首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Plagioclase-bearing peridotites are commonly associated with gabbroic rocks sampled around the Moho Transition Zone. Based on mineral chemistry, texture, and spatial relations, the formation of plagioclase-bearing peridotites has been attributed to impregnation of basalt into residual peridotites. We conducted reactive dissolution and crystallization experiments to test this hypothesis by reacting a primitive mid-ocean ridge basalt with a melt-impregnated lherzolite at 1,300 °C and 1 GPa and then cooling to 1,050 °C as pressure decreased to 0.7 GPa. Crystallization during cooling produced lithologic sequences of gabbro–wehrlite or gabbro–wehrlite–peridotite, depending on reaction time. Wehrlitic and peridotitic sections contain significant amounts of plagioclase interstitial to olivine and clinopyroxene and plagioclase compositions are spatially homogeneous. Clinopyroxene in the wehrlite–peridotite section is reprecipitated from the melt and exhibits poikilitic texture with small rounded olivine chadacrysts. Mineral composition in olivine and clinopyroxene varies spatially, both at the scale of the sample and within individual grains. Olivine grains that crystallized close to the melt–peridotite interface are enriched in iron due to their proximity to the basaltic melt reservoir. Consistent with many field studies, we observed gradual spatial variation in olivine and clinopyroxene composition across a lithologically sharp boundary between the gabbro and wehrlite–peridotite. Plagioclase compositions show no obvious dependence on distance from the melt–rock interface and were precipitated from late-stage trapped melts. Compositional trends of olivine, pyroxene, and plagioclase are consistent with previous experimental results and natural observations of the Moho Transition Zone. Different lithological sequences form based primarily on the melt–rock ratio, composition of the melt and host peridotite, and thermochemical conditions, but are expected to grade from gabbro to wehrlite or troctolite to peridotite. Plagioclase-bearing peridotite represents the low melt–rock ratio end member where pyroxene is only partially replaced by olivine and melt, whereas dunite is expected to form where melts overwhelm and consume all other phases. This study confirms that under nominally anhydrous conditions, the gabbro–wehrlite–plagioclase-peridotite sequence can be formed by reaction between basalt and lherzolite and subsequent crystallization at intermediate to low pressures. Melt–rock reaction is a fundamental process in the formation of new crust at the shallowest part of the melting column where pyroxene-undersaturated melts percolate through depleted peridotite.  相似文献   

2.
Olivine is abundant in Earth’s upper mantle and ubiquitous in basaltic lavas, but rarely occurs in eclogite. Partial melts of eclogite are, therefore, not in equilibrium with olivine, and will react with peridotite as they migrate through the upper mantle. If such melts erupt at Earth’s surface, their compositions will be highly modified and they may be olivine-saturated. We investigated experimentally the reaction between olivine and siliceous eclogite partial melt, and determined element partitioning between olivine and the melt produced by this reaction. Our results demonstrate that mixing of reacted eclogite partial melt with primitive basalt is capable of producing the positive correlation between melt SiO2 content and olivine Ni content observed in some Hawaiian lavas. Experiments were carried out by equilibrating eclogite partial melt or basalt with San Carlos olivine at 1 bar and 1,201–1,350°C. Our results show that eclogite partial melts equilibrated with mantle olivine retain their high SiO2, low FeO and MgO characteristics. Further, olivine-melt partition coefficients for Ni measured in these experiments are significantly larger than for basalt. Mixing of these melts with primitive Hawaiian tholeiitic lavas results in crystallization of high-Ni olivines similar to those in Makapuu-stage Koolau lavas, even though the mixed magmas have only moderate Ni contents. This results from a hyperbolic increase of the Ni partition coefficient with increasing polymerization of the mixed melt. Note that while eclogite partial melt in contact with peridotite will equilibrate with pyroxene as well as olivine, this will have the effect of buffering the activity of SiO2 in the reacted melt at a higher level. Therefore, an eclogite partial melt equilibrated with harzburgite will have higher SiO2 than one equilibrated with dunite, enhancing the effects observed in our experiments. Our results demonstrate that an olivine-free “hybrid” pyroxenite source is not required to explain the presence of high-Ni olivines in Hawaiian lavas and, therefore, indicate that the proportion of eclogite in the Hawaiian plume is less than has been estimated in recent studies.  相似文献   

