首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution seismic-reflection/refraction data were acquired on the ground surface at six locations to compare with near-surface seismic-velocity downhole measurements. Measurement sites were in Seattle, WA, the San Francisco Bay Area, CA, and the San Fernando Valley, CA. We quantitatively compared the data in terms of the average shear-wave velocity to 30-m depth (Vs30), and by the ratio of the relative site amplification produced by the velocity profiles of each data type over a specified set of quarter-wavelength frequencies. In terms of Vs30, similar values were determined from the two methods. There is <15% difference at four of the six sites. The Vs30 values at the other two sites differ by 21% and 48%. The relative site amplification factors differ generally by less than 10% for both P- and S-wave velocities. We also found that S-wave reflections and first-arrival phase delays are essential for identifying velocity inversions. The results suggest that seismic reflection/refraction data are a fast, non-invasive, and less expensive alternative to downhole data for determining Vs30. In addition, we emphasize that some P- and S-wave reflection travel times can directly indicate the frequencies of potentially damaging earthquake site resonances. A strong correlation between the simple S-wave first-arrival travel time/apparent velocity on the ground surface at 100 m offset from the seismic source and the Vs30 value for that site is an additional unique feature of the reflection/refraction data that could greatly simplify Vs30 determinations.  相似文献   

2.
中国及全球大陆不同构造域广泛存在壳内低速层。壳内低速层不仅与地壳表层金属、非金属矿床、油气资源及地壳变形密切相关, 而且也是一些重大地震和活动断裂的发育场所。一般认为,地壳低速层反映了地壳物质的含水、热状态和部分熔融等信息, 其研究对探讨地壳结构及其动力学演化有重要意义。本文总结了利用深地震测深资料的震相走时、振幅、相位信息识别壳内低速层的5种典型方法: 1)Pg震相走时中断;2)低速层顶、底界面反射波走时曲线近似平行;3)30°~60°入射角范围内低速层顶界面反射转换波强于反射纵波;4)低速层底界面反射波强于顶界面;5)低速层顶界面反射波极性反转等。研究实例表明, 以上方法为利用深地震测深资料揭示壳内低速层提供了有效途径。  相似文献   

3.
Heat production of the continental crust can be determined from the seismic velocity structure. There is, however, a significant scatter in the determination, partly caused by the quality of geothermal data and partly by the fact that seismic velocity and radiogenic heat production are not uniquely related to each other by the chemical composition of rocks.  相似文献   

4.
Application of a syntactic pattern recognition technique, seismic skeletonization, to deep crustal seismic reflection data allows attributes such as energies, lengths and dips to be associated with individual reflection events. Some of these attributes exhibit fractal properties, e.g. the relationship between seismic event lengths and their spatial distribution throughout the crust. This approach provides a new technique to analyse complex geometry on seismic reflection data.Dedicated to Professor William George Laidlaw on his SIXTIETH birthday  相似文献   

5.
浅层地震折射波法综述   总被引:15,自引:0,他引:15  
赵德亨  田钢  王帮兵 《世界地质》2005,24(2):188-193
浅层地震折射波法是在工程地质、水文地质及环境地质勘查中广泛应用的地震探测方法之一。在工程地质调查中,根据不同的场地地质条件和勘察目的,合理地正确应用浅层折射波法可以取得较明显的岩土工程勘察效果。本文简要地回顾了浅层地震折射法的发展历史,对各种新近发展的折射波解释方法进行了简单的介绍和比较,并列举了工程勘察中的应用领域。  相似文献   

