首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文设计并完成了考虑土与结构相互作用的结构减震控制大型振动台模型试验。通过对四种结构形式的对比试验,探讨了土与结构相互作用(SSI)效应对结构地震反应的影响以及调谐质量阻尼器(TMD)在刚性和柔性地基条件下对主体结构的减震效应。通过比较同一地震动作用下主体结构在刚性和柔性两种地基条件下的地震反应,可知:SSI效应具有降低和提高结构减震控制效果的双重作用,其综合效果与输入地震动的频谱特性、加速度峰值大小有关。由于SSI效应在结构地震反应中发挥着双重的作用,因而使得基于刚性地基假定下设计的TMD减震控制系统在柔性地基条件下的控制效果不太理想,甚至会出现负面效应。本文还探讨了在柔性地基条件下影响结构减震控制效果的一些因素。  相似文献   

2.
This paper describes shaking table tests of three eight-story building models: all are masonry structures in the upper stories, with or without frame-shear walls of one- or two- stories at the bottom. The test results of damage characteristics and seismic responses are provided and compared. Then, nonlinear response analyses are conducted to examine the reliability of the dynamic analysis. Finally, many nonlinear response analyses are performed and it is concluded that for relatively hard sites under a certain lateral stiffness ratio (i.e., the ratio of the stiffness of the lowest upper masonry story to that of the frame- shear wall story), the masonry structure with one-story frame-shear wall at the bottom performs better than a structure built entirely of masonry, and a masonry structure with frame-shear wall of two stories performs better than with one-story frame- shear wall. In relatively soft soil conditions, all three structures have similar performane. In addition, some suggestions that could be helpful for design of masonry structures with ground story of frame-shear wall structure in seismic intensity region VII, such as the appropriate lateral stiffness ratio, shear force increase factor of the frame-shear wall story, and permissible maximum height of the building, are proposed.  相似文献   

3.
This paper studies the effect of soil–structure interaction (SSI) on the seismic risk estimates of buildings. Risk, in this context, denotes the probability distribution of seismic monetary loss due to structural and nonstructural damage. The risk analysis here uncovers the probability that SSI is beneficial, detrimental, or uninfluential on seismic losses. The analyses are conducted for a wide range of buildings with different structural systems, numbers of stories, and foundation sizes on various soil types. A probabilistic approach is employed to account for prevailing sources of uncertainty, i.e., those in ground motion and in the properties of the soil–structure system. In this approach, probabilistic models are employed to predict the response, damage, and repair cost of buildings. To properly account for the ground motion uncertainty, a suite of nearly 7000 accelerograms recorded on soil is employed. It is concluded that structures on very soft soils are extremely likely to incur smaller losses due to SSI, which is in line with the common belief that SSI is a favorable effect for such systems. However, the results for buildings on moderately soft soils reveal a considerable probability, up to 0.4, that SSI has an adverse effect on the structure and increases the seismic losses.  相似文献   

4.
This paper presents how soil–structure interaction affects the seismic performance of Tuned Mass Dampers (TMD) when installed on flexibly based structures. Previous studies on this subject have led to inconsistent conclusions since the soil and structure models employed considerably differ from each other. A generic frequency-independent model is used in this paper to represent a general soil–structure system, whose parameters cover a wide spectrum of soil and structural characteristics. The model structure is subjected to a stationary random excitation and the root-mean-square responses of engineering interest are used to measure the TMD's performance. Extensive parametric studies have shown that strong soil–structure interaction significantly defeats the seismic effectiveness of TMD systems. As the soil shear wave velocity decreases, TMD systems become less effective in reducing the maximum response of structures. For a structure resting on soft soil, the TMD system can hardly reduce the structural seismic response due to the high damping characteristics of soil–structure systems. The model structure is further subjected to the NS component of the 1940 El Centro, California earthquake to confirm the TMD's performance in a more realistic environment. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

5.
土-桩-钢结构-TLD系统振动台模型试验研究   总被引:2,自引:0,他引:2  
通过系列振动台模型试验,研究土-结构相互作用对结构TLD减震控制影响。文中首先提出试验模型设计中应考虑的几个主要问题及解决方法,然后介绍土-桩基础-钢结构-TLD相互作用体系的试验成果,分析TLD的减震效果,最后与刚性地基上钢结构TLD减震试验结果相比较,揭示土-结构相互作用对TLD减震效率的影响特点。试验结果表明:土-结构相互作用使得TLD减震效率降低,这一削减作用受到输入地震动的频谱特性和强度的影响。因此,对于建在土层场地上的结构进行TLD减震设计时,应充分重视工程场地条件和地震动特性等实际情况。  相似文献   

