首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Geochemistry》1997,12(4):465-472
Permafrost is a common feature in the Canadian Subarctic, resulting in the development of distinctive wetland forms, such as peat plateaux, which are perennially frozen peatlands. The geochemistry of a peat plateau bog in East Little Bear River Valley, Northwest Territories, is discussed, including variations in botanical and mineralogical composition, and the influence of permafrost. The riparian margin of the plateau bog is unfrozen, but permafrost occurs at 0.68 m depth 10 m inland. Cores taken in these 2 sites exhibit variations in peat stratigraphy, but possess a similar C-shape ash distribution. In the core not affected by permafrost, most elements studied (Al, Ba, Cr, Fe, K, Mg, Na, Si, Th, Ti, V) also display a C-shape distribution, and their concentration can be explained in terms of mineral matter abundance and variety. Halogens (Cl, I, Br), on the other hand, are mainly associated with the organic fraction, whereas Ca and Se appear to be associated with both the organic and inorganic fraction. In the permafrost-affected core, all elements, independently of their organic or inorganic affinity, exhibit a substantial enrichment immediately above the permafrost table, whereas they are depleted immediately below. This is inferred to be the result of solute redistribution linked with ice formation caused by upward permafrost growth and downward seasonal freezing.  相似文献   

2.
Peatland of the eastern Qinghai–Tibetan Plateau lies at the convergence of the East Asian and Indian monsoon systems in eastern Asia. To understand the evolution of this peatland and its potential to provide new insights into the Holocene evolution of the East Asian monsoon a 6 m peat core was collected from the undisturbed central part of a peat deposit near Hongyuan. The age-depth profile was determined using 16 14C-AMS age dates, the peat analysed for a range of environmental variables including carbon, nitrogen and hydrogen concentration, bulk density, δ13C and the associated spring water analysed for hydrogen and oxygen isotopes. The age-depth profile of the recovered peat sequence covers the period from 9.6 to 0.3 kyr BP and is linear indicating that the conditions governing productivity and decay varied little over the Holocene. Using changes in carbon density, organic carbon content and its δ13C, cold dry periods of permafrost characterised by low density and impeded surface drainage were identified. The low δ18O and δD values of the spring water emanating around the peat deposit, down to ?13.8 and ?102‰ (VSMOW), respectively, with an inverse relationship between electrical conductivity and isotopic composition indicate precipitation under colder and drier conditions relative to the present day. In view of the current annual mean air temperature of 1 °C this suggests conditions in the past have been conducive to permafrost. Inferred periods of permafrost correspond to independently recognised cold periods in other Holocene records from across China at 8.6, 8.2–7.8, 5.6–4.2, 3.1 and 1.8–1.5 kyr BP. The transition to a cold dry climate appears to be more rapid than the subsequent recovery and cold dry periods at Hongyuan are of longer duration than equivalent cold dry periods over central and eastern China. Light–dark banding peat on a scale of 15–30 years from 9.6 to 5.5 kyr BP may indicate a strong influence of decadal oscillations possibly the Pacific Decadal Oscillation and a potential link between near simultaneous climatic changes in the northwest Pacific, ENSO, movement of the Intertropical Convergence Zone and the East Asian Monsoon.  相似文献   

3.
The Holocene development of a treed palsa bog and a peat plateau bog, located near the railroad to Churchill in the Hudson Bay Lowlands of northeastern Manitoba, was traced using peat macrofossil and radiocarbon analyses. Both sites first developed as wet rich fens through paludification of forested uplands around 6800 cal. yr BP. Results show a 20th-century age for the palsa formation and repeated periods of permafrost aggradation and collapse at the peat plateau site during the late Holocene. This timing of permafrost dynamics corroborates well with that inferred from previous studies on other permafrost peatlands in the same region. The developmental history of the palsa and peat plateau bogs is similar to that of adjacent permafrost-free fens, except for the specific frost heave and collapse features associated with permafrost dynamics. Permafrost aggradation and degradation is ascribed to regional climatic, local autogenic and other factors. Particularly the very recent palsa development can be assessed in terms of climatic changes as inferred from meteorological data and surface hydrological changes related to construction of the railroad. The results indicate that cold years with limited snowfall as well as altered drainage patterns associated with infrastructure development may have contributed to the recent palsa formation.  相似文献   