6.
《Tectonophysics》1987,142(1):49-70
From densely covered seismic refraction data obtained in 1978 (Urach experiment) and 1984 (“Schwarzer Zollern-Wald” experiment) and from seismic reflection data and results from previous refraction investigations, a three-dimensional crustal model of southwest Germany was derived. Travel-time and amplitude information of seismic refraction data were interpreted with two-dimensional forward modeling (ray tracing) to calculate two crustal cross sections in southwest Germany. These results fill a gap in the existing data and enabled the construction of a detailed three-dimensional crustal model.While seismically the upper crust is laterally homogeneous (5.9–6.0 km/s) throughout the area, the middle and lower crust show pronounced lateral variations in thickness, velocity, and reflectivity. The Moho is a flat surface at a relatively shallow depth (25–26 km). We classify the middle and lower crust of southwest Germany into two characteristic crustal types. Type I consists of a mid-crustal low-velocity zone (5.4–5.8 km/s) overlying a thick (> 10 km), high-velocity (6.6–6.8 km/s) lower crust. Type II has no prominent mid-crustal low-velocity zone, and a thin (< 10 km), low-velocity (6.3–6.4 km/s) lower crust. The crustal types correlate with the major geologic units exposed in the area: Type I is present beneath the Black Forest, forming the eastern flank of the Rhinegraben and beneath the Swabian Jura, while Type II is present beneath the intervening Triassic sediments. Beneath the South German Molasse Basin, a low-velocity zone is also present in the upper middle-crust. Seismic reflection investigations have shown that the lower crust in southwest Germany comprises a stack of layers of alternating high- and low-velocities. The lateral variation of the reflectivity of this laminated lower crust has been recognized even on refraction data. We found that high-reflectivity of the lower crust correlates to high average velocity (6.7–6.8 km/s) in the lower crust (Type I). Thus, the average velocity of the lower crust in southwest Germany seems to be an indicator of the intensity of its lamination. The uppermost mantle has a velocity of 8.3 km/s in the area and a strong, positive velocity gradient.  相似文献   

7.
We present results from a seismic refraction experiment on the northern margin of the Guayana Shield performed during June 1998, along nine profiles of up to 320 km length, using the daily blasts of the Cerro Bolívar mines as energy source, as well as from gravimetric measurements. Clear Moho arrivals can be observed on the main E–W profile on the shield, whereas the profiles entering the Oriental Basin to the north are more noisy. The crustal thickness of the shield is unusually high with up to 46 km on the Archean segment in the west and 43 km on the Proterozoic segment in the east. A 20 km thick upper crust with P-wave velocities between 6.0 and 6.3 km/s can be separated from a lower crust with velocities ranging from 6.5 to 7.2 km/s. A lower crustal low velocity zone with a velocity reduction to 6.3 km/s is observed between 25 and 25 km depth. The average crustal velocity is 6.5 km/s. The changes in the Bouguer Anomaly, positive (30 mGal) in the west and negative (−20 mGal) in the east, cannot be explained by the observed seismic crustal features alone. Lateral variations in the crust or in the upper mantle must be responsible for these observations.  相似文献   

8.
Interpretation of seismic refraction data in the central sector of Tocantins Province, Central Brazil, has produced a seismic crustal model with well-defined upper, intermediate, and lower crust layers having smooth velocity gradient in each layer. The depths to Moho vary from 32 to 43 km, and mean crustal P velocity varies from 6.3 km/s, beneath Goiás magmatic arc on the western side, to 6.4 km/s, below Goiás massif in the central portion and the foreland fold-and-thrust belt on the eastern side. The behaviour of the lower crust layer allows an improved understanding of regional gravimetric features of the central and northern sectors of Tocantins Province and suggests subduction of the Amazon plate in Central Brazil. In the southeastern sector, the refraction experiment resulted in the detection of a thinner crust (38 km) below Brasília fold belt and a thicker crust (41 km) below Paraná basin and São Francisco craton (42 km). The upper crust beneath Paraná Basin is around 20 km thick, whereas it is less than 10 km thick below the craton. These results bring new insights into the geological history of the central and southeastern sectors of Tocantins Province.Gravimetric measurements in the central sector of Tocantins Province delineate a high and a low anomaly separated by a steep gradient with a NE direction. The axis of the gradient seems to bend still further to NE in the northern sector of that province, whereas the gravimetric high continues northwards, defining a separation between them. This suggests that those features belong to different tectonic processes that occurred during Tocantins Province orogenesis. The gravimetric model, which incorporates seismically resolved structure beneath Tocantins Province, better matches the observed gravimetric data.Although tectonic movements have only been monitored with high-precision GPS for short time interval (1999–2001), the results suggest observable deformations. The main seismicity of Central Brazil, the Goiás–Tocantins seismic belt, seems to be spatially associated with the large gravimetric high anomaly and with the observed tectonic deformation.  相似文献   