6.
本文通过对高层建筑结构-地基动力相互作用体系和刚性地基上高层建筑结构的振动台模型试验成果的对比分析,研究了相互作用对结构动力特性和地震反应的影响。结果-地基动力相互作用使结构频率减小,阻尼增大;相互作用体系的振型曲线与刚性地基上结构的振型曲线不同,基础处存在平动和转动;在地震动作用下考虑相互作用的结构加速度、层间剪力、弯矩以及应变通常比刚性地基上的情况小,而位移则比刚性地基上的情况大。  相似文献   

7.
This paper revisits the phenomenon of dynamic soil‐structure interaction (SSI) with a probabilistic approach. For this purpose, a twofold objective is pursued. First, the effect of SSI on inelastic response of the structure is studied considering the prevailing uncertainties. Second, the consequence of practicing SSI provisions of the current seismic design codes on the structural performance is investigated in a probabilistic framework. The soil‐structure system is modeled by the sub‐structure method. The uncertainty in the properties of the soil and the structure is described by random variables that are input to this model. Monte Carlo sampling analysis is employed to compute the probability distribution of the ductility demand of the structure, which is selected as the metrics for the structural performance. In each sample, a randomly generated soil‐structure system is subjected to a randomly selected and scaled ground motion. To comprehensively model the uncertainty in the ground motion, a suite of 3269 records is employed. An extensive parametric study is conducted to cover a wide range of soil‐structure systems. The results reveal the probability that SSI increases the ductility demand of structures designed based on the conventional fixed‐based assumption but built on flexible soil in reality. The results also show it is highly probable that practicing SSI provisions of modern seismic codes increase the ductility demand of the structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
By advancing the technologies regarding seismic control of structures and development of earthquake resistance systems in the past decades application of different types of earthquake energy dissipation system has incredibly increased. Viscous damper device as a famous and the simplest earthquake energy dissipation system is implemented in many new structures and numerous number of researches have been done on the performance of viscous dampers in structures subjected to earthquake. The experience of recent severe earthquakes indicates that sometimes the earthquake energy dissipation devices are damaged during earthquakes and there is no function for structural control system. So, damage of earthquake energy dissipation systems such as viscous damper device must be considered during design of earthquake resistance structures.This paper demonstrates the development of three-dimensional elasto-plastic viscous damper element consisting of elastic damper in the middle part and two plastic hinges at both ends of the element which are compatible with the constitutive model to reinforce concrete structures and are capable to detect failure and damage in viscous damper device connections during earthquake excitation. The finite element model consists of reinforced concrete frame element and viscous damper element is developed and special finite element algorithm using Newmark׳s direct step-by-step integration is developed for inelastic dynamic analysis of structure with supplementary elasto-plastic viscous damper element. So based on all the developed components an especial finite computer program has been codified for “Nonlinear Analysis of Reinforced Concrete Buildings with Earthquake Energy Dissipation System”. The evaluation of seismic response of structure and damage detection in structural members and damper device was carried out by 3D modeling, of 3 story reinforced concrete frame building under earthquake multi-support excitation.  相似文献   

9.
The optimal design and effectiveness of three control systems, tuned viscous mass damper(TVMD), tuned inerter damper(TID) and tuned mass damper(TMD), on mitigating the seismic responses of base isolated structures, were systematically studied. First, the seismic responses of the base isolated structure with each control system under white noise excitation were obtained. Then, the structural parameter optimizations of the TVMD, TID and TMD were conducted by using three different objectives. The results show that the three control systems were all effective in minimizing the root mean square value of seismic responses, including the base shear of the BIS, the absolute acceleration of structural SDOF, and the relative displacement between the base isolation floor and the foundation. Finally, considering the superstructure as a structural MDOF, a series of time history analyses were performed to investigate the effectiveness and activation sensitivity of the three control systems under far field and near fault seismic excitations. The results show that the effectiveness of TID and TMD with optimized parameters on mitigating the seismic responses of base isolated structures increased as the mass ratio increases, and the effectiveness of TID was always better than TMD with the same mass ratio. The TVMD with a lower mass ratio was more efficient in reducing the seismic response than the TID and TMD. Furthermore, the TVMD, when compared with TMD and TID, had better activation sensitivity and a smaller stroke.  相似文献   

10.
本文设计实现了分层土-基础-高层框架结构相互作用体系的振动台模型试验,再现了地震动激励下上部结构和基础的震害现象和砂质粉土的液化现象。通过试验,研究了相互作用体系地震动反应的主要规律:由于动力相互作用的影响,软土地基中相互作用体系的频率小于不考虑结构-地基相互作用的结构频率,而阻尼比则大于结构材料阻尼比;体系的振型曲线与刚性地基上结构的振型曲线明显不同,基础处存在平动和转动。土层传递振动的放大或减振作用与土层性质、激励大小等因素有关,砂土层一般起放大作用,砂质粉土层一般起减振隔振作用;由于土体的隔震作用,上部结构接受的振动能量较小,各层反应均较小。上部结构顶层加速度反应组成取决于基础转动刚度、平动刚度和上部结构刚度的相对大小。  相似文献   

