首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Comparison Between Modelled and Measured Mixing-Layer Height Over Munich   总被引:1,自引:0,他引:1  
An attempt is made to correlate the mixing heights, derived from ceilometer and Sodar measurements, to those simulated by different atmospheric boundary-layer parameterization schemes. The comparison is performed at two sites (one suburban and one rural) close to Munich, Germany for two spring and two winter days. It is found that, under convective conditions, the mixing height determined, by both Sodar and ceilometer, corresponds to the middle or the top of the entrainment zone, respectively, as calculated from the eddy-viscosity profiles. Under stable conditions, the measured mixing height is related to the height where eddy viscosities attain their minimum values (Sodar) or to the height of residual mechanical turbulence (ceilometer). During a foehn case with weak turbulence, the measured mixing height from both Sodar and ceilometer is better inferred by considering the eddy-viscosity profiles during daytime and the height of the low-level jet during nighttime.  相似文献   

2.
Regular aerosol backscatter measurements using an elastic-backscatter lidar were performed between May 2000 and December 2002 in Barcelona (Spain), within the framework of the European project EARLINET (European Aerosol Research Lidar Network). The mixed-layer depth was one of the major parameters to be retrieved. Three derivative methods have been tested in this complex coastal area using the range-squared-corrected lidar signal: (1) the minimum of its first derivative, (2) the minimum of its second derivative, and (3) the minimum of the first derivative of its logarithm. The second method was found to give statistically the best results when compared to radiosoundings, and was used to process the whole dataset. A number of 162 days and 660 profiles averaged over 30 min have been examined. Between 1000 and 1500 UTC, the mixed-layer depth oscillates between 300 and 1450 m in summer and between 390 and 1420 m in winter. The standard deviation for this portion of the day is 180 and 256 m, respectively, in summer and winter. In summer, low heights (mainly limited to 400–800 m) are associated with large mesoscale compensatory subsidence over the sea and to the thermal internal boundary-layer formation. The strong coastal and orographic influences and the climatological settling of Barcelona determine the complexity of the boundary-layer dynamics and the high heterogeneity of the lidar signals. In many cases, single lidar analyses do not allow an unambiguous determination of the mixed-layer depth. Two diurnal cycle measurements are discussed together with synoptic maps, backtrajectories and radiosoundings in order to outline the complexity of the area and the limitations of the methods.  相似文献   

3.
The diurnal and seasonal variability of the mixed-layer height in urban areas has implications for ground-level air pollution and the meteorological conditions. Measurements of the backscatter of light pulses with a commercial lidar system were performed for a continuous period of almost six years between 2011 and 2016 in the southern part of Mexico City. The profiles were temporally and vertically smoothed, clouds were filtered out, and the mixed-layer height was determined with an ad hoc treatment of both the filtered and unfiltered profiles. The results are in agreement when compared with values of mixed-layer height reconstructed from, (i) radiosonde data, and (ii) surface and vertical column densities of a trace gas. The daily maxima of the mean mixed-layer height reach values \(> 3\hbox { km}\) above ground level in the months of March–April, and are clearly lower (\(< 2.7\hbox { km}\)) during the colder months from September–December. Mean daily minima are typically observed at 0700 local time (UTC ? 6h), and are lowest during the winter months with values on average below 500 m. The data presented here show an anti-correlation between high-pollution episodes and the height of the mixed layer. The growth rate of the convective mixed-layer height has a seasonal behaviour, which is characterized together with the mixed-layer-height anomalies. A clear residual layer is evident from the backscattered signals recorded in days with specific atmospheric conditions, but also from the cloud-filtered mean diurnal profiles. The occasional presence of a residual layer results in an overestimation of the reported mixed-layer height during the night and early morning hours.  相似文献   

