首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nearly complete sample of 24 Magellanic Cloud WC/WO subclass Wolf–Rayet stars is studied spectroscopically and photometrically to determine its binary frequency. Theory predicts the Roche lobe overflow produced Wolf–Rayet binary frequency to be 52±14 per cent in the Large Magellanic Cloud and 100 per cent in the Small Magellanic Cloud, not counting non-Roche lobe overflow Wolf–Rayet binaries. Lower ambient metallicity ( Z ) leads to lower opacity, preventing all but the most massive (hence luminous) single stars from reaching the Wolf–Rayet stage. However, theory predicts that Roche lobe overflow even in binaries of modest mass will lead to Wolf–Rayet stars in binaries with periods below approximately 200 d, for initial periods below approximately 1000 d, independent of Z . By examining their absolute continuum magnitudes, radial velocity variations, emission-line equivalent widths and full widths at half-maximum, a WC/WO binary frequency of only 13 per cent, significantly lower than the prediction, is found in the Large Magellanic Cloud. In the unlikely event that all of the cases with a less certain binary status actually turn out to be binary, current theory and observation would agree. (The Small Magellanic Cloud contains only one WC/WO star, which happens to be a binary.) The three WC+O binaries in the Large Magellanic Cloud all have periods well below 1000 d. The large majority of WC/WO stars in such environments apparently can form without the aid of a binary companion. Current evolutionary scenarios appear to have difficulty explaining either the relatively large number of Wolf–Rayet stars in the Magellanic Clouds, or the formation of Wolf–Rayet stars in general.  相似文献   

2.
The rather rare class of central stars of planetary nebulae that show very low-excitation Wolf–Rayet spectra has been a subject of great interest, particularly in the infrared, since its discovery in the late 1960s. Further peculiarities have been found with the advent of infrared spectroscopy from ISO . Notably, these objects simultaneously betray the presence of regions of carbon-rich and oxygen-rich dust chemistry. We compare and contrast complete ISO spectra between 2 and 200 μm of a sample of six [WC8] to [WC11] central stars, finding many similarities. Among this sample, one star provides strong evidence of quasi-periodic light variations, suggestive of a dust cloud orbiting in a plane from which we view the system.  相似文献   

3.
As a conclusion of our all-sky variability survey of the 'enigmatic' variable WN8 stars, we have carried out coordinated multisite photometric and spectroscopic observations of WN8 stars in 1989 and 1994–1995. We confirm the leading role of the stellar core in restructuring the whole wind. This emerges as a statistical trend: the higher the level of the ∼continuum (i.e. ∼core) light variations, the higher the variability of the P Cygni edges of the optical emission lines. However, the form of the correlation between the light and profile variations is generally different for each individual star. The high level of activity of WN8 stars may be supported/induced by pulsational instability.  相似文献   

4.
We report the discovery of 15 previously unknown Wolf–Rayet (WR) stars found as part of an infrared (IR) broad-band study of candidate WR stars in the Galaxy. We have derived an empirically based selection algorithm which has selected ∼5000 WR candidate stars located within the Galactic plane drawn from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (mid-IR) and Two-Micron All-Sky Survey (near-IR) catalogues. Spectroscopic follow-up of 184 of these reveals 11 nitrogen-rich (WN) and four carbon-rich (WC) WR stars. Early WC subtypes are absent from our sample and none shows evidence for circumstellar dust emission. Of the candidates which are not WR stars, ∼120 displayed hydrogen emission-line features in their spectra. Spectral features suggest that the majority of these are in fact B supergiants/hypergiants, ∼40 of these are identified Be/B[e] candidates.
Here, we present the optical spectra for six of the newly detected WR stars, and the near-IR spectra for the remaining nine of our sample. With a WR yield rate of ∼7 per cent and a massive star detection rate of ∼65 per cent, initial results suggest that this method is one of the most successful means for locating evolved, massive stars in the Galaxy.  相似文献   

5.
We compare our latest single and binary stellar model results from the Cambridge stars code to several sets of observations. We examine four stellar population ratios: the number of blue to red supergiants, the number of Wolf–Rayet stars to O supergiants, the number of red supergiants to Wolf–Rayet stars and the relative number of Wolf–Rayet subtypes, WC to WN stars. These four ratios provide a quantitative measure of nuclear burning lifetimes and the importance of mass loss during various stages of the stars' lifetimes. In addition, we compare our models to the relative rate of Type Ib/c to Type II supernovae to measure the amount of mass lost over the entire lives of all stars. We find reasonable agreement between the observationally inferred values and our predicted values by mixing single and binary star populations. However, there is evidence that extra mass loss is required to improve the agreement further, to reduce the number of red supergiants and increase the number of Wolf–Rayet stars.  相似文献   