9.
In this study, we report the results of an investigation of lithological interpretation of the crust in the central Fennoscandian Shield (in Finland) using seismic wide-angle velocity models and laboratory measurements on P- and S-wave velocities of different rock types. The velocities adopted from wide-angle velocity models were compared with laboratory velocities of different rock types corrected for the crustal PT conditions in the study area. The wide-angle velocity models indicate that the P-wave velocity does not only increase step-wise at boundaries of major crustal layers, but there is also gradual increase of velocity within the layers. On the other hand, the laboratory measurements of velocities indicate that no single rock type is able to provide the gradual downward increasing trends. Thus, there must be gradual vertical changes in rock composition. The downward increase of velocities indicates that the composition of the crust becomes gradually more mafic with increasing depth. We have calculated vertical velocity profiles for a range of possible crustal lithological compositions. The Finnish crustal velocity profiles require a more mafic composition than an average global continental model would suggest. For instance, on the SVEKA'81 transect, the calculated models suggest that the crustal velocity profiles can be simulated with rock type mixtures where the upper crust consists of felsic gneisses and granitic–granodioritic rocks with a minor contribution of amphibolite and diabase. In the middle crust, the amphibolite proportion increases. The lower crust consists of tonalitic gneiss, mafic garnet granulite, hornblendite, pyroxenite and minor mafic eclogite. Assuming that these rock types are present in sufficiently extensive and thick layers, they would also have sufficiently high acoustic reflection coefficients for generating the generally well-developed reflectivity in the crust in the central part of the shield. Density profiles calculated from the lithological models suggest that there is practically no density contrast at Moho in areas of the high-velocity lower crust. Comparison of reflectors from FIRE-1 and FIRE-3 transects and the velocity model from SVEKA'81 wide-angle transect indicated that the reflectors correlate with velocity layering, but the three-dimensional structures of the crust complicate such comparisons.  相似文献   

10.
《Tectonophysics》1987,140(1):49-63
In 1982 the U.S. Geological Survey collected six seismic refraction profiles in the Great Valley of California: three axial profiles with a maximum shot-to-receiver offset of 160 km, and three shorter profiles perpendicular to the valley axis. This paper presents the results of two-dimensional raytracing and synthetic seismogram modeling of the central axial profile. The crust of the central Great Valley is laterally heterogeneous along its axis, but generally consists of a sedimentary section overlying distinct upper, middle, and lower crustal units. The sedimentary rocks are 3–5 km thick along the profile, with velocities increasing with depth from 1.6 to 4.0 km/s. The basement (upper crust) consists of four units:
  • 1.(1) a 1.0–1.5 km thick layer of velocity 5.4–5.8 km/s,
  • 2.(2) a 3–4 km thick layer of velocity 6.0–6.3 km/s,
  • 3.(3) a 1.5–3.0 km thick layer of velocity 6.5–6.6 km/s, and
  • 4.(4) a laterally discontinuous, 1.5 km thick layer of velocity 6.8–7.0 km/s. The mid-crust lies at 11–14 km depth, is 5–8 km thick, and has a velocity of 6.6–6.7 km/s. On the northwest side of our profile the mid-crust is a low-velocity zone beneath the 6.8–7.0 km/s lid. The lower crust lies at 16–19 km depth, is 7–13 km thick, and has a velocity of 6.9–7.2 km/s. Crustal thickness increases from 26 to 29 km from NW to SE in the model.
Although an unequivocal determination of crustal composition is not possible from P-wave velocities alone, our model has several geological and tectonic implications. We interpret the upper 7 km of basement on the northwest side of the profile as an ophiolitic fragment, since its thickness and velocity structure are consistent with that of oceanic crust. This fragment, which is not present 10–15 km to the west of the refraction profile, is probably at least partially responsible for the Great Valley gravity and magnetic anomalies, whose peaks lie about 10 km east of our profile. The middle and lower crust are probably gabbroic and the product of magmatic or tectonic underplating, or both. The crustal structure of the Great Valley is dissimilar to that of the adjacent Diablo Range, suggesting the existence of a fault or suture zone throughout the crust between these provinces.  相似文献   