11.
本文研究土与结构相互作用(SSI)对多层及中高层基础隔震建筑地震需求及隔震效率的影响规律,隔震层采用LRB铅芯橡胶与LNR普通橡胶隔震支座组合,就我国现行《建筑抗震设计规范》(GB50011-2010)中软土场地设置隔震层问题做探讨。提出土与基础隔震结构相互作用的简化计算模型,对不同场地及隔震设计目标下的多层及中高层基础隔震结构进行时程分析。研究表明:软土场地基础隔震建筑隔震层的有效隔震效率相对于硬土场地有所下降,必须通过设置具有一定规格的LRB支座来满足隔震目标。本文给出了铅芯橡胶支座极限变形需求随建筑层高及隔震目标变化的规律。  相似文献   

12.
The effects of soil–structure interaction (SSI) while designing the liquid column damper (LCD) for seismic vibration control of structures have been presented in this study. The formulation for the input–output relation of a flexible‐base structure with attached LCD has been presented. The superstructure has been modelled by a single‐degree‐of‐freedom (SDOF) system. The non‐linearity in the orifice damping of the LCD has been replaced by equivalent linear viscous damping by using equivalent linearization technique. The force–deformation relationships and damping characteristics of the foundation have been described by complex valued impedance functions. Through a numerical stochastic study in the frequency domain, the various aspects of SSI on the functioning of the LCD have been illustrated. A simpler approach for studying the LCD performance considering SSI, using an equivalent SDOF model for the soil–structure system available in literature by Wolf (Dynamic Soil–Structure Interaction. International Series in Civil Engineering and Engineering Mechanics. Prentice‐Hall: Englewood Cliffs, NJ, 1985) has also been presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
This paper investigates the optimized parameters for tuned mass dampers (TMDs) to decrease the earthquake vibrations of tall buildings; involving soil–structure interaction (SSI) effects. The time domain analysis based on Newmark method is employed in this study. To illustrate the results, Tabas and Kobe earthquakes data are applied to the model, and ant colony optimization (ACO) method is utilized to obtain the best parameters for TMD. The TMD mass, damping coefficient and spring stiffness are assumed as design variables, and the objective is to reduce both the maximum displacement and acceleration of stories. It is shown that how the ACO can be effectively applied to design the optimum TMD device. It is also indicated that the soil type greatly affects the TMD optimized parameters and the time response of structures. This study helps the researchers to better understanding of earthquake vibrations, and leads the designers to achieve the optimized TMD for high-rise buildings.  相似文献   

14.
结构-地基动力相互作用体系振动台模型试验研究   总被引:61,自引:20,他引:61  
本文设计实现了结构-地基动力相互作用体系的振动台试验,通过试验研究了动力相互作用体系的地震动反应的主要规律,由于动力相互作用的影响,软土地基中相互作用体系的频率远小于刚性地基上不考虑结构-地基相互作用的结构频率,而阻尼比例则远大于结构材料阻尼比,软上地基对地震动走滤波和隔震作用,由于上部结构的振动反馈,基底地震动与自由场地震动不相同,上部结构柱顶加速度反应主要由基础转动引起的摆动分量组成,平均分量次之,而弹性变形分量很小,桩身应变幅值呈桩顶大,桩尖小的倒三角形分布,桩上接触压力幅值呈桩顶小,桩尖大的三角形分布,试验表明,结构-地基动力相互作用对体系地震反应的影响是很是显著的,本试验为验证理论与计算分析的研究成果,改进或提出合理的计算模型和分析方法,提出了丰富的试验数据,为进一步研究奠定的基础。  相似文献   

15.
This paper investigates the seismic performance of moment-resisting frame steel buildings with multiple underground stories resting on shallow foundations. A parametric study that involved evaluating the nonlinear seismic response of five, ten and fifteen story moment-resisting frame steel buildings resting on flexible ground surface, and buildings having one, three and five underground stories was performed. The buildings were assumed to be founded on shallow foundations. Two site conditions were considered: soil class C and soil class E, corresponding to firm and soft soil deposits, respectively. Vancouver seismic hazard has been considered for this study. Synthetic earthquake records compatible with Vancouver uniform hazard spectrum (UHS), as specified by the National Building Code of Canada (NBCC) 2005, have been used as input motion. It was found that soil–structure interaction (SSI) can greatly affect the seismic performance of buildings in terms of the seismic storey shear and moment demand, and the deformations of their structural components. Although most building codes postulate that SSI effects generally decrease the force demand on buildings, but increase the deformation demand, it was found that, for some of the cases considered, SSI effects increased both the force and deformation demand on the buildings. The SSI effects generally depend on the stiffness of the foundation and the number of underground stories. SSI effects are significant for soft soil conditions and negligible for stiff soil conditions. It was also found that SSI effects are significant for buildings resting on flexible ground surface with no underground stories, and gradually decrease with the increase of the number of underground stories.  相似文献   

