首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基坑开挖对下方既有盾构隧道影响的实测与分析   总被引:6,自引:0,他引:6  
魏纲 《岩土力学》2013,34(5):1421-1428
对基坑开挖影响下方既有盾构隧道的机制进行了理论分析。收集了14个国内基坑工程实例,对实测数据进行了统计分析,结果表明:盾构隧道的最大竖向位移均为隆起,且有64%的隧道隆起值超过报警值(10 mm),提出了隧道最大隆起值的经验预测公式;隧道水平向位移较少量测,实测值较小;收敛变形由“水平向拉伸、竖向压缩”向“水平向压缩、竖向拉伸”转变。基于杭州市延安路某地下过街通道工程,研究了基坑开挖对下方地铁1号线盾构隧道变形的影响,对隧道竖向位移、水平向位移以及水平向收敛的实测数据进行了分析,其结果验证了理论分析和计算公式的可靠性。  相似文献   

2.
Surface movements were measured in the Gotthard massif as the Gotthard Base Tunnel was excavated. These movements might damage concrete dams constructed on the surface valleys. The leading assumption of this work is that deformation is induced by the dissipation of pore pressures in the massif caused by tunnel drainage. Deformations induce both horizontal and vertical surface displacements. Horizontal displacements, may lead to valley closures if they are in opposite direction, which would induce negative effects on arch dams. An analytical solution is derived using the method of images and an approximated integration of deformations to calculate the movements and the flow rate collected in the tunnel. Numerical calculations were carried out in 2D (vertical cross section) and 3D to investigate the problem under different conditions and to study the effect of parameters. The 3D models permit to incorporate the presence of a vertical fracture perpendicular to the tunnel that increases the drainage and pressure drop as it is hit by the tunnel. It was also possible to simulate the impermeabilization works in the tunnel to reduce drainage and consequently, movements. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
结合矮寨悬索桥的工程实践,采用MIDAS/GTS对茶洞岸锚碇和下穿公路隧道之间的相互作用机制进行研究。研究表明,开挖阶段锚-隧相互作用程度具有不对等性,即锚-隧影响大于隧-锚影响。在设计大缆拉力荷载作用下,下穿隧道的存在明显地改变了锚碇附近围岩的位移分布,导致锚碇附近围岩节点位移曲线发生整体下沉、旋转,并产生最大达0.76 mm的竖向附加位移。锚碇附近围岩竖向位移受下穿隧道影响较为显著,而水平向位移受影响相对较弱。对于锚碇隧道而言,下穿隧道单次爆破引起振动较小,距离爆心40 m范围以外围岩质点峰值振动速度小于2 cm/s,与实测资料吻合。工程项目现场的爆破振动监测及围岩波速测试成果显示:下穿隧道爆破掘进对40 m以外围岩的振动效应可以忽略。  相似文献   

4.
基坑开挖对近邻运营地铁隧道影响规律研究   总被引:1,自引:0,他引:1  
王立峰  庞晋  徐云福  杨开放 《岩土力学》2016,37(7):2004-2010
对某邻近基坑开挖的地铁隧道的水平位移和沉降的时空分布做了深入分析。由于软土的蠕变效应,应考虑基坑分块开挖的先后顺序造成的时空效应的影响,以及基坑围护体系的水平支撑结构对土体位移的限制作用。基坑开挖对邻近地铁隧道的影响范围为2.5倍开挖深度,而对于远基坑的右线,影响范围更低,甚至低至1.5倍开挖深度。将基坑和隧道的监测数据联系分析,得到比值与水平距离的关系曲线,将基坑监测数据代入拟合公式,对地铁水平和垂直位移进行估算。隧道水平位移与邻近的同深度土体水平位移的比值(?),其最大累计位移点的? 较多地处在0.60~0.65范围,在底板浇筑都已完成后,稳定在0.60。隧道沉降与邻近地表沉降的比值(?),其最大累计沉降点的?,较多地处在0.50~0.60间,底板浇筑完成后,稳定在0.52±0.05水平。  相似文献   