11.
Five seismic refraction and five high-resolution seismic reflection (HRSR) profiles were carried out in northeastern part of Riyadh city to investigate depth of the weathering layer. Results obtained from seismic refraction survey reveal the depths of weathering layer at 12, 25, 17, 12, and 16?m, respectively. On the other hand, HRSR stack sections illustrate the depths of weathering layer at 14, 28, 20, 13, and 18?m, respectively. The weathering layer is composed of alluvial sediments and gravel, which is underlain by a sequence of limestone and dolomite layer. Seismic results from site no. 2 have been found to be in good agreement with lithological information reported from the adjacent water well. The HRSR data generally reveal better signal-to-noise ratio and enhanced resolution compared to the refraction data. Although, the HRSR data failed in achieving high-quality common midpoint (CMP) stacking profile at site no. 3, it provide an improved image of the subsurface features than the refraction data, recognizing it as a potential seismic technique.  相似文献   

12.
Although orogeny tapers off in western Taiwan large and small earthquakes do occur in the Taiwan Strait, a region largely untouched in previous studies owing mostly to logistical reasons. But the overall crustal structure of this region is of particular interest as it may provide a hint of the proto-Taiwan before the orogeny.By combining time domain empirical Green’s function (TDEGF) from ambient seismic noise using station-pairs and traditional surface wave two-station method (TS) we are able to construct Rayleigh wave phase velocity dispersion curves between 5 and 120 s. Using Broadband Array in Taiwan for Seismology (BATS) stations in Taiwan and in and across the Strait we are able to derive average 1-D Vs structures in different parts of this region. The results show significant shear velocity differences in the upper 15 km crust as expected. In general, the highest Vs in the upper crust observed in the coastal area of Mainland China and the lowest Vs appears along the southwest offshore of the Taiwan Island; they differ by about 0.6–1.1 km/s. For different parts of the Strait, the upper crust Vs structures are lower in the middle by about 0.1–0.2 km/s relative to those in the northern and southern parts. The upper mantle Vs structure (Moho – 150 km) beneath the Taiwan Strait is about 0.1–0.3 km/s lower than the AK135 model. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island. The inversion of seismic velocity structures using shorter period band dispersion data in the sea areas with water depth deeper than 1000 m should take water layer into consideration except for the continental shelves.  相似文献   

13.
The crustal structure of the Hawaiian Archipelago, northern Melanesia, and parts of the Central Pacific Basin have been studied by seismic refraction methods. The systematic variation found in crustal thickness in the Hawaiian Islands is explainable by a hypothesis of differential subsidence. The crustal structure of northern Melanesia points to tensional forces in an east-west direction and compressional forces in a north-south direction. In the Central Pacific Basin, a 7.4 km/sec layer in the lower crust seems to be present over a wide area.  相似文献   

14.
几种地震波阻抗反演方法的比较分析与综合应用   总被引:8,自引:0,他引:8  
地震波阻抗反演是确保地震数据、测井资料和地质信息正确综合的重要技术.对当前石油工业界常用的地震波阻抗反演方法的原理、技术关键、优缺点及应用条件做了较为详细的分析和评述,并展示了几种反演方法综合应用的实例.实例表明,遵照拟定的技术流程,能够在实际生产中较好地使用各种反演方法,并得到较为可靠的一体化综合储层预测结果,可以降低油气勘探开发的风险.  相似文献   

