首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Te-Se-bearing gold-silver ores from Salida in Sumatra, Indonesia, show carbonate and sulfidic diffusion bands in quartz incrustations. The sulfidic diffusion bands show a fine diffusion zoning with: 1. an earliest or inner zone with concentrations of Zn, Cu, Fe, S (sphalerite, chalcopyrite, pyrite); 2. an intermediate zone with concentrations of Pb, Au, Ag, S, Te, Se (galena and Au-Ag-tellurides in Te-bearing parageneses; galena, electrum and acanthite in Te-free parageneses); and 3. a zone of As-bearing minerals (tennantite, enargite or luzonite, arsenpolybasite) superimposed on the first two zones. In the telluride-bearing ores paragenetic relations suggest that galena, altaite, hessite, and -phase and x-phase solid solutions originally crystallized above about 120 °C; on cooling this assemblage equilibrated into one stable below 50 °C and consisting of galena, altaite, hessite, hessite-sylvanite intergrowths, and hessite-petzite aggregates. Se is concentrated in sulfides of the intermediate diffusion zones; microprobe analyses indicate up to 4.0 weight percent Se in some acanthites and up to 0.45 weight percent Se in some galenas; arsenpolybasite also contains up to 4.0 weight percent Se but only when replacing seleniferous acanthite. The concentration of Se with Pb, Au, Ag, S, Te in intermediate diffusion zones is ascribed to solution differentiation during solute diffusion. Microprobe analyses are given of hessite, sylvanite, petzite, minerals of the pearceite-polybasite group, mckinstryite, and the Fe-, Mn- and Cd-contents in sphalerites.
Zusammenfassung Te-Se-führende Gold-Silber Erze von Salida in Sumatra, Indonesien, zeigen karbonatische und sulfidische Diffusionsbänder in Quarzkrusten. Die sulfidischen Diffusionsbänder zeigen eine feine Zonierung mit: 1. einer ältesten, inneren Zone mit Konzentrationen von Zn, Cu, Fe, S (Zinkblende, Kupferkies, Pyrit); 2. einer intermediären Zone mit Konzentrationen von Pb, Au, Ag, S, Te, Se (Bleiglanz und Au-Ag-Telluride in Te-haltigen Paragenesen; Bleiglanz und Akanthit in Te-freien Paragenesen); und 3. einer die erstgenannten Zonen überlagernden Zone von As-haltigen Mineralen (Tennantit, Enargit oder Luzonit, Arsenpolybasit). Die paragenetischen Beziehungen der Telluride deuten auf eine ursprüngliche Kristallisation von Bleiglanz, Altait, Hessit und - und X-Phase Mischkristalle bei Temperaturen oberhalb 120 °C; bei der Abkühlung wurde diese Mineralassoziation ersetzt durch eine unterhalb 50 °C stabile Paragenese von Bleiglanz, Altait, Hessit, Hessit-Sylvanit-Verwachsungen und Hessit-Petzit Aggregaten. Selen hat sich in den Sulfiden der intermediären Diffusionszonen angereichert. Mikrosondeanalysen zeigen Se-Gehalte bis 4.0 Gew. % in Akanthit und bis 0.45 Gew. % in Bleiglanz. Arsenpolybasit kann ebenfalls bis 4.0 Gew. % Se enthalten, aber nur wenn er als Verdränger von Se-reichen Akanthiten auftritt. Die Ursache der Anreicherung von Se zusammen mit Pb, Au, Ag, S, Te in den intermediären Diffusionszonen ist in einer Art von Lösungsdifferentiation während des Diffusionsprozesses zu suchen. Mikrosondeanalysen von Au-Ag-Telluriden, Mineralen der Pearceit-Polybasit Gruppe, Mckinstryit, und den Fe-, Mn- und Cd-Gehalten der Zinkblenden werden gegeben.
  相似文献   

3.
The magnetite-quartzites of Nainarmalai forms part of a large iron ore belt of Tamilnadu which occurs in a high grade granulite terrain. They are associated with basic granulites and gneisses. Mineralogical and chemical studies indicate their similarities with other metasedimentary iron ores.  相似文献   