4.
Fox Creek is a small tributary of the Saddle River, a tributary of the Peace River in northwestern Alberta. It has several dormant landslides with degraded scarps and grabens. A new, reactivated landslide on the north bank of the Fox Creek occurred on 5 May 2007. The landslide formed two major sliding blocks. A rapid translational block slide, it mobilized 47 Mm3 of displaced materials, blocked the creek, and made a natural dam with a maximum height of 19 m at the tips of the displaced blocks. The rupture surfaces of the 2007 landslide were within the advance phase glaciolacustrine sediments. The residual friction angles are about 10° similar to those of the previous landslides in the Peace River Lowland. Precipitation and snow melt prior to the landslide are likely triggers of the 2007 Fox Creek landslide. The farmlands on the crest of the river valley and timber resources were impacted. The current landslide dam in Fox Creek does not have any evidence of seepage downstream; it may last for many years. Eventually, the creek will overtop and erode the dam. The same cycle of actions, landsliding, damming, and erosion will continue in the foreseeable future.  相似文献   

5.
In May 1974 a powerful flood flushed the Grand River basin, Ontario. The effects on the bedload were drastic in a narrow (30 m) and deep (40 m) rock walled and floored gorge near Elora, Ontario. Along Irvine Creek, the tributary occupying the gorge, the gravel cover was reworked in several types of bars, predominantly transverse and point bars. The bars formed very rapidly in response to essentially steady, non-uniform flow that developed during a brief period of high flood. Superimposed on major bars are several minor sedimentary features such as coarse transverse ribs, chute channels and bars, longitudinal ribs, imbrication clusters, backsets with well developed imbrication, that were formed under very high stream discharge. Structures like imbrication clusters, transverse ribs and small riffle bars require a ‘live bed’ situation to form, and they develop when stones come to a stop either because they cluster during transport, or because keystone effects occur along shallow channels. In Irvine Creek, very few sedimentary features were formed during waning and low flood stages: only some shadow deposits and a few Ostler lenses. The few fines that were available were lost downstream or filled in lower parts of gravel beds. This study confirms that in streams that experience strong seasonal fluctuations in discharge, bedforms that develop during high floods have a high probability of preservation. In gravelly deposits, foreset structures and plane beds are most commonly preserved, although they may be difficult to recognize in old deposits, which may appear massive, particularly if the gravel has been infilled with finer pebbles and sand. In the case of Irvine Creek, all deposits are organized, and lateral and vertical variations in textures, particularly imbrication and packing, are very useful in the recognition of sedimentary structures.  相似文献   

6.
Lake Manitoba, North America's thirteenth largest lake, occupies a glacier-scoured basin in south-central Manitoba. Despite its large size, the lake is extremely shallow with a mean depth of 4.5 m. The lake can be subdivided into two connected but distinctly different basins: a small, irregular-shaped North Basin and a much larger and smoother South Basin. Most of the water inflow is from the Waterhen River (42% of the inflow) and from precipitation directly on the lake's surface (40%), while nearly 60% of the outflow is by evaporation. Lake Manitoba water is alkaline and brackish with the salinity dominated by sodium and chloride ions. The surficial offshore deposits of the main South Basin of the lake consist mainly of silt and clay-sized sediments composed of detrital components (clay minerals, quartz, carbonates, and feldspars) and endogenic/authigenic components (carbonates, sulfides, and organic matter). In addition to these modern sediments, several areas of relict fluvial-shoreline sand and till deposits occur in the South Basin. The lacustrine processes presently operating in Lake Manitoba reflect the influence of (1) the extreme shallow depth of the lake, (2) the basin morphology, and (3) the water chemistry. In addition, land clearing and increased watershed drainage have resulted in substantially increased sedimentation rates in the South Basin during the past century.  相似文献   

7.
The Todagin Creek landslide is located at 57.61° N 129.98° W in Northwest British Columbia. A seismic station 90 km north of the landslide recorded the event at 1643 hours coordinated universal time (UTC; 0943 hours Pacific daylight time (PDT)) on October 3, 2006. The signal verifies the discovery and relative time bounds provided by a hunting party in the valley. The landslide initiated as a translational rock slide on sedimentary rock dipping down slope at 34° and striking parallel to the valley. The landslide transformed into a debris avalanche and had a total volume estimated at 4 Mm3. An elevation drop of 771 m along a planar length of 1,885 m resulted in a travel angle (fahrb?schung) of 21.3°. The narrowest part of the landslide through the transport zone is 345 m. The widest part of the divergent toe of the landslide reaches a width of 1,010 m. Landslide debris impounded a lake of approximately 32 ha and destroyed an additional 67 ha of forest. The impoundment took 7 to 10 days to fill, with muddied waters observed downstream on October 13. No clear linkage exists with precipitation and temperature records preceding the landslide, but strong diurnal temperature cycles occurred in the days prior to the event. The Todagin Creek area appears to have an affinity for large landslides with the deposits of three other landslides >5 Mm3 observed in the valley.  相似文献   