3.
We performed partial melting experiments at 1 and 1.5 GPa, and 1180–1400 °C, to investigate the melting under mantle conditions of an olivine-websterite (GV10), which represents a natural proxy of secondary (or stage 2) pyroxenite. Its subsolidus mineralogy consists of clinopyroxene, orthopyroxene, olivine and spinel (+garnet at 1.5 GPa). Solidus temperature is located between 1180 and 1200 °C at 1 GPa, and between 1230 and 1250 °C at 1.5 GPa. Orthopyroxene (±garnet), spinel and clinopyroxene are progressively consumed by melting reactions to produce olivine and melt. High coefficient of orthopyroxene in the melting reaction results in relatively high SiO2 content of low melt fractions. After orthopyroxene exhaustion, melt composition is controlled by the composition of coexisting clinopyroxene. At increasing melt fraction, CaO content of melt increases, whereas Na2O, Al2O3 and TiO2 behave as incompatible elements. Low Na2O contents reflect high partition coefficient of Na between clinopyroxene and melt (\(D_{{{\text{Na}}_{ 2} {\text{O}}}}^{{{\text{cpx}}/{\text{liquid}}}}\)). Melting of GV10 produces Quartz- to Hyperstene-normative basaltic melts that differ from peridotitic melts only in terms of lower Na2O and higher CaO contents. We model the partial melting of mantle sources made of different mixing of secondary pyroxenite and fertile lherzolite in the context of adiabatic oceanic mantle upwelling. At low potential temperatures (T P < 1310 °C), low-degree melt fractions from secondary pyroxenite react with surrounding peridotite producing orthopyroxene-rich reaction zones (or refertilized peridotite) and refractory clinopyroxene-rich residues. At higher T P (1310–1430 °C), simultaneous melting of pyroxenite and peridotite produces mixed melts with major element compositions matching those of primitive MORBs. This reinforces the notion that secondary pyroxenite may be potential hidden components in MORB mantle source.  相似文献   

4.
陈博  朱永峰  安芳  邱添  陈艺超 《地质通报》2011,30(7):1017-1026
新疆克拉玛依地区出露的早古生代蛇绿混杂岩带规模巨大,岩石单元出露齐全。白碱滩地区的地幔橄榄岩相对比较新鲜,单斜辉石、斜方辉石、尖晶石和橄榄石保存完好。研究表明,白碱滩蛇绿岩就位前,地幔岩发生了大于50km的快速隆升,且没有发生部分熔融。百口泉地区发现的地幔岩普遍遭受了改造,辉石多发生了强烈蚀变(透闪石化),但尖晶石和橄榄石保存较好。百口泉地区出露的地幔岩和白碱滩地幔岩的矿物组成基本一致,表明它们属于同一蛇绿混杂岩带。百口泉蛇绿岩剖面的揭露,将该蛇绿混杂岩带的范围向NE方向延伸了35km。  相似文献   