4.
A nickel laterite deposit occurs in the Vatera area of Lesvos Island,Greece ,and is transgressively developed on serpentinized basic rock (norite).The overlying sedimentary rocks include marls and marly limestones with sandstone intercalations and belong to the Pliocene sed-iments.The following alteritic zones are defined from the bottom to top layers:a)bedrock (norite);b)serpentinized zone;c)goethitic zone.The bedrock consists of the following pri-mary minerals:basic plagioclase,orthopyroxenes and clinopyroxenes.The serpentinized zone includes clinochrysotile,lizardite,antigorite clinoenstatite,calcite and dolomite while in the goethic zone there are goethite,quartz,pyrite,chromite,dolomite.Al2O3 ,Fe2O3,CaO,Na2O,K2O,Ba,Sr,Ni,C and S are enriched in the goethitic zone .Nickel enrichment is re-lated to the formation of nickeliferons minerals substituting for Mg or/and Fe in the goethite and pyrite.Enrichment of Ni in the matrix may be due to the presence of amorphous Ni-sili-cates(pimelite).There is a significant change(decrease)in the concentration of Ni from the top to bottom parts of the laterite formation,indicating that there was no tendency to migrate downwards(immature laterite).A second support of the immaturity of the Vatera laterite is the incomplete oxidation of ferrous iron to form ferric iron hydroxides.Under tropical/subtropical conditions,which dominated from the end of Miocene to the Pliocene the norite rocks of the Vatera area altered in response to reaction with acid solutions enriched in CO2.Due to hydrolysis and oxidation of pyroxenes,Mg^2 ,H4SiO4 and Ni^2 were removed in the continental acid solutions.  相似文献   

5.
6.
Summary This paper describes mineralogical and geological aspects of the Owl Creek and Hoyle Pond gold mines, located in Archean metasediments and metavolcanics in the Abitibi greenstone belt in northern Ontario, Canada. The occurrence of invisible gold of Cenozoic age, hosted in structurally-controlled settings in Paleozoic strata of the southwestern U.S.A., has been known and exploited for over thirty years. Petrographic observations are combined with electron microprobe data in order to describe aspects of gold mineralization from these Ontario mines and from selected analogous sites elsewhere. Details of selected exposures of Archean-Proterozoic lithologies, which are carbonaceous but not strongly enriched in gold, are briefly compared with features of the mine geology. Although no mine generates carbonaceous ores alone, the proportion of such ores varies widely from mine to mine, and district to district. Questions remain, particularly with regard to the chemical behaviour of the reduced carbon, but two common factors of prime economic relevance are established. These are the importance of (a) fluid focusing through incompetent carbonaceous units, and (b) localization of high (commonly visible) gold values on vein-wallrock contacts.
La Minéralogie et micro-structures des minerais carbonifères d'or
Résumé Ce compte rendu s'intéresse au gîtes carbonifères d'or, spécialement dans la ceinture de roches vertes de l'Abitibi au nord de l'Ontario, au Canada. Des observations pétrographiques sont combinées avec des analyses de microsonde électronique afin de décrire quelques aspects de la minéralogie et de la géologie des mines d'or; en particulier Owl Creek et Hoyle Pond, et aussi des emplacements dont la concentration en or est trop faible pour être exploité. Trois générations de pyrite sont observée à Owl Creek, la troisième contenant de l'or. Souvent l'or est situé entre la veine de quartz et l'encaissante carbonifère, fréquemment avec de l'hydromicas sodiques, de la chlorite ferrifère et de la tourmaline. Cette association dont l'importance économique est substantielle, est produite par la concentration de fluides hydrothermales à travers des rocs carbonifères friables.