8.
《Applied Geochemistry》1999,14(5):607-620
Molecular and isotopic analyses of core gas samples from 3 permafrost research core holes (92GSCTAGLU, 92GSCKUMAK, 92GSCUNIPKAT; sample core depths ranging from 0.36 to 413.82 m) in the Mackenzie Delta of the Northwest Territories of Canada reveal the presence of hydrocarbon gases from both microbial and thermogenic sources. Analyses of most headspace and blended gas samples from the ice-bonded permafrost portion of the core holes yielded C1/(C2+C3) hydrocarbon gas ratios and CH4–C isotopic compositions (δ13C CH4) indicative of microbially sourced CH4 gas. However, near the base of ice-bonded permafrost and into the underlying non-frozen stratigraphic section, an increase in ethane (C2) concentrations, decreases in C1/(C2+C3) hydrocarbon gas ratios, and CH4–C isotopic (δ13C CH4) data indicate the presence of hydrocarbon gases derived from a thermogenic source. The thermogenic gas below permafrost in the Mackenzie Delta likely migrated from deeper hydrocarbon accumulations and/or directly from thermally mature hydrocarbon source rocks.  相似文献   

9.
This paper presents results of hydrochemical and isotopic analyses of groundwater (fracture water) and porewater, and physical property and water content measurements of bedrock core at the Chalk River Laboratories (CRL) site in Ontario. Density and water contents were determined and water-loss porosity values were calculated for core samples. Average and standard deviations of density and water-loss porosity of 50 core samples from four boreholes are 2.73 ± 12 g/cc and 1.32 ± 1.24 percent. Respective median values are 2.68 and 0.83 indicating a positive skewness in the distributions. Groundwater samples from four deep boreholes were analyzed for strontium (87Sr/86Sr) and uranium (234U/238U) isotope ratios. Oxygen and hydrogen isotope analyses and selected solute concentrations determined by CRL are included for comparison. Groundwater from borehole CRG-1 in a zone between approximately +60 and −240 m elevation is relatively depleted in δ18O and δ2H perhaps reflecting a slug of water recharged during colder climatic conditions. Porewater was extracted from core samples by centrifugation and analyzed for major dissolved ions and for strontium and uranium isotopes. On average, the extracted water contains 15 times larger concentration of solutes than the groundwater. 234U/238U and correlation of 87Sr/86Sr with Rb/Sr values indicate that the porewater may be substantially older than the groundwater. Results of this study show that the Precambrian gneisses at Chalk River are similar in physical properties and hydrochemical aspects to crystalline rocks being considered for the construction of nuclear waste repositories in other regions.  相似文献   

10.
多年冻土隧道修建中,施工活动产生的热量将导致多年冻土围岩中出现一定范围的融化圈,进而影响支护的受力以及隧道洞室的收敛。将围岩分为融化区和未融化区,将融化区围岩视为弹塑性介质,未融化区围岩视为弹性介质,建立并求解融化作用下多年冻土隧道围岩弹塑性模型,对不同的围岩条件及支护工况下多年冻土段隧道施工中围岩与支护的相互作用进行分析。结果表明,该模型表现了融化作用下多年冻土围岩与支护相互作用的特征;在较差围岩中,喷射混凝土支护的强度是控制融化作用下多年冻土围岩稳定以及隧道周边位移量的关键因素。在多年冻土隧道施工中,可采用本模型确定施工中容许的最大围岩融化深度,施工中应采取有效措施避免围岩中出现过大的融化圈。  相似文献   

11.
The recent assessment of the Mitchell Creek Landslide (MCL) in northern British Columbia is a good case history of engineering geomorphological analysis of a large landslide. It was completed using historic aerial photographs, with approximately 20-year time intervals dating back to the mid-twentieth century and field investigations completed between 2008 and 2014. The large bedrock slide initiated between 1956 and 1972 and continues to experience ongoing annual movements. Significant glacial downwasting and retreat has been observed in the photographic record, and it is hypothesized that alpine glaciation has contributed to development of the MCL. This paper documents four aspects of the engineering geomorphological assessment completed at the MCL: (i) topographic evolution, (ii) slope morphology, (iii) deformation features, and (iv) displacement behavior. Four distinct geomorphic zones have been defined at the MCL based on these analyses, controlled by different failure mechanisms. The extents of these zones have changed little over the documented history of the landslide, and rates of movement estimated from aerial photography have been consistent over the last 60 years. Retreat of the Mitchell Valley Glacier appears to have played an important role in landslide initiation, as the ice mass receded the kinematic freedom of the slope increased. This study of the initiation and development of the MCL demonstrates the capabilities of a multi-faceted approach to engineering geomorphology. The combination of historical aerial photographs with digital photogrammetric modeling and point cloud analysis techniques, and geomorphological mapping, allows for development of a robust understanding of landslide behavior.  相似文献   