6.
The observational infrared spectra of a number of Wolf–Rayet stars of WC8–9 spectral classes are shown to be quite satisfactorily explained by making use of the detailed theoretical model of a dust shell made up of spherical amorphous carbon grains, the dynamics, growth–destruction, thermal and electrical charge balance of which are taken into account. The dust grains acquire mainly positive electrical charge, move with suprathermal drift velocities and may grow up to 100–200 Å as a result of implantation of impinging carbon ions. For most of the stars the fraction of condensed carbon does not exceed 1 per cent. While the nature of the grain nucleation remains unknown, the condensation distances and the grain seed production can be estimated by fitting the observational spectra with theoretical ones.  相似文献   

7.
We report the discovery of five massive Wolf–Rayet (WR) stars resulting from a programme of follow-up spectroscopy of candidate emission-line stars in the Anglo-Australian Observatory United Kingdom Schmidt Telescope (AAO/UKST) Southern Galactic Plane Hα survey. The 6195–6775 Å spectra of the stars are presented and discussed. A WC9 class is assigned to all five stars through comparison of their spectra with those of known late-type WC stars, bringing the known total number of Galactic WC9 stars to 44. Whilst three of the five WC9 stars exhibit near-infrared (NIR) excesses characteristic of hot dust emission (as seen in the great majority of known WC9 stars), we find that two of the stars show no discernible evidence of such excesses. This increases the number of known WC9 stars without NIR excesses to seven. Reddenings and distances for all five stars are estimated.  相似文献   

8.
We present a study of optical spectra of the Wolf–Rayet star AzV 336a (=SMC WR7) in the Small Magellanic Cloud. Our study is based on data obtained at several Observatories between 1988 and 2001. We find SMC WR7 to be a double-lined WN+O6 spectroscopic binary with an orbital period of 19.56 d. The radial velocities of the He absorption lines of the O6 component and the strong He  ii emission at λ 4686 Å of the WN component describe anti-phased orbital motions. However, they show a small phase shift of ∼1 d. We discuss possible explanations for this phase shift. The amplitude of the radial velocity variations of He  ii emission is twice that of the absorption lines. The binary components have fairly high minimum masses, ∼18 and 34 M for the WN and O6 components, respectively.  相似文献   

9.
The star WR 7a, also known as SPH 2, has a spectrum that resembles that of V Sagittae stars although no O  vi emission has been reported. The Temporal Variance Spectrum – TVS – analysis of our data shows weak but strongly variable emission of O  vi lines which is below the noise level in the intensity spectrum.
Contrary to what is seen in V Sagittae stars, optical photometric monitoring shows very little, if any, flickering. We found evidence of periodic variability. The most likely photometric period is   P phot= 0.227(±14) d  , while radial velocities suggest a period of   P spec= 0.204(±13) d  . One-day aliases of these periods can not be ruled out. We call attention to similarities with HD 45166 and DI Cru (= WR 46), where multiple periods are present. They may be associated to the binary motion or to non-radial oscillations.
In contrast to a previous conclusion by Pereira et al., we show that WR 7a contains hydrogen. The spectrum of the primary star seems to be detectable as the N  v 4604 Å  absorption line is visible. If so, it means that the wind is optically thin in the continuum and that it is likely to be a helium main sequence star.
Given the similarity to HD 45166, we suggests that WR 7a may be a qWR – quasi Wolf–Rayet – star. Its classification is WN4h/CE in the Smith, Shara & Moffat three-dimensional classification system.  相似文献   

10.
A spectroscopic search for luminous companions to WC9-type Wolf–Rayet stars making circumstellar dust reveals the presence of absorption lines attributable to companions in the blue spectra of WR 69 (HD 136488) and WR 104 (Ve2–45). Comparison of spectra of WR 104 observed in 1995 and 1997 showed the absorption lines to be more conspicuous in the latter observation and the emission lines weaker, suggesting a selective eclipse of the WC9 star similar to that observed by Crowther in 1996. The WC9 emission-line spectra are shown to be less uniform than previously thought, showing a significant range of O  ii line strengths. The only two WC9 stars in the observed sample that do not make circumstellar dust, WR 81 (He3–1316) and WR 92 (HD 157451), are found to have anomalously weak O  ii and strong He  ii lines. We suggest that these spectroscopic differences may reflect a compositional difference that plays a role in determining which of the WC9 stars make dust.  相似文献   