With 6 Figures

Contribution to the Ore Mineralogy Symposium (IMA/COM)at the 14th General Meeting of the International Mineralogical Association, at Stanford, California, in July, 1986.  相似文献   

7.
Summary Telluride-bearing gold deposits of the Pingyi area, western Shandong, China, are located on the southeastern margin of the North China Craton. There are two main types of deposits: (i) mineralized cryptoexplosive breccia, e.g., Guilaizhuang; and (ii) stratified, finely-disseminated mineralization hosted in carbonate rocks, e.g., Lifanggou and Mofanggou deposits. In Guilaizhuang, the cryptoexplosive breccia is formed within rocks of the Tongshi complex and Ordovician dolomite. The mineralization is controlled by an E–W-trending listric fault. Stratified orebodies of the Lifanggou and Mofanggou deposits are placed along a NE-trending, secondary detachment zone. They are hosted within dolomitic limestone, micrite and dolomite of the Early-Middle Cambrian Changqing Group. The mineralization in the ore districts is considered to be related to the Early Jurassic Tongshi magmatic complex that formed in a continental arc setting on the margin of the North China Craton. The host rocks are porphyritic and consist predominantly of medium- to fine-grained diorite and pyroxene (hornblende)-bearing monzonite. SHRIMP U–Pb zircon dating of diorites give a 206Pb/238U weighted mean age of 175.7 ± 3.8 Ma. This is interpreted as representing the crystallization age of the Tongshi magmatic complex. Considering the contact relationships between the magmatic and host sedimentary rocks, as well as the genetic link with the deposits, we conclude that this age is relevant also for the formation of mineralization in the Pingyi area. We hence consider that the deposits formed in the Jurassic. The principal gold minerals are native gold, electrum and calaverite. Wall-rock alteration comprises pyritization, fluoritization, silicification, carbonatization and chloritization. Fluid inclusion studies indicate that all the analyzed inclusions are of two-phase vapor–liquid NaCl–H2O type. Homogenization temperatures of the fluid inclusions vary from 103 °C to 250 °C, and the ice melting temperatures range from −2.5 °C to −13.5 °C, corresponding to a salinity range of 4.65 to 17.26 wt.% NaCl equiv. The δ34S values of pyrite associated with gold mineralization exhibit a narrow range of −0.71 to + 2.99‰, implying that the sulfur was probably derived from the mantle and/or dioritic magma. The δ13CPDB values of the fluid inclusions in calcite range from −7.3 to 0.0‰. The δ18OSMOW values of vein quartz and calcite range from 11.5 to 21.5‰, corresponding to δ18Ofluid values of −1.1 to 10.9‰; δD values of the fluid inclusions vary between −70 and −48‰. The isotope data for all three deposits suggest mixing of ore-forming fluids derived from the mantle and/or magma with different types of fluids at shallow levels. Pressure release and boiling of the fluids, as well as fluid-rock interaction (Lifanggou and Mofanggou) and mixing of magmatically-derived fluids with meteoritic waters (Guilaizhuang) played an important role in the ore-forming processes.  相似文献   

8.
The type, use, and size of the structural stones employed in three ancient cities of the Aegean Thrace are considered Abdera, Maroneia, and Mesimbria. The impact of the geological environment on the choice of these materials also is examined. From the results obtained it is implied that despite the great variety of rocks exposed in the area, the rocks used in construction in these cities are mostly types of sandstone and limestone, rocks with moderate technical properties and easily obtained from the area. The quarries were within a radius of less than 10 km and the size distribution of the building stones in all towns is discussed.  相似文献   

9.
Three types of oxidized ores are identified in the Ik-Davlyat gold-base-metal deposit in the southern Urals: (1) carbonate-sericite-chlorite mineralized rock, (2) vein-shaped quartz-goethite-illite clay, and (3) limonitized rock related to veins. Heavy concentrate of the first type of ore is composed of goethite, rutile, native gold Au0.91Ag0.08Cu0.01, and chalcophanite Zn1.02Mn2.98O4 · 3H2O. The second type of ore contains goethite, rutile, Pb-bearing jarosite, native gold Au0.90?0.93Ag0.06?0.08Cu0?0.01Fe0?0.01, silver amalgamide (schachnerite) Ag0.75Hg0.97Au0.98-Ag0.75Hg0.97Au0.28, coronadite (Pb1.72Mn7.51Fe0.41Cu0.36)8O16, a chalcophanite-hydrohetaerolite mixture, and cerussite. Gold of the highest fineness (Au0.98Ag0.01Cu0.01) is associated with silver amalgamide. The third type of ore is quite similar to the first variety but contains a jarosite impurity. The composition of oxidized ores indicates a difference in composition of primary ores, in particular, the presence of lead minerals in primary veins. The first finding of chalcophanite in Russia is confirmed by chemical, optical, and X-ray data.  相似文献   