5.
 Geochemical data have been interpreted as requiring that a significant fraction of the melting in MORB source regions takes place in the garnet peridotite field, an inference that places the onset of melting at ≥80 km. However, if melting begins at such great depths, most models for melting of the suboceanic mantle predict substantially more melting than that required to produce the 7±1 km thickness of crust at normal ridges. One possible resolution of this conflict is that MORBs are produced by melting of mixed garnet pyroxenite/spinel peridotite sources and that some or all of the “garnet signature” in MORB is contributed by partial melting of garnet pyroxenite layers or veins, rather than from partial melting of garnet peridotite. Pyroxenite layers or veins in peridotite will contribute disproportionately to melt production relative to their abundance, because partial melts of pyroxenite will be extracted from a larger part of the source region than peridotite partial melts (because the solidus of pyroxenite is at lower temperature than that of peridotite and is encountered along an adiabat 15–25 km deeper than the solidus of peridotite), and because melt productivity from pyroxenite during upwelling is expected to be greater than that from peridotite (pyroxenite melt productivity will be particularly high in the region before peridotite begins melting, owing to heating from the enclosing peridotite). For reasonable estimates of pyroxenite and peridotite melt productivities, 15–20% of the melt derived from a source region composed of 5% pyroxenite and 95% peridotite will come from the pyroxenite. Most significantly, garnet persists on the solidus of pyroxenite to much lower pressures than those at which it is present on the solidus of peridotite, so if pyroxenite is present in MORB source regions, it will probably contribute a garnet signature to MORB even if melting only occurs at pressures at which the peridotite is in the spinel stability field. Partial melting of a mixed spinel peridotite/garnet pyroxenite mantle containing a few to several percent pyroxenite can explain quantitatively many of the geochemical features of MORB that have been attributed to the onset of melting in the stability field of garnet lherzolite, provided that the pyroxenite compositions are similar to the average composition of mantle-derived pyroxene-rich rocks worldwide or to reasonable estimates of the composition of subducted oceanic crust. Sm/Yb ratios of average MORB from regions of typical crustal thickness are difficult to reconcile with derivation by melting of spinel peridotite only, but can be explained if MORB sources contain ∼5% garnet pyroxenite. Relative to melting of spinel peridotite alone, participation of model pyroxenite in melting lowers aggregate melt Lu/Hf without changing Sm/Nd ratios appreciably. Lu/Hf-Sm/Nd systematics of most MORB can be accounted for by melting of a spinel peridotite/garnet pyroxenite mantle provided that the source region contains 3–6% pyroxenite with ≥20% modal garnet. However, Lu/Hf-Sm/Nd systematics of some MORB appear to require more complex melting regimes and/or significant isotopic heterogeneity in the source. Another feature of the MORB garnet signature, (230Th)/(238U)>1, can also be produced under these conditions, although the magnitude of (230Th)/(238U) enrichment will depend on the rate of melt production when the pyroxenite first encounters the solidus, which is not well-constrained. Preservation of high (230Th)/(238U) in aggregated melts of mixed spinel peridotite/garnet pyroxenite MORB sources is most likely if the pyroxenites have U concentrations similar to that expected in subducted oceanic crust or to pyroxenite from alpine massifs and xenoliths. The abundances of pyroxenite in a mixed source that are required to explain MORB Sm/Yb, Lu/Hf, and (230Th)/(238U) are all similar. If pyroxenite is an important source of garnet signatures in MORB, then geochemical indicators of pyroxenite in MORB source regions, such as increased trace element and isotopic variability or more radiogenic Pb or Os, should correlate with the strength of the garnet signature. Garnet signatures originating from melts of the garnet pyroxenite components of mixed spinel peridotite/garnet pyroxenite sources would also be expected to be stronger in regions of thin crust. Received: 15 February 1995/Accepted: 7 February 1996  相似文献   

6.
新疆北山地区罗东镁铁质-超镁铁质层状岩体岩石成因   总被引:4,自引:0,他引:4  
罗东镁铁质-超镁铁质岩体位于塔里木板块东北部的新疆北山地区,岩体平面形态为眼球状,出露面积约2.1 km2.由纯橄岩、单辉橄榄岩、斜长二辉橄榄岩、橄榄二辉岩、方辉辉石岩、橄长岩、橄榄辉长岩、辉长岩、苏长辉长岩和淡色辉长岩组成,堆晶结构和堆晶韵律发育,属于层状岩体.岩浆演化过程中主要分离结晶/堆晶相是橄榄石和单斜辉石,此...  相似文献   