11.
A rare opportunity of observing a lunar occultation of a Wolf–Rayet star (WR104) in the near-infrared K band (2.2 μm) was utilized to probe the thick dust envelope surrounding the star at a high one-dimensional angular resolution (∼2 mas). Analysis of the occultation light curve shows a dust structure departing significantly from the uniform disc profile. Our results are in good agreement with recent aperture-masking interferometry carried out at the Keck I telescope, which shows a pinwheel structure around WR104. We report additional fine structures in the dust envelope.  相似文献   

12.
The central stars of two of the new planetary nebulae found during scans of the AAO/UKST H α Survey of the Milky Way have been found to exhibit Wolf–Rayet (WR) emission features. One (PMR 1) is an early-type star of class either [WO4] or [WC4]. The other (PMR 2) is a late [WC] star which, depending on the classification scheme used, is either intermediate in class between [WC9] and [WC10] or the sole member of the [WC10] class. Both stars exhibit unusual spectral features which may be attributed to enhanced nitrogen in their atmospheres and could be indicative of unusual stellar evolution.  相似文献   

13.
We present a detailed multiwavelength photometric study of giant H  ii regions NGC 592 and NGC 588 in the nearby small spiral galaxy M33. We use data taken with the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope ( HST ). We detect several massive stars in both ionizing clusters. Six Wolf–Rayet (WR) stars are known to exist within those regions and we are able to constrain their physical properties by comparing their photometry to the latest grid of model atmospheres for WR stars of the nitrogen sequence (WN subclass). We estimate the age and mass of both regions by fitting our photometry to models of integrated stellar populations.  相似文献   

14.
The properties of accretion discs around stars and brown dwarfs in the σ Ori cluster (age 3 Myr) are studied based on near-infrared (IR) time series photometry supported by mid-IR spectral energy distributions (SEDs). We monitor ∼30 young low-mass sources over eight nights in the J and K band using the duPont telescope at Las Campanas. We find three objects showing variability with J -band amplitudes  ≥0.5 mag  ; five additional objects exhibit low-level variations. All three highly variable sources have been previously identified as highly variable; thus, we establish the long-term nature of their flux changes. The light curves contain periodic components with time-scales of  ∼0.5–8 d  , but have additional irregular variations superimposed – the characteristic behaviour for classical T Tauri stars. Based on the colour variability, we conclude that hotspots are the dominant cause of variations in two objects (#19 and #33), including one likely brown dwarf, with spot temperatures in the range of 6000–7000 K. For the third one (#2), a brown dwarf or very low-mass star, inhomogeneities at the inner edge of the disc are the likely origin of variability. Based on mid-IR data from Spitzer , we confirm that the three highly variable sources are surrounded by circum-(sub)-stellar discs. They show typical SEDs for T Tauri-like objects. Using SED models, we infer an enhanced scaleheight in the disc for the object #2, which favours the detection of disc inhomogeneities in light curves and is thus consistent with the information from variability. In the σ Ori cluster, about every fifth accreting low-mass object shows persistent high-level photometric variability. We demonstrate that estimates for fundamental parameters in such objects can be significantly improved by determining the extent and origin of the variations.  相似文献   

15.
Recent wide field photometric surveys, which target a specific field for long durations, are ideal for studying both long- and short-period stellar variability. Here, we report on 75 variable stars detected during the observations of a field in Pegasus using the Wide Angle Search for Planets Prototype (WASP0) instrument, 73 of which are new discoveries. The variables detected include 16 δ Scuti stars, 34 eclipsing binaries, 3 BY Draconis stars and 4 RR Lyraes. We estimate that the fraction of stars in the field brighter than   V ∼ 13.5  exhibiting variable behaviour with an amplitude greater than 0.6 per cent rms is ∼0.4 per cent. These results are compared with other wide field stellar variability surveys, and implications for detecting transits due to extra-solar planets are discussed.  相似文献   

16.
We present new high- and low-resolution spectroscopic and photometric data of nine members of the young association CMa R1. All the stars have circumstellar dust at some distance, as could be expected from their association with reflection nebulosity. Four stars (HD 52721, HD 53367, LkH α  220 and LkH α  218) show H α emission and we argue that they are Herbig Be stars with discs. Our photometric and spectroscopic observations of these stars reveal new characteristics of their variability. We present first interpretations of the variability of HD 52721, HD 53367 and the two LkH α stars in terms of a partially eclipsing binary, a magnetic activity cycle and circumstellar dust variations, respectively. The remaining five stars show no clear indications of H α emission in their spectra, although their spectral types and ages are comparable with those of HD 52721 and HD 53367. This indicates that the presence of a disc around a star in CMa R1 may depend on the environment of the star. In particular we find that all H α emission stars are located at or outside the arc-shaped border of the H  ii region, which suggests that the stars inside the arc have lost their discs through evaporation by UV photons from nearby O stars, or from the nearby (<25 pc) supernova, about 1 Myr ago.  相似文献   