10.
A dike–vein complex of potassic type of alkalinity recently discovered in the Baikal ledge, western Baikal area, southern Siberian craton, includes calcite and dolomite–ankerite carbonatites, silicate-bearing carbonatite, phlogopite metapicrite, and phoscorite. The most reliable 40Ar–39Ar dating of the rocks on magnesioriebeckite from alkaline metasomatite at contact with carbonatite yields a statistically significant plateau age of 1017.4 ± 3.2 Ma. The carbonatite is characterized by elevated SiO2 concentrations and is rich in K2O (K2O/Na2O ratio is 21 on average for the calcite carbonatite and 2.5 for the dolomite–ankerite carbonatite), TiO2, P2O5 (up to 9 wt %), REE (up to 3300 ppm), Nb (up to 400 ppm), Zr (up to 800 ppm), Fe, Cr, V, Ni, and Co at relatively low Sr concentrations. Both the metapicrite and the carbonatite are hundreds of times or even more enriched in Ta, Nb, K, and LREE relative to the mantle and are tens of times richer in Rb, Ba, Zr, Hf, and Ti. The high (Gd/Yb)CN ratios of the metapicrite (4.5–11) and carbonatite (4.5–17) testify that their source contained residual garnet, and the high K2O/Na2O ratios of the metapicrite (9–15) and carbonatite suggest that the source also contained phlogopite. The Nd isotopic ratios of the carbonatite suggest that the mantle source of the carbonatite was mildly depleted and similar to an average OIB source. The carbonatites of various mineral composition are believed to be formed via the crystallization differentiation of ferrocarbonatite melt, which segregated from ultramafic alkaline melt.  相似文献   

11.
The Coniacian-Santonian high-phosphorus oolitic iron ore at Aswan area is one of the major iron ore deposits in Egypt. However, there are no reports on its geochemistry, which includes trace and rare earth elements evaluation. Texture, mineralogy and origin of phosphorus that represents the main impurity in these ore deposits have not been discussed in previous studies. In this investigation, iron ores from three localities were subjected to petrographic, mineralogical and geochemical analyses. The Aswan oolitic iron ores consist of uniform size ooids with snowball-like texture and tangentially arranged laminae of hematite and chamosite. The ores also possess detrital quartz, apatite and fine-grained ferruginous chamosite groundmass. In addition to Fe2O3, the studied iron ores show relatively high contents of SiO2 and Al2O3 due to the abundance of quartz and chamosite. P2O5 ranges from 0.3 to 3.4 wt.% showing strong positive correlation with CaO and suggesting the occurrence of P mainly as apatite. X-ray diffraction analysis confirmed the occurrence of this apatite as hydroxyapatite. Under the optical microscope and scanning electron microscope, hydroxyapatite occurred as massive and structureless grains of undefined outlines and variable size (5–150 μm) inside the ooids and/or in the ferruginous groundmass. Among trace elements, V, Ba, Sr, Co, Zr, Y, Ni, Zn, and Cu occurred in relatively high concentrations (62–240 ppm) in comparison to other trace elements. Most of these trace elements exhibit positive correlations with SiO2, Al2O3, and TiO2 suggesting their occurrence in the detrital fraction which includes the clay minerals. ΣREE ranges between 129.5 and 617 ppm with strong positive correlations with P2O5 indicating the occurrence of REE in the apatite. Chondrite-normalized REE patterns showed LREE enrichment over HREE ((La/Yb)N = 2.3–5.4) and negative Eu anomalies (Eu/Eu* = 0.75–0.89). The oolitic texture of the studied ores forms as direct precipitation of iron-rich minerals from sea water in open space near the sediment-water interface by accretion of FeO, SiO2, and Al2O3 around suspended solid particles such as quartz and parts of broken ooliths. The fairly uniform size of the ooids reflects sorting due to the current action. The geochemistry of major and trace elements in the ores reflects their hydrogenous origin. The oolitic iron ores of the Timsha Formation represent a transgressive phase of the Tethys into southern Egypt during the Coniacian-Santonian between the non-marine Turonian Abu Agag and Santonian-Campanian Um Barmil formations. The abundance of detrital quartz, positive correlations between trace elements and TiO2 and Al2O3, and the abundance mudstone intervals within the iron ores supports the detrital source of Fe. This prediction is due to the weathering of adjacent land masses from Cambrian to late Cretaceous. The texture of the apatite and the REE patterns, which occurs entirely in the apatite, exhibits a pattern similar to those in the granite, thus suggesting a detrital origin of the hydroxyapatite that was probably derived from the Precambrian igneous rocks. Determining the mode of occurrence and grain size of hydroxyapatite assists in the maximum utilization of both physical and biological separation of apatite from the Aswan iron ores, and hence encourages the use of these ores as raw materials in the iron making industry.  相似文献   