4.
Retrieval of mixing height and dust concentration with lidar ceilometer   总被引:4,自引:2,他引:4  
The Vaisala ceilometers CT25K and CL31 are eye-safe single lens lidar systems reporting attenuated backscatter profiles; they often operate 24 h a day in fully automated, hands-off operation mode. These profiles can be used for more than just cloud-base height determination. In dry weather situations, there is a fairly good correlation between the ceilometer near-range backscatter and in situ PM10 concentration readings. The comparison of mixing height values based on soundings and on ceilometer backscattering profiles indicates that ceilometers are suitable instruments for determining the convective mixing height. Its enhanced optics and electronics enables the CL31 ceilometer to detect fine boundary-layer structures whose counterparts are seen in temperature profiles.  相似文献   

5.
The determination of the depth of daytime and nighttime mixing layers must be known very accurately to relate boundary-layer concentrations of gases or particles to upstream fluxes. The mixing-height is parametrized in numerical weather prediction models, so improving the determination of the mixing height will improve the quality of the estimated gas and particle budgets. Datasets of mixing-height diurnal cycles with high temporal and spatial resolutions are sought by various end users. Lidars and ceilometers provide vertical profiles of backscatter from aerosol particles. As aerosols are predominantly concentrated in the mixing layer, lidar backscatter profiles can be used to trace the depth of the mixing layer. Large numbers of automatic profiling lidars and ceilometers are deployed by meteorological services and other agencies in several European countries providing systems to monitor the mixing height on temporal and spatial scales of unprecedented density. We investigate limitations and capabilities of existing mixing height retrieval algorithms by applying five different retrieval techniques to three different lidars and ceilometers deployed during two 1-month campaigns. We studied three important steps in the mixing height retrieval process, namely the lidar/ceilometer pre-processing to reach sufficient signal-to-noise ratio, gradient detection techniques to find the significant aerosol gradients, and finally quality control and layer attribution to identify the actual mixing height from multiple possible layer detections. We found that layer attribution is by far the most uncertain step. We tested different gradient detection techniques, and found no evidence that the first derivative, wavelet transform, and two-dimensional derivative techniques have different skills to detect one or multiple significant aerosol gradients from lidar and ceilometer attenuated backscatter. However, our study shows that, when mixing height retrievals from a ultraviolet lidar and a near-infrared ceilometer agreed, they were 25?C40% more likely to agree with an independent radiosonde mixing height retrieval than when each lidar or ceilometer was used alone. Furthermore, we point to directions that may assist the layer attribution step, for instance using commonly available surface measurements of radiation and temperature to derive surface sensible heat fluxes as a proxy for the intensity of convective mixing. It is a worthwhile effort to pursue such studies so that within a few years automatic profiling lidar and ceilometer networks can be utilized efficiently to monitor mixing heights at the European scale.  相似文献   

6.
利用2018年10月1日至2019年9月30日沈阳地区三个高度大气颗粒物浓度和气象要素逐时观测资料,分析了不同高度颗粒物浓度时间变化特征及其与气象要素的关系.结果表明:不同高度的颗粒物浓度均存在明显的季节变化,秋冬季数值明显高于春夏季.冬季,三个高度的PM2.5平均浓度为54.98±12.67μg·m-3、63.77±...  相似文献   

7.
利用2016年10月~2017年2月激光云高仪资料,分析了霾、雾、轻霾、轻雾、晴空等天气后向散射强度廓线特征,通过统计各高度层后向散射强度、后向散射强度垂直梯度的概率分布,分析了多种天气的气溶胶光学特性。结果表明:雾天气后向散射强度较霾天气大,雾厚度一般不超过300m。霾天气后向散射强度随着高度的增加减小缓慢,霾的厚度大于500m。与雾和轻雾相比,霾和轻霾天气垂直梯度绝对值取小值的概率较大。雾和轻雾天气400m高度以上垂直梯度绝对值较小,400m高度以下数值较大。由于霾区内粒子分布较均匀,雾区粒子分布起伏明显,雾区内后向散射强度忽大忽小,所以雾天气垂直梯度绝对值出现大值的概率较霾天气高。  相似文献   