12.
Research on large northern rivers suggests that as permafrost thaws, deeper groundwater flowpaths become active, resulting in greater baseflow, increased concentrations of weathering ions and reduced concentrations of dissolved organic carbon in the streamflow. In contrast, at the headwater-catchment scale, where understanding of groundwater/surface-water interactions is developed, inter-annual variability in climate and hydrology result in complex hydrological and chemical responses to change. This paper reports on a 4-year runoff investigation in an alpine discontinuous permafrost environment in Yukon, Canada, using stable isotopes, major dissolved ions and hydrometric data, to provide enhanced insight into the inter-annual-variability runoff-generation processes. Stable isotope results suggest that pre-event (old) water stored within the catchment dominates the snowmelt hydrograph, and dissolved ion results reveal that groundwater pathways occur predominantly in the near-surface during freshet. Dissolved organic carbon varies inter-annually, reflecting changing melt patterns, whereas weathering ions generated from deeper flowpaths become diluted. The total snow-water equivalent does not have a major influence on the fraction of snowmelt water reaching the stream or the runoff ratio. Results from multiple years highlight the considerable variability over short time scales, limiting our ability to detect climate-change influences on groundwater at the headwater scale.  相似文献   

13.
Thirteen landslides (retrogressive thaw flows) were investigated to study the behavior of thaw retrogression in permafrost in the Mackenzie Valley, Northwest Territories (NWT), Canada. Those landslides are all in fine-grained ice-rich permafrost soils. Such landslides usually start from small-scale slope failures followed by retrogressive thaw flows when ice-rich permafrost soils are exposed to the atmosphere. The landslides were marked with survey stakes to measure their retreat rates for the thawing season of 2007. Two correlations are presented: one is between scarp wall height and retreat rate; another is between overall slope angle and retreat rate. It was found that thaw flow retrogression rate increases with increase in scarp wall height and slope angle up to a certain limit. It was also confirmed that thaw flow retrogression is not influenced by slope orientation.  相似文献   

14.
In this study, we documented the Holocene history of a peat plateau at the arctic tree line in northern Québec using stratigraphic and macrofossil analyses to highlight the effects of geomorphic setting in peatland development. Paludification of the site began about 6800 cal yr BP. From 6390 to 4120 cal yr BP, the peatland experienced a series of flooding events. The location of the peatland in a depression bounded by two small lakes likely explains its sensitivity to runoff. The proximity of a large hill bordering the peatland to the south possibly favored the inflow of mineral-laden water. The onset of permafrost aggradation in several parts of the peatland occurred after 3670 cal yr BP. Uplifting of the peatland surface caused by permafrost stopped the flooding. According to radiocarbon dating of the uppermost peat layers, permafrost distribution progressed from the east to the west of the peatland, indicating differential timing for the initiation of permafrost throughout the peatland. Most of the peatland was affected by permafrost growth during the Little Ice Age. Picea mariana macroremains at 6450 cal yr BP indicate that the species was present during the early stages of peatland development, which occurred soon after the sea regression.  相似文献   

15.
A peat bed on east-central Graham Island of the Queen Charlotte Islands occurs within a nonglacial fluvial succession that is both overlain and underlain by glacial deposits. Radiocarbon dates of 27,500 ± 400 and 45,700 ± 970 yr B.P. at the top and base of the peat, respectively, indicate that it was deposited during the mid-Wisconsin nonglacial interval. The peat is the first documented mid-Wisconsin organic deposit in northern coastal areas of British Columbia. Three local pollen zones are represented. The lowest zone (PM-1) is restricted to sandy silt directly underlying the dated peat. Very high Cyperaceae and moderate Poaceae pollen percentages characterize zone PM-1, and a variety of other herbs are common, suggesting an open landscape rather than a forested one. The middle zone (PM-2) is characterized by abundant pollen of Picea, Tsuga mertensiana, and Cyperaceae, and also contains pollen of Abies, a genus now absent from the Queen Charlotte Islands. Graham Island probably had extensive forests at this time, but abundant pollen and macrofossils of Cyperaceae and emergent aquatics such as Hippuris vulgaris, Veronica scutellata, Potentilla palustris, and Menyanthes trifoliata indicate that there also were open wetland areas. Zone PM-3 also contains abundant arboreal pollen. Large amounts of Sphagnum spores and Selaginella selaginoides megaspores indicate succession of the wetland area at the sample site to a peat bog. Paleoecological analysis of the data suggests that subalpine vegetation elements were depressed by at least 400 m, probably due to a cooler climate. Probable modern analogs in southeastern Alaska and the presence of Abies (probably A. amabilis) indicate that precipitation was higher on eastern Graham Island during the mid-Wisconsin than at present.  相似文献   