7.
Diamond crystallization in multicomponent melts of variable composition is studied. The melt carbonates are K2CO3, CaCO3?MgCO3, and K-Na-Ca-Mg-Fe-carbonatites, and the melt silicates are model peridotite (60 wt.% olivine, 16 wt.% orthopyroxene, 12 wt.% clinopyroxene, and 12 wt.% garnet) and eclogite (50 wt.% garnet and 50 wt.% clinopyroxene). In the experiments carried out under the PT-conditions of diamond stability, the carbonate-silicate melts behave like completely miscible liquid phases. The concentration barriers of diamond nucleation (CBDN) in the melts with variable proportions of silicates and carbonates have been determined at 8.5 GPa. In the system peridotite–K2CO3–CaCO3?MgCO3–carbonatite they correspond to 30, 25, and 30 wt.% silicates, respectively, and in the analogous eclogite–carbonate system, 45, 30, and 35 wt.%. In the silicate-carbonate melts with higher silicate contents seed diamond growth occurs, which is accompanied by the crystallization of thermodynamically unstable graphite phase. In the experiments with melts compositionally corresponding to the CBDN at 7.0 GPa and 1200–1700 °C, a full set of silicate minerals of peridotite (olivine, orthopyroxene, clinopyroxene, garnet) and eclogite (garnet, clinopyroxene) parageneses was obtained. The minerals occur as syngenetic inclusions in natural diamonds; moreover, the garnets contain an impurity of Na, and the pyroxenes, K. The experimental data indicate that peridotite-carbonate and eclogite-carbonate melts are highly effective for the formation of diamond (or unstable graphite) together with syngenetic minerals and melts, which agrees with the carbonate-silicate (carbonatite) model for the mantle diamond formation.  相似文献   

8.
《China Geology》2020,3(2):299-313
Swarms of orthopyroxenite and websterite veins are found within Egiingol residual SSZ peridotite massif of Dzhida terrain (Central Asian Orogenic Belt, Northern Mongolia). The process of Egiingol pyroxenite veins formation is investigated using new major and trace element analyses of pyroxenite minerals, calculations of closure temperatures and composition of equilibrium melt. The pyroxenites show abundant petrographic and geochemical evidence for replacement of the residual peridotite minerals by ortho- and clinopyroxene due to melt-rock interaction. Relics of peridotite olivines are found in pyroxenites, Cr# of spinel increases from peridotites to pyroxenites, and compositions of ortho- and clinopyroxene change from peridotite to pyroxenite. The authors show that calculated equilibrium melts for investigated pyroxenites are very similar to compositions of boninite lavas from the Dzhida terrain. Therefore, formation of pyroxenite veins most likely resulted from percolation of boninite melts through the Egiingol peridotites. Orthopyroxenite veins formed at first, followed by websterite veins. Thus, the authors assume that pyroxenite veins represent the channels for boninitic melts migration in supra-subduction environment.  相似文献   

9.
We found extremely high-Mg# (=Mg/(Mg + total Fe) atomic ratio) ultramafic rocks in Avacha peridotite suite. All the high-Mg# rocks have higher modal amounts of clinopyroxene than ordinary Avacha peridotite xenoliths, and their lithology is characteristically heterogeneous, varying from clinopyroxenite through olivine websterite to pyroxene-bearing dunite. The Mg# of minerals is up to 0.99, 0.98 and 0.97 in clinopyroxene, orthopyroxene and olivine, respectively, decreasing progressively toward contact with dunitic part, if any. The petrographical feature of pyroxenes in the high-Mg# pyroxenite indicates their metasomatic origin, and high LREE/HREE ratio of the metasomatic clinopyroxene implies that the pyroxenites are the products of reaction between dunitic peridotites and high-Ca, silicate-rich fluids. The lithological variation of the Avacha high-Mg# pyroxenites from clinopyroxenite to olivine websterite resulted from various degrees of fluid-rock reaction coupled with fractional crystallization of the high-Ca fluids, which started by precipitation of high-Mg# clinopyroxene. Such fluids were possibly generated originally at a highly reduced serpentinized peridotite layer above the subducting slab. The fluids can reach the uppermost mantle along a shear zone as a conduit composed of fine-grained peridotite that developed after continent-ward asthenospheric retreats from the mantle wedge beneath the volcanic front. The fluids are incorporated in mantle partial melts when the magmatism is activated by expansion of asthenosphere to mantle wedge beneath the volcanic front.  相似文献   