8.
The development of the planetary boundary layer (PBL) has been studied in a complex terrain using various remote sensing and in situ techniques. The high-altitude research station at Jungfraujoch (3,580 m a.s.l.) in the Swiss Alps lies for most of the time in the free troposphere except when it is influenced by the PBL reaching the station, especially during the summer season. A ceilometer and a wind profiler were installed at Kleine Scheidegg, a mountain pass close to Jungfraujoch, located at an altitude of 2,061 m a.s.l. Data from the ceilometer were analyzed using two different algorithms, while the signal-to-noise ratio of the wind profiler was studied to compare the retrieved PBL heights. The retrieved values from the ceilometer and wind profiler agreed well during daytime and cloud-free conditions. The results were additionally compared with the PBL height estimated by the numerical weather prediction model COSMO-2, which showed a clear underestimation of the PBL height for most of the cases but occasionally also a slight overestimation especially around noon, when the PBL showed its maximum extent. Air parcels were transported upwards by slope winds towards Jungfraujoch when the PBL was higher than 2,800 m a.s.l. during cloud-free cases. This was confirmed by the in situ aerosol measurements at Jungfraujoch with a significant increase in particle number concentration, particle light absorption and scattering coefficients when PBL-influenced air masses reached the station in the afternoon hours. The continuous aerosol in situ measurements at Jungfraujoch were clearly influenced by the local PBL development but also by long-range transport phenomena such as Saharan dust or pollution from the south.  相似文献   

9.
The cloud fraction(CF) and cloud-base heights(CBHs), and cirrus properties, over a site in southeastern China from June 2008 to May 2009, are examined by a ground-based lidar. Results show that clouds occupied the sky 41% of the time.Significant seasonal variations in CF were found with a maximum/minimum during winter/summer and similar magnitudes of CF in spring and autumn. A distinct diurnal cycle in the overall mean CF was seen. Total, daytime, and nighttime annual mean CBHs were 3.05 ± 2.73 km, 2.46 ± 2.08 km, and 3.51 ± 3.07 km, respectively. The lowest/highest CBH occurred around noon/midnight. Cirrus clouds were present ~36.2% of the time at night with the percentage increased in summer and decreased in spring. Annual mean values for cirrus geometrical properties were 8.89 ± 1.65 km, 9.80 ± 1.70 km, 10.73 ± 1.86 km and 1.83 ± 0.91 km for the base, mid-cloud, top height, and the thickness, respectively. Seasonal variations in cirrus geometrical properties show a maximum/minimum in summer/winter for all cirrus geometrical parameters. The mean cirrus lidar ratio for all cirrus cases in our study was ~ 25 ± 17 sr, with a smooth seasonal trend. The cirrus optical depth ranged from 0.001 to 2.475, with a mean of 0.34 ± 0.33. Sub-visual, thin, and dense cirrus were observed in ~12%, 43%, and 45%of the cases, respectively. More frequent, thicker cirrus clouds occurred in summer than in any other season. The properties of cirrus cloud over the site are compared with other lidar-based retrievals of midlatitude cirrus cloud properties.  相似文献   

10.
Over arid regions in north-west China, the atmospheric boundary layer can be extremely high during daytime in late spring and summer. For instance, the depth of the observed convective boundary layer can exceed 3,000 m or even be up to 4,000 m at some stations. In order to characterize the atmospheric boundary-layer (ABL) conditions and to understand the mechanisms that produce such an extreme boundary-layer height, an advanced research version of the community weather research and forecasting numerical model (WRF) is employed to simulate observed extreme boundary-layer heights in May 2000. The ability of the WRF model in simulating the atmospheric boundary layer over arid areas is evaluated. Several key parameters that contribute to the extremely deep boundary layer are identified through sensitivity experiments, and it is found that the WRF model is able to capture characteristics of the observed deep atmospheric boundary layer. Results demonstrate the influence of soil moisture and surface albedo on the simulation of the extremely deep boundary layer. In addition, the choice of land-surface model and forecast lead times also plays a role in the accurate numerical simulation of the ABL height.  相似文献   

