the Late Cretaceous were the net result of several discrete pulses of non-deposition and/or erosion that were progressively more pronounced towards the trough axis. The last phase of inversion started in the Late Maastrichtian and was responsible for the total amount of erosion, which removed also the reduced Upper Cretaceous deposits. According to our modelling results, a Late Cretaceous heat-flow regime which is similar to the present-day conditions (about 50 mW/m2) was responsible for the observed organic maturity of the Permian-Mesozoic rocks. This conclusion does not affect the possibility of Late Carboniferous–Permian and Late Permian–Early Triassic thermal events.  相似文献   

17.
Exposures of the Menuha Formation (Santonian–Early Campanian, Mount Scopus Group) in the Makhtesh Ramon region of the southern Negev have produced numerous chondrichthyan teeth. The isolated teeth represent at least ten different species: Cretalamna appendiculata, Cretoxyrhina mantelli, Squalicorax falcatus?, S. kaupi, Scapanorhynchus rapax, S. raphiodon?, Carcharias samhammeri, Carcharias cf. C. holmdelensis?, and two other fish (Hadrodus priscus and a pycnodont). This assemblage has important implications for Late Cretaceous chondrichthyan palaeobiogeography. The majority of teeth were contained within a glauconite-rich, yellow-brown, soft chalk that included oysters (Pycnodonte vesicularis?), trace fossils (Planolites, Thalassinoides, and Chondrites), phosphatic peloids, and foraminiferans (globigerinids). The teeth were collected mainly through surface-sampling and sieving. The Menuha Formation probably represents a temperate to subtropical, shallow, open-shelf environment deposited during the formation of the Ramon anticline. Reworked conglomeratic chalks in the western section represent marginal facies derived from this structural uplift. With little to no published material describing the chondrichthyan fauna of the Menuha Formation, these data improve interpretations of its palaeoenvironment. Interpretation of the palaeoenvironment of the formation is important for understanding the larger stratigraphic/tectonic framework of the Ramon monocline region of southern Israel.  相似文献   

18.
In this study, the whole-rock geochemistry of 35 Oligocene–Miocene sandstone and shale samples from the Zivah Formation, Moghan area (NW Iran) were collected and analyzed for evaluation of their provenance, tectonic setting and the intensity of paleo-weathering. Low to moderate values of the chemical index of alteration (mean CIA?=?53/68 for sandstones/shales) and relatively high values of index of compositional variability (mean ICV?=?1.23/1.08 for sandstones/shales) suggest weak chemical weathering and an immature source. These results support for the semi-arid and semi-humid paleoclimate conditions in the source area. The geochemistry results reveal that the sediments were deposited in a basin related to the island arc and active continental margin tectonic settings, probably indicating the time of initial collision between Arabia and Eurasia. The enrichment of Cr, Ni and V in the sandstone and shales are consistent with mafic input from the source area. However, La/Th vs. Hf and La/Sc vs. Co/Th plots reveal mixed source of felsic and intermediate volcanic rocks. The data indicate that the sediments most likely originated from a mixture of mafic, intermediate and felsic igneous source areas, possibly as the erosional products of localized topography of the Talysh and the Lesser Caucasus mountains (south to southwest), created by compression in the Moghan region during the syn-collisional development of the Caucasus.  相似文献   

19.
Timing, amount, and mechanisms of uplift in the Central Andes have been a matter of debate in the last decade. Our study is based on the Cenozoic Moquegua Group deposited in the forearc basin between the Western Cordillera and the Coastal Cordillera in southern Peru from ∼50 to ∼4 Ma. The Moquegua Group consists mainly of mud-flat to fluvial siliciclastic sediments with upsection increasing grain size and volcanic intercalations. Detrital zircon U–Pb dating and fission track thermochronology allow us to refine previous sediment provenance models and to constrain the timing of Late Eocene to Early Miocene Andean uplift. Uplift-related provenance and facies changes started around 35 Ma and thus predate major voluminous ignimbrite eruptions that started at ∼25 by up to 10 Ma. Therefore magmatic addition to the crust cannot be an important driving factor for crustal thickening and uplift at Late Eocene to Early Oligocene time. Changes in subduction regime and the subducting plate geometry are suggested to control the formation of significant relief in the area of the future Western Cordillera which acts as an efficient large-scale drainage divide between Altiplano and forearc from at least 15.5 to 19°S already at ∼35 Ma. The model integrates the coincidence of (i) onset of provenance change no later than 35 Ma, (ii) drastic decrease in convergence rates at ∼40, (iii) a flat-subduction period at around ∼40 to ∼30 Ma leading to strong interplate coupling, and (iv) strong decrease in volcanic activity between 45 and 30 Ma.  相似文献   

20.
This paper considers the results of comprehensive lithological, biostratigraphic, and geochemical investigation of sediments in Khara-Nur Lake (Eastern Sayan Mountains) situated in the area of the greatest Holocene eruptions in the Central Asia Region. The age of the basal sediment layer is estimated at 6881 ± 53 years. The local natural environment and climate have undergone great changes since that time. The Holocene volcanic events did not exert a catastrophic impact on the regional landscape, but they caused dramatic changes in the local vegetation. The well-defined correlation of the regional events with the well-known records of the natural environment in the Northern Hemisphere is indicative of the decisive influence of global atmospheric circulation on restructuring the landscape and climate system in the Zhom-Bolok Region in the Middle–Late Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号