10.
High-temperature, high-pressure eclogite and garnet pyroxenite occur as lenses in garnet peridotite bodies of the Gföhl nappe in the Bohemian Massif. The high-pressure assemblages formed in the mantle and are important for allowing investigations of mantle compositions and processes. Eclogite is distinguished from garnet pyroxenite on the basis of elemental composition, with mg number <80, Na2O > 0.75 wt.%, Cr2O3 < 0.15 wt.% and Ni < 400 ppm. Considerable scatter in two-element variation diagrams and the common modal layering of some eclogite bodies indicate the importance of crystal accumulation in eclogite and garnet pyroxenite petrogenesis. A wide range in isotopic composition of clinopyroxene separates [Nd, +5.4 to –6.0; (87Sr/86Sr)i, 0.70314–0.71445; 18OSMOW, 3.8–5.8%o] requires that subducted oceanic crust is a component in some melts from which eclogite and garnet pyroxenite crystallized. Variscan Sm-Nd ages were obtained for garnet-clinopyroxene pairs from Dobeovice eclogite (338 Ma), Úhrov eclogite (344 Ma) and Nové Dvory garnet pyroxenite (343 Ma). Gföhl eclogite and garnet pyroxenite formed by high-pressure crystal accumulation (±trapped melt) from transient melts in the lithosphere, and the source of such melts was subducted, hydrothermally altered oceanic crust, including subducted sediments. Much of the chemical variation in the eclogites can be explained by simple fractional crystallization, whereas variation in the pyroxenites indicates fractional crystallization accompanied by some assimilation of the peridotite host.  相似文献   

11.
东昆仑夏日哈木铜镍硫化物矿床辉石特征及地质意义   总被引:1,自引:0,他引:1  
张志炳 《地质与勘探》2017,53(5):867-879
夏日哈木铜镍硫化物矿床的发现在矿床规模、成矿时代及成矿区带方面都有重要意义。辉石作为最主要的造岩矿物之一,广泛赋存于该矿床的各岩相中,在橄榄岩相中多为填隙相,而在辉石岩相及辉长岩相中多呈堆晶相;总体上,斜方辉石含量大于单斜辉石含量。辉石Cr_2O_3含量在橄榄岩相、辉石岩相、辉长岩相具有依次降低的趋势,说明从早到晚含矿的橄榄岩相、辉石岩相、辉长岩相先后结晶,并非所有辉长岩相的结晶均早于橄榄岩相和辉石岩相;单斜辉石SiO_2、TiO_2及Na_2O含量之间的关系显示夏日哈木矿床母岩浆属拉斑玄武质岩浆,较高的Al_2O_3含量(2.55%~10.61%)暗示岩体形成过程中与富铝围岩发生了同化混染作用。  相似文献   

12.
本研究首次报道了早白垩世济南辉长岩中橄榄石斑晶捕获的熔体包裹体的研究结果。济南辉长岩中橄榄石的Fo(60.3~74.6),Mn(2500~3500μg/g),Ni(70~1349μg/g),Fe/Mn比值(61.2~83.5),与源区母岩为纯的橄榄岩形成的熔体结晶出的橄榄石性质不同,可能与源区存在辉石岩的贡献有关。橄榄石中熔体包裹体主量元素具有较大的变化范围。熔体包裹体成分的标准矿物计算(CIPW)表明,MgO10%的熔体包裹体为含有霞石和橄榄石标准矿物分子的硅不饱和熔体,Mg O10%时为含石英标准矿物分子的硅饱和熔体。橄榄石中包裹有辉石和斜长石,说明岩浆演化过程应该处于开放环境。熔体包裹体的(~208Pb/~206Pb)i和(~207Pb/~206Pb)i与MgO具有良好的负相关关系,与SiO_2具有良好的正相关关系,以及熔体包裹体具有较高的SiO_2特征表明岩浆演化过程中可能有下地壳长英质组分的加入。熔体包裹体的Pb同位素落在EMI附近并向EMII延伸,其源区可能有EMI和EMII的贡献,熔体包裹体的主量元素成分说明其源区母岩可能有橄榄岩和辉石岩的贡献。  相似文献   