12.
Although Mn is one of the major impurities in the economic iron ores from the Bahariya Oasis, information on its modes of occurrence and origin is lacking in previous studies. High-Mn iron ores from El Gedida and Ghorabi–Nasser iron mines were subjected to detailed mineralogical, geochemical, and petrographic investigations using X-ray diffraction (XRD), infrared absorption spectrometry (IR), Raman spectroscopy, X-ray fluorescence (XRF), scanning electron microscopy (SEM), and electron probe microanalyzer (EPMA) to clarify the modes of occurrence of Mn in these deposits and its origin. The results showed that the MnO2 contents range between 0.03 and 13.9 wt.%. Three mineralogical types have been identified for the Mn in the high-Mn iron ores, including: (1) inclusions within the hematite and goethite and/or Mn accumulated on their active surfaces, (2) coarse-grained and crystalline pyrolusite, and (3) fine-grained cement-like Mn oxide and hydroxide minerals (bixbyite, cryptomelane, aurorite, romanechite, manjiroite, and pyrochroite) between the Fe-bearing minerals. The Mn carbonate mineral (rhodochrosite) was detected only in the Ghorabi–Nasser high-Mn iron ores. Since IR patterns of low-Mn and high-Mn samples are almost the same, a combination of XRD analysis using non-filtered Fe-Kα radiations and Raman spectroscopy could be the best way to identify and distinguish between different Mn minerals.Assuming that both Fe and Mn were derived from the same source, the occurrence of high-Mn iron ores at the base of the stratigraphic section of the deposits overlain by the low-Mn iron ores indicated a supergene origin of the studied ores by descending solutions. The predominance of Mn oxide and hydroxide minerals in botryoidal shapes supports this interpretation. The small grain size of Mn-bearing minerals as well as the features of microbial fossils such as spherical, elliptical, and filamentous shapes of the Fe-bearing minerals suggested a microbial origin of studied iron ores.Variations in the distribution and mineralogy types of Mn in the iron ores of the Bahariya Oasis demanded detailed mineralogical and petrographic characterizations of the deposits before the beneficiation of high-Mn iron ores from the Bahariya Oasis as feedstock for the ironmaking industries in Egypt by magnetizing reduction. High Mn contents, especially in the Ghorabi–Nasser iron ore and occurrence of Mn as inclusions and/or accumulated on the surface of the Fe-bearing minerals would suggest a possible utilization of the high-Mn iron ores to produce ferromanganese alloys.  相似文献   