15.
16.
17.
18.
Deep crustal reflection data that are critical for the interpretation of Laramide structure have been obtained by the Consortium for Continental Reflection Profiling (COCORP). The Laramide orogeny, which occurred from the late Cretaceous to early Eocene, is characterized in Wyoming by large uplifts of Precambrian basement, commonly flanked by reverse faults. The attitude of these faults at depth has been a major tectonic problem and is very important for deciding whether horizontal or vertical crustal movements were primarily responsible for the basement uplifts. COCORP has run 158 km of deep seismic reflection profiles (recording to 20-sec two-way travel time) across the southeastern end of the Wind River Mountains, the largest of these Laramide uplifts. Reflections from the thrust fault flanking the Wind River uplift can be clearly traced on the profiles to at least 24-km depth and possibly as deep as about 36 km with a fairly uniform apparent dip of 30°–35°. Other reflection events subparallel to the main Wind River thrust are present in the seismic profiles and may represent other faults. There is at least 21 km of crustal shortening along the thrust. There is no evidence in the reflection profiles for large-scale folding of the basement; the Wind River Mountains were formed predominantly by thrust movements. Gravity anomalies in the Wind River Mountains can be modeled by a thrust that displaces dense material in the lower crust. If the thrust ever cut the Moho, the effect is not observed in the gravity today. A proposed model for the presence of uplifted basement in Wyoming invokes a shallowly dipping, subducted Farallon plate beneath the North American continent; drag between the two plates localized compressional stresses in an area over 800 km into the North American plate causing large thrusts to develop. The earth's crust seems to have fractured as a fairly rigid plate  相似文献   

19.
The VRANCEA99 seismic refraction experiment is part of an international and multidisciplinary project to study the intermediate depth earthquakes of the Eastern Carpathians in Romania. As part of the seismic experiment, a 300-km-long refraction profile was recorded between the cities of Bacau and Bucharest, traversing the Vrancea epicentral region in NNE–SSW direction.

The results deduced using forward and inverse ray trace modelling indicate a multi-layered crust. The sedimentary succession comprises two to four seismic layers of variable thickness and with velocities ranging from 2.0 to 5.8 km/s. The seismic basement coincides with a velocity step up to 5.9 km/s. Velocities in the upper crystalline crust are 5.96.2 km/s. An intra-crustal discontinuity at 18–31 km divides the crust into an upper and a lower layer. Velocities within the lower crust are 6.7–7.0 km/s. Strong wide-angle PmP reflections indicate the existence of a first-order Moho at a depth of 30 km near the southern end of the line and 41 km near the centre. Constraints on upper mantle seismic velocities (7.9 km/s) are provided by Pn arrival times from two shot points only. Within the upper mantle a low velocity zone is interpreted. Travel times of a PLP reflection define the bottom of this low velocity layer at a depth of 55 km. The velocity beneath this interface must be at least 8.5 km/s.

Geologic interpretation of the seismic data suggests that the Neogene tectonic convergence of the Eastern Carpathians resulted in thin-skinned shortening of the sedimentary cover and in thick-skinned shortening in the crystalline crust. On the autochthonous cover of the Moesian platform several blocks can be recognised which are characterised by different lithological compositions. This could indicate a pre-structuring of the platform at Mesozoic and/or Palaeozoic times with a probable active involvement of the Intramoesian and the CapidavaOvidiu faults. Especially the Intramoesian fault is clearly recognisable on the refraction line. No clear indications of the important Trotus fault in the north of the profile could be found. In the central part of the seismic line a thinned lower crust and the low velocity zone in the uppermost mantle point to the possibility of crustal delamination and partial melting in the upper mantle.  相似文献   


20.
The main damage from the July 9, 1997, Cariaco earthquake (Ms=6.8) was concentrated in the town of Cariaco and surrounding villages, which are located in the western part of the Cariaco sedimentary basin, close to the Gulf of Cariaco. Casanay, located at the eastern end of the sedimentary basin, suffered considerably less damage. The El Pilar fault, a right-lateral strike-slip fault that generated the earthquake, runs parallel to the southern border of the valley and crosses both towns. The determination of the velocity structure of the basin is the main objective of this study. Seismic refraction data were recorded along three lines, one of them along-strike and two perpendicular to the valley axis in the northern and southern bedrocks. Beneath Cariaco, approximately 1 km thick Quaternary sediments with seismic velocities of 1.9–2.1 km/s and bedrock velocities of more than 4 km/s were observed. The thickness of the Quaternary sediments varies within the basin, and Pleistocene sediments outcrop beneath Casanay. The increased thickness of the unconsolidated, water-saturated Quaternary sediments, together with the difference in the quality of buildings prior to the earthquake, probably is responsible for the damage pattern of the Cariaco earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号