11.
We have studied the role of low-level clouds in modifying the thermodynamic and turbulence properties of the Arctic boundary layer during autumn. This was achieved through detailed analyses of boundary-layer properties in two regions, one with low-level cloud cover and the other free of clouds, using measurements from a research aircraft during the Beaufort and Arctic Storms Experiment (BASE). Both regions were measured on the same day under similar synoptic forcing. The cloudy region was characterized by strong horizontal inhomogeneity in low-level temperature and moisture that varied with the cloud-top height. The clear region was relatively homogeneous in temperature and specific humidity with a strong temperature inversion extending between heights of 100 m and 3 km. From measurements at the lowest levels, we also identified a shallow mixed layer below the deep stable layer in the clear region.Our spectral analyses revealed significant modifications of boundary-layer properties due to the presence of low-level clouds. In the cloudy region, turbulent perturbations dominated the boundary-layer flow and made large contributions to the scalar variances. In the clear boundary-layer, wave motion contributed significantly to the observed variances, while turbulent flow was relatively weak. The clear region was saturated, although no detectable clouds were measured.  相似文献   

12.
郑倩  孙杭媛  潘欣  顾振海  黄亿  叶飞 《气象科学》2022,42(3):390-401
利用2008年9月—2016年8月的CloudSat卫星资料对发生在我国低纬度陆地区域(5°~36.5°N,78°~124°E)的卷云物理特征进行统计分析,并分别讨论东部沿海、中部、西部3个子区域的卷云物理特征的季节变化。结果表明:卷云的整层发生率西部地区整体低于中部与东部沿海地区。3个子区域整层发生率均在夏季最高、冬季最低。卷云的主要发生高度在5.04~18.71 km,垂直分布中卷云发生率的最大值出现在春季中部地区,为15.34%,高度为9.83 km。冰水路径最大值出现在夏季的东部沿海,液水路径最大值在秋季的西部地区。冰水含量、冰粒数浓度、冰粒有效半径的主要分布高度与卷云的发生高度一致,液水含量、液滴数浓度、液滴有效半径的主要分布高度在5.04~9.35 km。3个子区域卷云冰水含量、冰粒数浓度、冰粒有效半径垂直分布中大多集中在中上部;液水含量垂直分布主要集中在分布高度的中下部。四季卷云雷达反射率因子的最大值在-19.89~-16.78 dBZ,分布高度在7.19~10.55 km。  相似文献   

13.
Planetary boundary-layer (PBL) structure was investigated using observations from a Doppler lidar and the 325-m Institute of Atmospheric Physics (IAP) meteorological tower in the centre of Beijing during the summer 2015 Study of Urban-impacts on Rainfall and Fog/haze (SURF-2015) field campaign. Using six fair-weather days of lidar and tower data under clear to cloudy skies, we evaluate the ability of the Doppler lidar to probe the urban boundary-layer structure, and then propose a composite method for estimating the diurnal cycle of the PBL depth using the Doppler lidar. For the convective boundary layer (CBL), a threshold method using vertical velocity variance \((\sigma _w^2 >0.1\,\hbox {m}^{2}\hbox {s}^{-2})\) is used, since it provides more reliable CBL depths than a conventional maximum wind-shear method. The nocturnal boundary-layer (NBL) depth is defined as the height at which \(\sigma _w^2\) decreases to 10 % of its near-surface maximum minus a background variance. The PBL depths determined by combining these methods have average values ranging from \(\approx \)270 to \(\approx \)1500 m for the six days, with the greatest maximum depths associated with clear skies. Release of stored and anthropogenic heat contributes to the maintenance of turbulence until late evening, keeping the NBL near-neutral and deeper at night than would be expected over a natural surface. The NBL typically becomes more shallow with time, but grows in the presence of low-level nocturnal jets. While current results are promising, data over a broader range of conditions are needed to fully develop our PBL-depth algorithms.  相似文献   