13.
Summary In the upper stratigraphic levels of the Thracian Circum-Rhodope Belt, pillowed or massive metavolcanics and metapyroclastic rocks occur. In the deeper part of the stratigraphic column a composite suite of greenschists, cumulate and noncumulate gabbros, metagabbros, serpentinites, chlorite and talc schists are found. Detailed petrographical study revealed that the metavolcanics consist of four lava types. From the basic to the more evolved types, these lavas are: pyroxeno-phyric lavas, aphyric oligophyric lavas, albite-rich lavas and porphyric felsites. Based on geochemical criteria the metavolcanics are classified as tholeiitic basalts and andesites, to dacites-rhyodacites. The content of MgO, Cr, Ni, TiO2, Zr and REE, and some petrographic features of the pyroxeno-phyric lavas suggest boninitic affinities.The projection of chemical data on several discrimination diagrams, the REE patterns, the occurrence of lavas with boninitic affinity, the chemistry of clinopyroxenes, the crystallization sequence of the primary minerals, the presence of both basic and more evolved volcanic rocks, as well as the high ratio LIL/HFS indicate that the protoliths of the metavolcanics were formed in an immature island arc setting. The greenschists present both weak MORB and strong VAB characters suggesting that their protoliths developed in a short-lived back-arc basin. As the whole sequence of the metabasic and meta-ultrabasic rocks of the Thracian Circum-Rhodope Belt would be considered as an incomplete and dismembered ophiolite, the geodynamical environment of its formation is assumed to be a system of volcanic arc-marginal basin. Both subducted and obducted slabs were parts of the Palaeotethys oceanic realm, while the system was situated along the continental margin of the Rhodope Massif.
Randbecken- vulkanbogenherkunft metabasischer gesteine des Zirkum-Rhodope-Gürtels, Thrakien, Griechenland
Zusammenfassung In den oberen stratigraphischen Horizonten des thrakischen Zirkum-Rhodope-Gürtels kommen metavulkanische und metapyroklastische Gesteine mit Pillow-oder massigem Gefüge vor. In den tieferen Teilen der stratigraphischen Säule wurde eine komplexe Abfolge aus Grünschiefern, Gabbros, Metagabbros, Serpentiniten, Chlorit-und Talkschiefern festgestellt. Gründliche petrographische Untersuchungen zeigten, daß die Metavulkanite aus pyroxeno-phyrischen, aphyrisch-oligophyrischen und albitreichen Laven sowie aus porphyrischen Felsiten bestehen. Aufgrund geochemischer Kriterien werden die Metavulkanite als tholeiitische Andesite oder Dacite bis Basalte eingestuft. Der Gehalt an Mg0, Cr, Ni, TiO2, Zr und REE sowie petrographische Merkmale der pyroxeno-phyrischen Laven weisen auf einen boninitischen Charakter hin.Die Protolithe der Metavulkanite wurden im Bereich eines unreifen Inselbogens gebildet. Hierfür sprechen: (a) die Projektionslage der chemischen Daten in mehreren Diskriminierungsdiagrammen; (b) die REE-Häufigkeitskurven; (c) das Vorkommen von boninitischen Laven; (d) der Chemismus der Klinopyroxene; (e) die Kristallisationsabfolge der primären Mineralphasen; (f) die Vergesellschaftung basischer mit mehr sauren vulkanischen Gesteinen; (g) das hohe LIL/HFS-Verhältnis. Die Grünschiefer zeigen Übergangsmerkmale zwischen MORB und VAB.Die gesamte Folge der metabasischen und -ultrabasischen Gesteine des thrakischen Zirkum-Rhodope-Gürtels könnte als ein unvollständiger und zergliederter Ophiolithkomplex angesehen werden, der in einem Vulkanbogen-Randbecken war. Sowohl sub duzierte als auch obduzierte Anteile waren am Kontinentalrand des Rodope-Massifs angeordnet und stellen Teile des ozeanischen Bereiches der Paläotethys dar.