13.
The picritic dykes occurring within fine-grained gabbro in the marginal zone and in the surrounding Proterozoic wall-rock marbles of the Panzhihua Fe–Ti oxide deposit closely correspond in bulk composition with the nearby Panzhihua intrusion. These dykes offer important constraints on the nature of the mantle source of the Panzhihua ore-bearing intrusion and its possible link to the Emeishan plume. U–Pb zircon dating of the picritic dyke yields a crystallization age of 261.4 ± 4.6 Ma, coeval with the timing of the main Panzhihua gabbroic intrusion and Late Permian Emeishan flood basalts. The Panzhihua picritic dykes contain 37.63–43.41 wt% SiO2, 1.15–1.56 wt% TiO2, 11.43–13.25 wt% TFe2O3, and 20.96–28.87 wt% MgO. Primitive-mantle-normalized patterns of the rocks are comparable to those of ocean island basalt. The rocks define a relatively small range of Os isotopic compositions and a low Os signature of ?0.13 to +2.76 for γOs (261 Ma). In combination with their Sr–Nd–Os isotopic compositions, we interpret that these rocks were derived from the Emeishan plume sources as well as the interactions of plume melts with the overlying lithosphere which had been extensively affected by eclogite-derived melts from the deep-subducted oceanic slab. Partial melting induced by an upwelling mantle plume that involved an eclogite or pyroxenite component in the lithospheric mantle could have produced the parental Fe-rich magma. Our study suggests that plume-lithosphere interaction might have played a key role in generating many world-class Fe–Ti oxide deposits clustered in the Panxi area.  相似文献   

14.
Cliff S.J. Shaw   《Lithos》1997,40(2-4):243-259
The Coldwell alkaline complex is a large (> 350 km2) gabbro and syenite intrusion on the north shore of Lake Superior. It was emplaced at 1108 Ma during early magmatic activity associated with the formation of the Mid-Continent Rift of North America. The eastern gabbro forms a partial ring dyke on the outer margin of the complex and consists of at least three discrete intrusions. The largest of these is the layered gabbro that comprises a 300 m thick fine- to medium-grained basal unit overlain by up to 1100 m of variably massive to layered gabbroic cumulates which vary from olivine gabbro to anorthosite. Several xenoliths of Archaean metamorphic rocks that range in size from 10's to 100's of meters are present in the central part of the intrusion. Within discrete horizons in the layered gabbro are many centimeter- to meter-scale, gabbroic xenoliths. The main cumulus minerals, in order of crystallization, are plagioclase, olivine and clinopyroxene ± Fe-Ti oxides. Biotite and Fe-Ti-oxide are the dominant intercumulus phases. Orthopyroxene occurs not as a cumulus phase but as peritectic overgrowths on cumulus olivine. A detailed petrographic and mineral chemical study of samples from two stratigraphically controlled traverses through the layered gabbro indicates that the stratigraphy cannot be correlated along the 33 km strike of the ring dyke. Mineral compositions show both normal and reversed fractionation trends. These patterns are interpreted to record at least three separate intrusions of magma into restricted dilatant zones within the ring dyke possibly associated with ongoing caldera collapse. Calculations of parental melt composition using mineral — melt equilibria show that even the most primitive gabbros crystallized from an evolved magma with mg# of 0.42-0.49. The presence of orthopyroxene overgrowths on cumulus olivine suggests rising silica activity in the melt during crystallization and implies a subalkaline parentage for the layered gabbro.  相似文献   

15.
“三江”哀牢山带蛇绿岩特征研究   总被引:8,自引:2,他引:6  
哀牢山带蛇绿岩由变质橄榄岩、堆晶杂岩和基性熔岩组成。其中二辉橄榄岩近似原始地幔岩,方辉橄榄岩为残留地幔岩。辉长岩-辉绿岩-辉石玄武岩系列及辉石岩-辉长闪长岩-钠长玄武岩-苦橄玄武岩系列分别为原始二辉橄榄岩经部分熔融产生的拉斑玄武岩浆及苦橄玄武岩浆结晶或结晶分异演化而成;前者具有洋脊玄武岩特征,后者具有准洋脊玄武岩特征,它们形成于大洋中脊环境。其形成时代不晚于早石炭世(C1),侵位在晚三叠世一碗水组(T3y)之前。  相似文献   