14.
Summer boundary-layer height at the plateau site of Dome’C,antarctica   总被引:1,自引:1,他引:0  
Measurements of the mean and turbulent structure of the planetary boundary layer using a sodar and a sonic anemometer, and radiative measurements using a radiometer, were carried out in the summer of 1999–2000 at the Antarctic plateau station of Dome C during a two-month period. At Dome C strong ground-based inversions dominate for most of the year. However, in spite of the low surface temperatures (between −50 and −20 °C), and the surface always covered by snow and ice, a regular daytime boundary-layer evolution, similar to that observed at mid-latitudes, was observed during summertime. The mixed-layer height generally reaches 200–300 m at 1300–1400 LST in high summer (late December, early January); late in the summer (end of January to February), as the solar elevation decreases, it reduces to 100–200 m. A comparison between the mixed-layer height estimated from sodar measurements and that calculated using a mixed-layer growth model shows a rather satisfactory agreement if we assign a value of 0.01–0.02 m s−1 to the subsidence velocity at the top of the mixed layer, and a value of 0.003–0.004 K m−1 to the potential temperature gradient above the mixed layer.  相似文献   

15.
基于CloudSat云分类资料的华北地区云宏观特征分析   总被引:4,自引:0,他引:4  
陈超  孟辉  靳瑞军  王兆宇 《气象科技》2014,42(2):294-301
利用2007年1月至2008年12月的CloudSat 2B-CLDCLASS-LIDAR云分类资料对华北地区(36°~42°N,110°~120°E)各类云在单层及多层云中的出现频率、平均高度及平均厚度进行统计分析。结果表明:华北地区单层云和多层云出现频率存在明显的季节变化,夏季最大,春秋次之,冬季最小。单层云的出现频率远高于多层云,单层云出现频率在春、夏、秋、冬4个季节分别为44.3%、46.1%、37.8%和32.8%,而多层云中2层云所占比例最大。单层云和多层云各云层平均高度、平均厚度分析显示,3层云上层云顶云底高度最高,3层云下层云顶云底高度最低,单层云平均厚度明显大于多层云,云层数越多,各云层的平均厚度越小。对不同类型云出现频率分析显示,卷云主要出现在单层云及多层云中、上层,高层云和高积云在单层云和多层云各云层中均占有一定的比例,层云主要出现在多层云下层,层积云、积云、深对流云主要出现在单层云及多层云下层,雨层云主要出现在夏季单层云中。卷云、高层云、高积云的平均高度及厚度在不同云系统中存在显著的差异。  相似文献   

16.
Since 2006 different remote monitoring methods for determining mixing-layer height have been operated in parallel in Augsburg (Germany). One method is based on the operation of eye-safe commercial mini-lidar systems (ceilometers). The optical backscatter intensities recorded with ceilometers provide information about the range-dependent aerosol concentration; gradient minima within this profile mark the tops of mixed layers. Special software for these ceilometers provides routine retrievals of lower atmospheric layering. A second method, based on sodar observations, detects the height of a turbulent layer characterized by high acoustic backscatter intensities due to thermal fluctuations and a high variance of the vertical velocity component. This information is extended by measurements with a radio-acoustic sounding system (RASS) that directly provides the vertical temperature profile from the detection of acoustic signal propagation and thus temperature inversions that mark atmospheric layers. Ceilometer backscatter information is evaluated by comparison with parallel measurements. Data are presented from 2 years of combined ceilometer and RASS measurements at the same site and from comparison with a nearby (60 km) radiosonde for larger-scale humidity information. This evaluation is designed to ensure mixing-layer height monitoring from ceilometer data more reliable.  相似文献   