With 8 Figures  相似文献   

14.
The Bereznyakovskoe ore field is situated in the Birgil’da-Tomino ore district of the East Ural volcanic zone. The ore field comprises several centers of hydrothermal mineralization, including the Central Bereznyakovskoe and Southeastern Bereznyakovskoe deposits, which are characterized in this paper. The disseminated and stringer-disseminated orebodies at these deposits are hosted in Upper Devonian-Lower Carboniferous dacitic-andesitic tuff and are accompanied by quartz-sericite hydrothermal alteration. Three ore stages are recognized: early ore (pyrite); main ore (telluride-base-metal, with enargite, fahlore-telluride, and gold telluride substages); and late ore (galena-sphalerite). The early and the main ore stages covered temperature intervals of 320–380 to 180°C and 280–300 to 170°C, respectively; the ore precipitated from fluids with a predominance of NaCl. The mineral zoning of the ore field is expressed in the following change of prevalent mineral assemblages from the Central Bereznyakovskoe deposit toward the Southeastern Bereznyakovskoe deposit: enargite, tennantite, native tellurium, tellurides, and selenides → tennantite-tetrahedrite, tellurides, and sulfoselenides (galenoclausthalite) → tetrahedrite, tellurides, native gold, galena, and sphalerite. The established trend of mineral assemblages was controlled by a decrease in $ f_{S_2 } $ f_{S_2 } , $ f_{Te_2 } $ f_{Te_2 } and $ f_{O_2 } $ f_{O_2 } and an increase in pH of mineral-forming fluids from early to late assemblages and from the Central Bereznyakovskoe deposit toward the Southeastern Bereznyakovskoe deposit. Thus, the Central Bereznyakovskoe deposit was located in the center of an epithermal high-sulfidation ore-forming system. As follows from widespread enargite and digenite, a high Au/Ag ratio, and Au-Cu specialization of this deposit, it is rather deeply eroded. The ore mineralization at the Southeastern Bereznyakovskoe deposit fits the intermediate- or low-sulfidation type and is distinguished by development of tennantite, a low Au/Ag ratio, and enrichment in base metals against a lowered copper content. In general, the Bereznyakovskoe ore field is a hydrothermal system with a wide spectrum of epithermal mineralization styles.  相似文献   

15.
Air gun seismic and 3.5 kHz profiling data from the Gulf of Patras, western Greece, show that it is occupied by a small asymmetric graben with several geometric similarities to the larger-scale graben in the Gulf of Corinth to the east. Major listric faulting characterizes the southern flank of the graben whilst the northern flank represents an associated rollover structure affected by antithetic and synthetic faulting. The present phase of subsidence is of Holocene age, but buried growth faults suggest earlier subsidence in the Gulf. The average rate of subsidence through the Holocene is estimated to be 10 mm/year.The Gulf of Patras graben, together with the Gulf of Corinth graben and the Megara basin, represent a continuous system of WNW-ESE trending grabens in a broad zone of intense seismicity within the Aegean domain. Individual grabens are offset and are interconnected by NE-SW trending fault systems.  相似文献   

16.
17.
Manganese ores of Nishikhal occur as distinctly conformable bands in the khondalite suite of rocks belonging to the Precambrian Eastern Ghats complex of south Orissa, India. Manganese minerals recorded are cryptomelane, romanechite, pyrolusite, with minor amounts of jacobsite, hausmannite, braunite, lithiophorite, birnessite and pyrophanite. Goethite, graphite, hematite and magnetite are the other opaque minerals and quartz, orthoclase, garnet, kaolinite, apatite, collophane, fibrolite, zircon, biotite and muscovite are the gangue minerals associated with these ores. The mineral chemistry of some of the phases, as well as the modes of association of phosphorous in these ores have been established. The occurrence of well-defined bands of manganese ore; co-folding of manganese ore bands and associated metasedimentary country rocks; the min-eral assemblage of spessartite-sillimanite-braunite-jacobsite-hausmannite; the geochemical association of Mn-Ba-Co-Ni-Zn together with the Si versus Al and Na versus Mg plots of the manganese ores suggest that the Nishikhal deposit is a metamorphosed Precambrian lacustrine deposit. Continental weathering appears to be the source for manganese and iron. After deposition and probable diagenesis, the manganese-rich sediments were metamorphosed along with conformable psammitic and pelitic sediments under granulite facies conditions, and subsequently underwent supergene enrichment to produce the present deposit. Received: 14 March 1995 / Accepted: 11 April 1996  相似文献   

