首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A simple method of estimating the coronal magnetic field is suggested. It is based on the observational fact that the duration of the highly polarized part in type III bursts can be different, varying from a small fraction of the burst length to its total duration. We suggest that this difference is determined by the relation between the size of the region where only the ordinary wave can propagate and the size of the region where the burst is generated at a fixed frequency. The magnetic field is estimated at several tens of gauss in regions emitting highly polarized type III bursts at frequencies over 200 MHz. Density and magnetic field scales are estimated.  相似文献   

3.
Lesovoi  S.V.  Kardapolova  N.N. 《Solar physics》2003,216(1-2):225-238
An analysis of solar radio bursts with temporal fine structure (TFS) at 5730 MHz in relation to the magnetic configuration of the corresponding active regions (AR) is presented. We found that the occurrence of TFS bursts increases with increasing complexity of the AR's magnetic configuration. The degree of polarization of TFS bursts varies over a wide range. Most of these fast bursts with a high degree of polarization were observed in active regions with a simple magnetic configuration β. Most of the unpolarized fast bursts were observed in active regions with the most complicated configuration βγδ. Because bursts that are polarized in different modes have different displacements of position with respect to that of associated microwave bursts, we conclude that there are at least two types of TFS bursts at 5730 MHz. We think that fast bursts that are polarized in the ordinary mode are due to microwave type III bursts.  相似文献   

4.
5.
Shulman  S. G.  Grinin  V. P. 《Astronomy Letters》2019,45(6):384-395

The behavior of the linear polarization parameters of UX Ori stars during their eclipses by circumstellar dust clouds is studied. A circumstellar disk with a disk wind creating a puffing in the dust sublimation zone is considered. We show that the disk puffing can strongly affect the degree of polarization and color index of the star during its eclipse. A strong wind can change the orientation of the plane of linear polarization. The scattered radiation from a thin disk is polarized perpendicularly to its plane, but the radiation from a disk with a strong wind can be polarized along the disk plane. A situation where the disk-scattered radiation is not polarized in a certain spectral band is possible owing to the disk puffing. There can be different orientations of the linear polarization of the disk radiation in different spectral bands.

  相似文献   

6.
Some fast bursts occurring at 237 MHz during type IV events in association with sawtooth pulsations have been studied. These bursts, when occurring sufficiently isolated from the adjacent pulsating activity, appear to have an exponential decay phase similar to that of fast type III bursts.A computational procedure, based on Fourier transform techniques, has been applied; it allows the computation, for every observed point in the time profile, of the corresponding value for the logarithmic derivative and for the exciter function. The results so far obtained show that the time decay value is of the same order observed for normal type III's. As the bursts studied appear clearly not to be type III's (mainly for their total polarization), but isolated components of pulsation groups, this result may be an interesting indicator of the emission mechanism (plasma waves excitation and its abrupt stop) involved in type IV decimetric pulsations.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

7.
本文认为强磁场中的逆Compton散射可能是γ射线爆的主要辐射机制.其能谱是由源区质子产生的低频光子经强磁场中非热电子的Compton散射形成的.我们利用非相对论情形(B/B_(cr)≤1,hv_i/m_ec~2≤1)下强磁场中的Compton散射微分截面,导出了上述Compton散射的辐射谱公式,由此很好地拟合了典型γ射线爆GB811016的观测能谱.  相似文献   

8.
In the synchrotron radiation model, the polarization property depends on both the configuration of the magnetic field and the geometry of the visible emitting region. Some peculiar behaviours in the X-ray afterglows of gamma-ray bursts (GRBs) observed with Swift , such as energetic flares and a plateau followed by a sharp drop, might be highly linearly polarized because the outflows powering these behaviours may be dominated by Poynting flux. The breakdown of the symmetry of the visible emitting region may also be well hidden in the peculiar X-ray data and may give rise to interesting polarization signatures. In this paper, we focus on the polarization accompanying the very early sharp decline of GRB X-ray afterglows. We show that strong polarization evolution is possible in both the high latitude emission model and the dying central engine model, which are used to interpret this sharp X-ray decline. It is thus not easy to efficiently probe the physical origin of the very early X-ray sharp decline with future polarimetry. Strong polarization evolution is also possible in the decline phase of X-ray flares and in the shallow decline phase of X-ray light curves characterized by chromatic X-ray versus optical breaks. A detector such as the X-ray Telescope (XRT), but with polarization capability, on board a satellite like Swift would be suitable for testing our predictions.  相似文献   