16.
Fifteen lithified paleosols, closely spaced in vertical sequence, occur in the top 90 m of the late Albian Boulder Creek Formation in the foothills of northeastern British Columbia, Canada. The paleosols have well-developed profiles 0·5 to 1·5 m thick, including A, B and C horizons. The paleosols are characterized by their grey colour, cutans, vertical roots, peds, spherulitic siderite and absence of sedimentary structures. The paleosols formed during a period when one or more basin wide unconformities occurred as a result of either eustatic sea level fluctuations or local tectonic events. These unconformities represent the terrestrial record of a lowered base level which caused valley incision and decreased rates of sedimentation on the incised flood plain. The climate was humid to subhumid. Overall, the environment in which these soils developed was of low relief and subject to little erosion. The water table was high for part of the year but there is also evidence of periodic drying and oxidation of organic debris. Cumulatively, the paleosols in this interval may represent 150000 yr of non-deposition.  相似文献   

17.
The process of the transformation of fresh organic matter (OM) into more stable and recalcitrant humic substances is still not completely clear. Understanding how OM humification evolves in northern bog environments is extremely important, especially considering that they represent one of the largest terrestrial carbon pools.Structural changes of OM occurring during the humification process have been generally evaluated by indirect measurements of the degree of humification. Several approaches have been used, often providing contrasting results probably because humification is a complex process that evolves differently according to varying pedoclimatic conditions.In the present work, the authors followed the evolution of peat OM along a 165 cm bog profile (covering the mid- to late Holocene) correlating results obtained from both organic petrological and chemical investigation. Data clearly underline a significant agreement between the two perspectives, both showing either a quite immature peat material or the presence of three distinct zones along the profile. In detail, both spectroscopic (i.e., FT-IR and three dimensional fluorescence spectra, humification indexes), and Rock-Eval pyrolysis results (low residual organic carbon content and high hydrogen and oxygen index values) showed the occurrence of a central zone (from 20-30 cm to 120 cm depth) often characterized by high heterogeneity and a low degree of humification when compared to the upper ∼20 and bottom 40 cm sections.  相似文献   

18.
在冻土地区公路建设中,由于冻融作用的存在,路基边坡土体的力学性质在周期性的冻融作用下极易发生变化。选取不同条件下的青藏公路典型路基边坡为研究对象,通过有限差分法对边坡进行剪应变对比研究。结果表明,在冻结条件下土体冻结时剪应变变化量很小,处于较稳定状态;而消融到最大状态时在含水量大的冻融界面形成软弱带,剪应变变化量很大,路基边坡处于欠稳定状态。冻融条件下土的粘聚力、内摩擦角、重度的折减引起该边坡整体抗剪强度不足,致使路基边坡有较大的剪应变。  相似文献   

19.
20.

Numerical simulations of groundwater flow and heat transport are used to provide insight into the interaction between shallow groundwater flow and thermal dynamics related to permafrost thaw and thaw settlement at the Iqaluit Airport taxiway, Nunavut, Canada. A conceptual model is first developed for the site and a corresponding two-dimensional numerical model is calibrated to the observed ground temperatures. Future climate-warming impacts on the thermal regime and flow system are then simulated based on climate scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC). Under climate warming, surface snow cover is identified as the leading factor affecting permafrost degradation, including its role in increasing the sensitivity of permafrost degradation to changes in various hydrogeological factors. In this case, advective heat transport plays a relatively minor, but non-negligible, role compared to conductive heat transport, due to the significant extent of low-permeability soil close to surface. Conductive heat transport, which is strongly affected by the surface snow layer, controls the release of unfrozen water and the depth of the active layer as well as the magnitude of thaw settlement and frost heave. Under the warmest climate-warming scenario with an average annual temperature increase of 3.23 °C for the period of 2011–2100, the simulations suggest that the maximum depth of the active layer will increase from 2 m in 2012 to 8.8 m in 2100 and, over the same time period, thaw settlement along the airport taxiway will increase from 0.11 m to at least 0.17 m.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号