18.
The Puhipuhi epithermal area, which occurs in a region of graywacke basement partially covered by basalt and lake-bed deposits, is characterized by both large-scale and small-scale geophysical anomalies. Known occurrences of locally intense alteration or silicification are typically associated with strong gravity, resistivity or IP anomalies. Gravity data define a complex negative residual anomaly (up to −50 gu) which has been used to identify and delineate a large area (about 20 km2) of low-density, presumably clay-altered, graywacke basement rocks. This zone, modeled as extending to a few kilometers depth, encompasses, but is more extensive than, the known areas of alteration and has a close spatial association with the basalt cover rocks. Short-wavelength gravity minima and maxima, which indicate that the most intense alteration of the basement rocks occurs below the basalt, correlate, in part, with the inferred location of hydrothermal upflow zones. The control on the location of these zones and their relationship to the location of the basalts is not well known; however, if the basalts acted as a cap rock to the geothermal system, then these areas merit further exploration. High (≥100 ohm-m) and low (≤10 ohm-m) resistivity and high (≥30 mS) IP anomalies occur in association with known silicification, clay alteration and sulfide mineralisation, respectively. In addition, magnetic data help constrain the relative timing of hydrothermal alteration and basaltic volcanism and indicate that mineralisation was broadly synchronous with volcanism.  相似文献   

19.
Summary The El Dorado Au-Cu deposit is located in an extensive intra-caldera zone of hydrothermal alteration affecting Upper Cretaceous andesites of the Los Elquinos Formation at La Serena (≈ 29°47′S Lat., 70°43′W Long., Chile). Quartz-sulfide veins of economic potential are hosted by N25W and N20E fault structures associated with quartz-illite alteration (+supergene kaolinite). The main ore minerals in the deposit are pyrite, chalcopyrite ± fahlore (As/(As + Sb): 0.06−0.98), with electrum, sphalerite, galena, bournonite-seligmanite (As/(As + Sb): 0.21−0.31), marcasite, pyrrhotite being accessory phases. Electrum, with an Ag content between 32 and 37 at.%, occurs interstitial to pyrite aggregates or along pyrite fractures. Pyrite commonly exhibits chemical zonation with some zones up to 1.96 at.% As. Electron probe microanalyses of pyrite indicate that As-rich zones do not exhibit detectable Au values. Fluid inclusion microthermometry shows homogenization temperatures between 130 and 352 °C and salinities between 1.6 and 6.9 wt.% NaCl eq. Isotope data for quartz, ankerite and phyllosilicates and estimated temperatures show that δ18O and δD for the hydrothermal fluids were between 3 and 10‰ and between −95 and −75‰, respectively. These results suggest the mineralizing fluids were a mixture of meteoric and magmatic waters. An epithermal intermediate-sulfidation model is proposed for the formation of the El Dorado deposit. Author’s present address: J. Carrillo-Rosúa, Dpto. de Didáctica de las Ciencias Experimentales, Universidad de Granada, Campus de Cartuja, 18071, Granada, Spain  相似文献   

20.
通过对措莫隆花岗岩中铁叶云母的矿物学研究,可得出如下结论:①可利用铁叶云母中的化学成分及H2O+,F-,Cl-来表征岩浆期后热液的性质和成岩成矿条件;②穆斯堡尔谱证实有33.45%的Fe3+进入四面体,并据此修正铁叶云母的晶体化学经验式;③Fe2+的I.S,Q.S值与Fe/(Fe+Mg)呈正相关,可定性反映其形成时温度和fo2;④Fe2+在M1,M2晶位上的有序度能反映岩浆结晶温度高低和冷却速度快慢;⑤铁叶云母b0值大小主要与Fe3+多少有关;⑥根据铁叶云母的化学成分判断措莫隆花岗岩属于含锡花岗岩;⑦根据铁叶云母的红外光谱及差热分析特征判断措莫隆花岗岩属于壳源型岩浆成因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号