16.
Experiments with mixtures of granite, peridotite and H2O at 30 kbar were designed as a first step to test the hypothesis that the calc-alkaline igneous rocks of subduction zones are formed by differentiation of magmas derived by partial melting of hybrid rocks generated in the mantle wedge, by reaction between hydrous siliceous magma rising from subducted oceanic crust, and the overlying mantle peridotite. Experiments were conducted in gold capsules in half-inch diameter piston-cylinder apparatus. Results are presented in a 900° C isotherm, and in a projection of vapor-present phase fields onto T-granite-peridotite. Isobaric solution of peridotite in hydrous, H2O-undersaturated granite liquid at 900° C causes only small changes in liquid composition, followed by precipitation of orthopyroxene until about half of the liquid has solidified; then orthopyroxene is joined by jadeitic clinopyroxene, garnet, and phlogopite. Phlogopite-garnet-websterite continues to be precipitated, with evolution of aqueous vapor, until all of the liquid is used up. The product of hybridization is a pyroxenite without olivine. The products of partial melting of this material would differ from products derived from peridotite because there is no olivine control, and the clinopyroxenes contain up to 7% Na2O, compared with less than 1% Na2O in peridotite clinopyroxenes. The reaction products are directly analogous to those in the model system KAlSiO4-Mg2SiO4-SiO2-H2O, where, with decreasing SiO2 in the hydrous siliceous liquid, the field for phlogopite expands, and phlogopite instead of orthopyroxene becomes the primary mineral. If this occurs with less siliceous magmas from the subducted oceanic crust, there is a prospect for separation of discrete bodies of phlogopite-rock as well as phlogopite-garnet-websterite. We need to know the products of hybridization, and the products of partial melting of the hybrid rocks through a range of conditions.  相似文献   

17.
 Mafic and ultramafic rocks sampled in the Garrett transform fault at 13°28′S on the East Pacific Rise (EPR) provide insight on magmatic processes occurring under a fast-spreading ridge system. Serpentinized harzburgite from Garrett have modal, mineral and bulk chemical compositions consistent with being mantle residue of a high degree of partial melting. Along with other EPR localities (Terevaka transform fault and Hess Deep), these harzburgites are among the most residual and depleted in magmatophile elements of the entire mid-ocean ridge system. Geothermometric calculations using olivine-spinel pairs indicate a mean temperature of 759 ± 25 °C for Garrett residual harzburgite similar to the average of 755 °C for tectonite peridotites from slow-spreading ridges. Results of this study show that mid-ocean ridge peridotites are subject to both fractional melting and metasomatic processes. Evidence for mantle metasomatism is ubiquitous in harzburgite and is likely widespread in the entire Garrett peridotite massif. Magma-harzburgite interactions are very well preserved as pyroxenite lenses, plagioclase dunite pockets or dunitic wall rock to intrusive gabbros. Abundant gabbroic rocks are found as intrusive pockets and dikes in harzburgite and have been injected in the following sequence: olivine-gabbro, gabbro, gabbronorite, and ferrogabbro. The wide variety of magmas that crystallized into gabbros contrast sharply with present-day intratransform basalts, which have a highly primitive composition. Ferrogabbro dikes have been intruded at the ridge-transform intersection and as they represent the last event of a succession of gabbros intrusive into the peridotite, they likely constrain the origin of the entire peridotite massif to the same location. In peridotite massifs from Pacific transform faults (Garrett and Terevaka), primitive to fractionated basaltic magmas have flowed and crystallized variable amounts of dunite (±plagioclase) and minor pyroxenite, followed by a succession of cumulate gabbroic dikes which have extensively intruded and modified the host harzburgitic rocks. The lithosphere and style of magmatic activity within a fast-slipping transform fault (outcrops of ultramafic massif, discontinuous gabbro pockets intrusive in peridotite, magnesian and phyric basalts) are more analogous to slow-spreading Mid-Atlantic Ridge type than the East Pacific Rise. Received: 13 October 1997 / Accepted: 5 February 1999  相似文献   