9.
The temperatures of electrons and ions in the post-shock accretion region of a magnetic cataclysmic variable (mCV) will be equal at sufficiently high mass flow rates or for sufficiently weak magnetic fields. At lower mass flow rates or in stronger magnetic fields, efficient cyclotron cooling will cool the electrons faster than the electrons can cool the ions and a two-temperature flow will result. Here we investigate the differences in polarized radiation expected from mCV post-shock accretion columns modeled with one- and two-temperature hydrodynamics. In an mCV model with one accretion region, a magnetic field ?30 MG and a specific mass flow rate of ~0.5 g?cm?2?s?1, along with a relatively generic geometric orientation of the system, we find that in the ultraviolet either a single linear polarization pulse per binary orbit or two pulses per binary orbit can be expected, depending on the accretion column hydrodynamic structure (one- or two-temperature) modeled. Under conditions where the physical flow is two-temperature, one pulse per orbit is predicted from a single accretion region where a one-temperature model predicts two pulses. The intensity light curves show similar pulse behavior but there is very little difference between the circular polarization predictions of one- and two-temperature models. Such discrepancies indicate that it is important to model some aspect of two-temperature flow in indirect imaging procedures, like Stokes imaging, especially at the edges of extended accretion regions, were the specific mass flow is low, and especially for ultraviolet data.  相似文献   

10.
马兵  陈玲  吴德金 《天文学报》2023,(3):35-233
与太阳射电爆发相比,通常认为频率较低的行星际射电爆发产生于远离低日冕的行星际空间.地球电离层的截止导致地基设备无法对其进行观测.美国国家航空航天局(National Aeronautics and Space Administration, NASA)发射的帕克太阳探测器(Parker Solar Probe, PSP)是迄今为止距离太阳最近的空间探测器.其搭载的射电频谱仪能够对10 k Hz–19.17 MHz频段范围内的射电辐射进行观测. PSP能够靠近甚至可能穿越行星际III型射电爆发的辐射源区,因此使用PSP对行星际射电爆发进行观测具有前所未有的优势.简要介绍了目前为止使用PSP的射电观测数据对行星际III型射电爆发的多方面研究,包括爆发的发生率、偏振、散射、截止频率、可能的辐射机制和相关的辐射源区等方面的研究进展,并讨论了其未来的研究前景.  相似文献   

11.
We calculate the polarization of the radiation from an optically thick accretion disk with a vertical averaged magnetic field. The polarization arises from the scattering of light by free electrons in a magnetized disk plasma. The Faraday rotation of the polarization plane during the propagation of a photon in a medium with a magnetic field is considered as the main effect. We discuss various models of optically thick accretion disks with a vertical averaged magnetic field. Our main goal is to derive simple asymptotic formulas for the polarization of radiation in the case where the Faraday rotation angle Ψ ≫ 1 at the Thomson optical depth τ = 1. The results of our calculations allow the magnetic field strength in the region of the marginally stable orbit near a black hole to be estimated from polarimetric observations, including X-ray observations expected in the future. Since the polarization spectrum of the radiation strongly depends on the accretion disk model, a realistic physical model of the accretion disk can be determined from data on the polarization of its radiation.  相似文献   

12.
G. S. Lakhina  B. Buti 《Solar physics》1985,99(1-2):277-284
A new coherent radiation mechanism, involving nonlinear interaction of whistler solitons with upperhybrid waves, excited by energetic electrons of energies of 10 keV–100 keV, is proposed for type IV solar bursts of both moving (type IV M) and stationary (type IV S) types. We show that the type IV M bursts occur when the interaction of whistler solitons and upperhybrid waves takes place in the coronal transients whereas the type IV S bursts originate provided this interaction takes place in stationary loops where density has been increased. The emitted radiation is right-hand circularly polarized with 100% polarization. Increase of brightness temperature, T b , at lower frequencies and also its decrease, at all frequencies, with the passage of time is predicted for type IV M bursts; this agrees fully with the observations. Furthermore, the decrease of T b , with time for stationary type IV component, is easily explained if the source which supplies energetic electron to the loop, becomes weaker with time.  相似文献   

13.
I discuss the transfer of polarized synchrotron radiation in relativistic jets. I argue that the main mechanism responsible for the circular polarization properties of compact synchrotron sources is likely to be Faraday conversion and that, contrary to common expectation, a significant rate of Faraday rotation does not necessarily imply strong depolarization. The long-term persistence of the sign of circular polarization, observed in some sources, is most likely due to a small net magnetic flux generated in the central engine, carried along the jet axis and superimposed on a highly turbulent magnetic field. I show that the mean levels of circular and linear polarizations depend on the number of field reversals along the line of sight and that the gradient in Faraday rotation across turbulent regions can lead to`correlation depolarization'. The model is potentially applicable to a wide range of synchrotron sources. In particular, I demonstrate how the model can naturally explain the excess of circular over linear polarization in the Galactic Center (SgrA*) and the low-luminosity AGN M81*.  相似文献   