17.
We report the serendipitous discovery of a population of low-mass, pre-main-sequence (PMS) stars in the direction of the Wolf–Rayet/O-star binary system γ 2  Vel and the Vela OB2 association. We argue that γ 2  Vel and the low-mass stars are truly associated and approximately coeval, and that both are at distances between 360 and 490 pc, disagreeing at the 2 σ level with the recent Hipparcos parallax of γ 2  Vel, but consistent with older distance estimates. Our results clearly have implications for the physical parameters of the γ 2  Vel system, but also offer an exciting opportunity to investigate the influence of high-mass stars on the mass function and circumstellar disc lifetimes of their lower mass PMS siblings.  相似文献   

18.
We present a detailed analysis of the planetary nebula M4–18 (G146.7+07.6) and its WC10-type Wolf–Rayet (WR) central star, based on high‐quality optical spectroscopy (WHT/UES, INT/IDS, WIYN/DensPak) and imaging ( HST /WFPC2). From a non-LTE model atmosphere analysis of the stellar spectrum, we derive T eff=31 kK,     v =160 km s−1 and abundance number ratios of H/He<0.5, C/He=0.60 and O/He=0.10. These parameters are remarkably similar to those of He 2–113 ([WC10]). Assuming an identical stellar mass to that determined by De Marco et al. for He 2–113, we obtain a distance of 6.8 kpc to M4–18 [ E ( B−V )=0.55 mag from nebular and stellar techniques]. This implies that the planetary nebula of M4–18 has a dynamical age of ∼3100 yr, in contrast to ≥270 yr for He 2–113. This is supported by the much higher electron density of the latter. These observations may be reconciled with evolutionary predictions only if [WC]-type stars exhibit a range in stellar masses.
Photoionization modelling of M4–18 is carried out using our stellar WR flux distribution, together with blackbody and Kurucz energy distributions obtained from Zanstra analyses. We conclude that the ionizing energy distribution from the WR model provides the best consistency with the observed nebular properties, although discrepancies remain.  相似文献   

19.
We carried out a multicolour time-series photometric study of six stars claimed as 'hybrid' p and g mode pulsators in the literature. γ Peg was confirmed to show short-period oscillations of the β Cep type and simultaneous long-period pulsations typical of Slowly Pulsating B (SPB) stars. From the measured amplitude ratios in the Strömgren uvy passbands, the stronger of the two short period pulsation modes was identified as radial; the second is  ℓ= 1  . Three of the four SPB-type modes are most likely  ℓ= 1  or 2. Comparison with theoretical model calculations suggests that γ Peg is either a  ∼8.5 M  radial fundamental mode pulsator or a  ∼9.6 M  first radial overtone pulsator. HD 8801 was corroborated as a 'hybrid'δ Sct/γ Dor star; four pulsation modes of the γ Dor type were detected, and two modes of the δ Sct type were confirmed. Two pulsational signals between the frequency domains of these two known classes of variables were confirmed and another was newly detected. These are either previously unknown types of pulsation or do not originate from HD 8801. The O-type star HD 13745 showed small-amplitude slow variability on a time-scale of 3.2 d. This object may be related to the suspected new type of supergiant SPB stars, but a rotational origin of its light variations cannot be ruled out at this point. 53 Psc is an SPB star for which two pulsation frequencies were determined and identified with low spherical degree. Small-amplitude variability was formally detected for 53 Ari but is suspected not to be intrinsic. The behaviour of ι Her is consistent with non-variability during our observations, and we could not confirm light variations of the comparison star 34 Psc previously suspected. The use of signal-to-noise criteria in the analysis of data sets with strong aliasing is critically discussed.  相似文献   

20.
We present extensive photometry and spectroscopy of the extremely hydrogen-deficient star, LSS 3184, recently discovered to be a rapid variable (period ∼0.1066 d) strikingly similar to V652 Her. Over 95 h of photometry confirms the reported variability, which is of rather low amplitude (Δ V ∼0.03 mag), defines the light curve with greater precision and establishes a much more accurate ephemeris (period ∼0.106 578 4 d) to form a basis for detecting period change. Attention is drawn to the usefulness of a period-finding technique that fits harmonic components to the photometric observations. Spectroscopy shows a peak-to-peak variation in radial velocity of about 30 km s−1, which, when combined with the photometric observations, confirms the pulsational nature of the variability and strongly indicates that the pulsations are radial in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号