18.
This work presents new field and petrological data on a poorly known lower crustal section from the Alpine Jurassic ophiolites, the Pineto gabbroic sequence from Corsica (France). The Pineto gabbroic sequence is estimated to be ~1.5 km thick and mainly consists of clinopyroxene-rich gabbros to gabbronorites near its stratigraphic top and of troctolites and minor olivine gabbros in its deeper sector. The sequence also encloses olivine-rich troctolite and mantle peridotite bodies at different stratigraphic heights. The composition and the lithological variability of the Pineto gabbroic sequence recall those of the lower crustal sections at slow- and ultra-slow-spreading ridges. The gabbroic sequence considered in this study is distinct in the high proportion of troctolites and olivine gabbros, which approximately constitute 2/3 of the section. In particular, the lower sector of the Pineto gabbroic sequence shows the existence of large-scale fragments of the deepest oceanic crust displaying a highly primitive bulk composition. The mineral chemical variations document that the origin and the evolution of the Pineto gabbroic rocks were mostly constrained by a process of fractional crystallisation. The clinopyroxenes from the olivine gabbros and the olivine-rich troctolites also record the infiltration of olivine-dissolving, Cr2O3-rich melts that presumably formed within the mantle, into replacive dunite bodies. Cooling rates of the troctolites and the olivine gabbros were evaluated using the Ca in olivine geospeedometer. We obtained high and nearly constant values of ?2.2 to ?1.7 °C/year log units, which were correlated with the building of the Pineto gabbroic sequence through multiple gabbroic intrusions intruded into a cold lithospheric mantle.  相似文献   

19.
The Cape Verde hotspot, like many other Ocean Island Basalt provinces, demonstrates isotopic heterogeneity on a 100–200 km scale. The heterogeneity is represented by the appearance of an EM1-like component at several of the southern islands and with a HIMU-like component present throughout the archipelago. Where the EM1-like component is absent, a local DMM-like component replaces the EM1-like component. Various source lithologies, including peridotite, pyroxenite and eclogite have been suggested to contribute to generation of these heterogeneities; however, attempts to quantify such contributions have been limited. We apply the minor elements in olivine approach (Sobolev et al. in Nature 434:590–597, 2005; Science, doi: 10.1126/science.1138113, 2007), to determine and quantify the contributions of peridotite, pyroxenite and eclogite melts to the mantle heterogeneity observed at Cape Verde. Cores of olivine phenocrysts of the Cape Verde volcanics have low Mn/FeO and low Ni*FeO/MgO that deviate from the negative trend of the global array. The global array is defined by mixing between peridotite and pyroxenite, whereas the Cape Verde volcanics indicate contribution of an additional eclogite source. Eclogite melts escape reaction with peridotite either by efficient extraction in an area of poor mantle flow or by reaction of eclogite melts with peridotite, whereby an abundance of eclogite can seal off the melt from further reaction. Temporal trends of decreasing Mn/FeO indicate that the supply of eclogite melts is increasing. Modelling suggests the local DMM-like end-member is formed from a relatively peridotite-rich melt, while the EM1-like end-member has a closer affinity to a mixed peridotite–pyroxenite–eclogite melt. Notably the HIMU-like component ranges from pyroxenite–peridotite-rich melt to one with up to 77 % eclogite melt as a function of time, implying that sealing of melt pathways is becoming more effective.  相似文献   

20.
Detailed microtextural observations and bulk chemical analysis were undertaken on a garnet‐pyroxenite nodule within retrograde eclogites from the NE Sulu ultrahigh‐pressure metamorphic (UHPM) terrane. The results suggest that the protolith was a cumulate from a gabbroic body. The nodule consists primarily of coarse clinopyroxene grains with a very high content of the Ca‐Tschermakite molecule. Microscopic observations and back‐scattered electron images (BSE) demonstrate a complicated intergrowth of clinopyroxene, garnet and ilmenite, which represents the peak metamorphic assemblage. The primary clinopyroxene grains are armoured with a thin garnet corona up to 0.5 mm wide that forms an interconnected network. Within the clinopyroxene grains, four sets of garnet lamellae are distributed along crystallographic planes; locally, a vermicular intergrowth of garnet and diopside is developed. Besides the garnet, parallel arrays of ilmenite blebs are common within the clinopyroxene. Hydrous minerals such as amphibole, zoisite and titanite formed at later stages, and replaced diopside, garnet and ilmenite respectively. The P–T conditions determined for the formation of the garnet lamellae indicate that the garnet pyroxenite experienced UHP metamorphism at the same peak P–T condition as its host eclogite. The very high Ca‐Tschermakite content (31–34 mol.%) of the primary clinopyroxene indicates crystallization at about 9–17 kbar and 1250–1450 °C, and together with the microtextural observations, suggests that the protolith of the garnet pyroxenite was a cumulate from a former gabbroic body, in which case, the host eclogite might represent the gabbroic body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号