16.
The direct finite element method is a type commonly used for nonlinear seismic soil-structure interaction(SSI) analysis. This method introduces a truncated boundary referred to as an artificial boundary meant to divide the soilstructure system into finite and infinite domains. An artificial boundary condition is used on a truncated boundary to achieve seismic input and simulate the wave radiation effect of infinite domain. When the soil layer is particularly thick, especially for a three-dimensional problem, the computational efficiency of seismic SSI analysis is very low due to the large size of the finite element model, which contains an whole thick soil layer. In this paper, an accurate and efficient scheme is developed to solve the nonlinear seismic SSI problem regarding thick soil layers. The process consists of nonlinear site response and SSI analysis. The nonlinear site response analysis is still performed for the whole thick soil layer. The artificial boundary at the bottom of the SSI analysis model is subsequently relocated upward from the bottom of the soil layer(bedrock surface) to the location nearest to the structure as possible. Finally, three types of typical sites and underground structures are adopted with seismic SSI analysis to evaluate the accuracy and efficiency of the proposed efficient analysis scheme.  相似文献   

17.
将参数化建模的方法引入减震结构的分析与设计中,通过预设目标和迭代优化计算,以天水市某高层住宅消能减震结构为例,寻找最优的阻尼器布置方案。为评估和验证该消能减震结构的抗震性能,分别采用Perform 3D和ETABS等软件分析结构在多遇和罕遇地震作用下的结构响应,分析结果表明:小震作用下,消能减震结构的楼层位移、层间位移角、楼层弯矩及楼层剪力均减小6.5%以上,达到了设计要求;大震作用下,结构框架柱、框架梁、剪力墙和阻尼器能够满足既定的性能要求,层间位移角满足规范限值,能够达到“大震不倒”的设计目标,研究结果为实际工程预设减震目标和阻尼器优化布置提供参考。  相似文献   

18.
地下结构由于受周围土体的约束作用,其受力与变形特点与地上结构存在差异。采用Pushover分析方法分别对考虑土-结构相互作用的地下结构和不考虑土体的地上结构的抗震性能进行对比研究,探讨单层单跨和单层双跨钢筋混凝土矩形结构在有、无土体存在时抗震性能的差异。研究表明:考虑土-结构相互作用的地下结构变形能力与无土体时存在差异。在相同结构尺寸与初始轴压比的情况下,考虑土-结构相互作用的地下结构弹性层间位移角限值变小,地下结构更早出现塑性铰;单跨地下结构变形能力比地上结构的差,周围土体的剪切变形约束作用使得地下结构的延性变差;双跨地下结构与地上结构中柱变形能力相差不多,但侧墙的变形能力比地上结构的略差。因此,即使相同尺寸和初始轴压比的钢筋混凝土矩形结构,地上与地下结构的抗震性能仍存在较大差异,地上结构的相关研究成果不宜直接用于地下结构。  相似文献   

19.
Centrifuge modeling of seismic response of layered soft clay   总被引:1,自引:0,他引:1  
Centrifuge modeling is a valuable tool used to study the response of geotechnical structures to infrequent or extreme events such as earthquakes. A series of centrifuge model tests was conducted at 80g using an electro-hydraulic earthquake simulator mounted on the C-CORE geotechnical centrifuge to study the dynamic response of soft soils and seismic soil–structure interaction (SSI). The acceleration records at different locations within the soil bed and at its surface along with the settlement records at the surface were used to analyze the soft soil seismic response. In addition, the records of acceleration at the surface of a foundation model partially embedded in the soil were used to investigate the seismic SSI. Centrifuge data was used to evaluate the variation of shear modulus and damping ratio with shear strain amplitude and confining pressure, and to assess their effects on site response. Site response analysis using the measured shear wave velocity, estimated modulus reduction and damping ratio as input parameters produced good agreement with the measured site response. A spectral analysis of the results showed that the stiffness of the soil deposits had a significant effect on the characteristics of the input motions and the overall behavior of the structure. The peak surface acceleration measured in the centrifuge was significantly amplified, especially for low amplitude base acceleration. The amplification of the earthquake shaking as well as the frequency of the response spectra decreased with increasing earthquake intensity. The results clearly demonstrate that the layering system has to be considered, and not just the average shear wave velocity, when evaluating the local site effects.  相似文献   

20.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号