14.
A number of inconsistencies between simple theory and observations of solar radio bursts indicate that mode-mode coupling in the solar corona is much stronger than predicted. The inconsistencies include the absence of predicted reversal of the sense of polarization in a type 1 storm at CMP, and the anomalously weak polarization of type II and type III emission. The strong mode coupling could be explained in terms of small scale inhomogeneities (L N? 100 km) throughout the relevant regions of the corona. The relevant regions are those with open magnetic field lines overlying active regions. It is suggested that the coronal plasma is confined to magnetically self-pinched sheets, and it is pointed out that another inconsistency, namely the anomalously small amount of Faraday variation in type III bursts, could be explained if the value of n e B in the inter-sheet region were two orders of magnitude less than in the sheets.  相似文献   

15.
It is shown that the lack of linear polarization in the microwave radiation of solar bursts (reported in a earlier paper) may be explained by spatial dispersion of Faraday rotation. The maximum source diameter s without noticeable destruction of linear polarization is determined by the electron density and the magnetic field strength in the volume, where the linear polarization is generated. In the case where linear polarization is produced by the radiation source, s is smaller than only 20 km. In the other case where linear polarization is produced by mode coupling in a quasi-transverse magnetic field in the corona, the s-values are found to range from 10 to 6000 km, which is still much smaller than the generally adopted sizes of microwave burst sources. The second case has been investigated for several models of magnetic fields.  相似文献   

16.
We report the results of 1966, 1968, and 1969 polarization measurements of solar type III radio noise bursts made by recording the output of two orthogonally polarized receiving channels and subsequent digital processing of selected data. The processed data yield total intensity, degree of polarization, ellipticity, and polarization ellipse orientation at 1 second intervals. The measurements are made in a 100 Hz bandwith to minimize the influence of the propagating medium on the measurements. The mean degree of polarization was found to be about 65% in contrast to previous studies which indicated that type III events were more weakly polarized. By assuming that type III bursts are flare related we study the polarization characteristics of type III bursts as a function of the solar longitude of the related flares. The relation between type III event polarization characteristics and flare importance is also investigated. The significance of polarization measurements in studies of solar radio events is pointed out and suggestions for further theoretical research are given.  相似文献   

17.
From 200 GRF (gradual rise and fall) bursts which have been recorded with the 17 GHz interferometer at Nobeyama, we deduce the following characteristics of GRF bursts: (1) Sources of GRF bursts are broader, less circularly polarized than those of impulsive bursts. (2) The sources are potentially of bipolar structure and have the peak brightness near the position at which the sense of circular polarization changes. (3) The association of GRF bursts with type III bursts, which are indicative of nonthermal electron acceleration, is significantly poorer than that of impulsive bursts.It is suggested that the sources of GRF bursts or generally of thermal bursts lie relatively high in the solar atmosphere possibly near the top of magnetic loops or arches which divide two regions of opposite magnetic polarity.  相似文献   

18.
An investigation of pitch-angle scattering of energetic particles in magnetic field configurations with a current sheet similar to that observed in the geomagnetotail has been performed. The magnetic field model is specified by two parameters which are the current sheet thickness in units of particle gyroradius and the angle between the magnetic field lines and the sheet plane. Computations of a considerable number of trajectories (about 20,000 for each model case) has provided the possibility of obtaining the matrix of pitch-angle scattering and the corresponding kernel function of the integral equation for the stationary particle distribution function. Solution of this equation shows that isotropic distributions are formed only in the case of a sufficiently thick current sheet. Particle scattering in a thin field reversal region leads to the formation of an anisotropic stationary distribution. The results can be used for interpretation of the data on the spatial distribution of energetic particle fluxes in the near part of the magnetospheric tail and in the vicinity of the outer boundary of the radiation belt.  相似文献   

19.
On 2002 July 23, a 2B/X4.8 flare was observed in the Ha line spec-tropolarimetrically by the Large Solar Vacuum Telescope of Baikal Astrophysical Observatory. Linear polarization of 3%-10% was detected in the Ha line, particularly where the line showed central reversal. The linear polarization is mainly radial on the solar disk and appears at the impulsive phase of the hard X-ray and 7-ray bursts. It is limited to some relatively small regions of the flare. The polarization in a limited small region (~ 4" - 5") changed its direction within a short period of time (~ 10s).  相似文献   

20.
In this paper we demonstrate that the wavelength dependence of polarization degree and position angle allows us to derive the distribution of magnetic field in accretion disc. The polarized radiation arises due to scattering of emission light by electrons in a magnetized optically thick accretion disc. Faraday rotation of polarization plane is taken into consideration. Through wavelength dependence of polarization it is possible to derive the value of the magnetic Prandtl number in the accretion disc plasma. The power law index of the polarization wavelength dependence is related with the radial distribution of magnetic field in an accretion disc. This allows us to test the various models of an accretion disc around the central black hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号