17.
Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation without moisture is analytically derived without assuming any additional relationships or specific initial conditions. It is shown that to expand the solution to include moisture, only minor approximations have to be made. Second, for relatively large boundary-layer heights, the implicit representation is simplified to an explicit function. Third, a hybrid expression is proposed as a reasonable representation for the boundary-layer height evolution during the entire day. Subsequently, the analysis is extended to present the evolution of any boundary-layer averaged scalar, either inert or under idealized chemistry, as an analytical function of time and boundary-layer height. Finally, the analytical solutions are evaluated. This evaluation includes a sensitivity analysis of the boundary-layer height for the entrainment ratio, the free tropospheric lapse rate of the potential temperature, the time-integrated surface flux and the initial boundary-layer height and potential temperature jump.  相似文献   

18.
We present measurements from 2006 of the marine wind speed profile at a site located 18 km from the west coast of Denmark in the North Sea. Measurements from mast-mounted cup anemometers up to a height of 45 m are extended to 161 m using LiDAR observations. Atmospheric turbulent flux measurements performed in 2004 with a sonic anemometer are compared to a bulk Richardson number formulation of the atmospheric stability. This is used to classify the LiDAR/cup wind speed profiles into atmospheric stability classes. The observations are compared to a simplified model for the wind speed profile that accounts for the effect of the boundary-layer height. For unstable and neutral atmospheric conditions the boundary-layer height could be neglected, whereas for stable conditions it is comparable to the measuring heights and therefore essential to include. It is interesting to note that, although it is derived from a different physical approach, the simplified wind speed profile conforms to the traditional expressions of the surface layer when the effect of the boundary-layer height is neglected.  相似文献   

19.
利用敦煌、酒泉、张掖、民勤探空站2014—2019年的探空数据,对祁连山北坡云的发生频率及云垂直结构特征进行分析。结果表明:祁连山北坡全年云的发生频率为20%~40%,以1~3层云为主,且单层云的发生频率高于多层云,多层云以2层云为主;云的发生频率夏高冬低,夏季单层云和2层云出现的频率较为接近,而春、秋、冬季节单层云出现频率远高于2层云和3层云;全年平均云高度2层云的下层云厚度明显大于上层云,3层云的底层云与中层云之间晴空夹层厚度大于中层云与顶层云之间的晴空厚度;祁连山北坡云层高度季节变化显著,单层云和多层云的高度都表现为夏高冬低。  相似文献   

20.
吴翀  刘黎平  翟晓春 《大气科学》2017,41(4):659-672
激光云高仪和云雷达是探测云底的两种设备,但其探测能力和探测结果有一定的差异,对比分析两种设备的测云效果有助于正确认识它们的探测优势,推进我国云雷达在云探测中的应用。本文提出了基于云雷达数据的云底和云顶高度分析方法,利用2014年夏季第三次青藏高原大气科学试验云雷达、激光雷达和激光云高仪数据,统计了三种设备探测青藏高原低云、中云和高云的云底高度偏差、探测率,分析了激光云高仪探测云底偏高的原因,根据探测结果提出了固态发射机体制雷达探测青藏高原低云的优化观测模式,模拟分析了探测效果。结果表明:(1)云雷达对高云的探测能力要明显优于激光云高仪,但其对低云的探测能力有待改进,激光云高仪探测云底下部的边界层内的云雷达回波信号可能是非云降水回波;低层云的遮挡作用明显降低了激光云高仪对多层云的观测能力;与激光云高仪相比,云雷达仍然会漏掉一些高云和中云。(2)激光云高仪探测的中云和高云的云底很多在云雷达回波内部,云雷达和激光云高仪观测的云底的时空对应关系比较差。(3)增大激光发射功率和优化固态发射机体制云雷达观测模式可提高云的观测能力,微波和激光雷达数据融合可全面了解不同类型云的宏观特征。这一工作为云雷达和激光雷达数据的应用,评估激光云高仪和云雷达探测青藏高原云的能力,讨论设计优化的云观测方案,为推进我国云观测技术的发展提供了重要参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号