5.
6.
The Sulu-Dabie high-pressure (HP)-ultrahigh-pressure (UHP) metamorphic belt as the product of subduction-collision between the northern China plate and Yangtze plate underwent a process of formation and evolution from deep subduction→exhumation→extension→slow uplift. The study of its modern tectonic stress field has great significance for a complete understanding of the process of formation and evolution of the HP-UHP metamorphic belt, especially the exhumation and uplift of the belt. Wellbore breakouts are the most visual tectonic phenomenon which can characterize the modern stress action in the main borehole of Chinese Continental Scientific Drilling (CCSD). Ultrasonic borehole televiewer reflection wave data show that wellbore breakouts began to occur at 1216 m depth of the main borehole. A total of 143 borehole televiewer images were collected from 1216 to 5118 m depth (hole completion depth). After data processing and statistics, the average azimuth of the long dimension of the wellbore breakout obtained was 319.5° ± 3.5°, indicating that the average azimuth of the maximum horizontal principal stress causing wellbore breakout initiation was 49.5° ± 3.5°. The maximum and minimum horizontal principal stress values at 52 depths in the interval of 1269 to 5047 m were estimated using the elements of wellbore shapes (wellbore depth and width), combined with the cohesive strength and internal frictional angle of the rock obtained by rock mechanical tests on samples, and the static load stresses at corresponding depths were calculated according to the rock density logging data. The results indicate that: the maximum and minimum horizontal principal stresses are 41.4 and 25.3 MPa at 1269 m depth respectively and 164.7 and 122 MPa at 5047 m depth respectively; the maximum vertical stress is 141.3 MPa at 5047 m depth with a density of 2.8 g/cm3; the in-situ stresses increase nearly linearly with depth. The magnitudes and directions of the three principal stresses reflect that the regional stress field around the CCSD main borehole is mainly in a strike-slip state, which is consistent with the basic features of the regional stress field determined using other methods.  相似文献   

7.
浅埋隧道开挖引起的土体水平位移分析   总被引:1,自引:0,他引:1  
对于浅埋隧道开挖引起的土体位移规律很多学者进行了研究,但对于其水平位移规律的研究却不多。在总结比较现有3种地层沉降公式的基础上,结合其中一种地层沉降理论以及土体不可压缩的假设推导出了浅埋隧道上方土体的水平位移公式,使用该公式对相关文献中的实测数据以及有限元模拟结果进行了拟合对比,证明提出的公式能够较好地预测和描述浅埋隧道开挖引起的土体水平位移规律;另外,基于所推导的地层水平位移公式以及地层沉降理论公式,得出了该方法下的土体位移矢量角公式,并与O’Reilly 和New提出的方法进行了比较,所得结果与相关学者的研究结论一致,证明了该土体位移矢量公式的适用性。此研究成果可为相关实际工程中土体水平位移的计算和控制提供理论参考。  相似文献   

8.
章慧健  仇文革  冯冀蒙  郑余朝  龚伦 《岩土力学》2010,31(11):3569-3573
上下重叠隧道施工时,后挖隧道施工过程对先建隧道是一种“卸载”作用,受此影响,先建隧道的衬砌管片将朝后挖隧道方向变形,但这种影响作用是暂时的。以深圳地铁3号线老街站-晒布路站区间重叠隧道工程为背景,采用三维有限元数值计算和室内离心模型试验相结合的手段,对上部隧道(后挖隧道)施工引起的下方已建隧道纵向变位进行了研究。结果表明,后挖隧道施工引起的先建隧道不均匀沉降主要出现在约掌子面前方3.5D(D为隧道直径)到后方3D的范围内。基于此,探讨了应对这种暂时纵向效应的对策措施,主要包括临时压重和临时内撑。在先建隧道位于掌子面后方(0~1)D、(1~2)D、(2~3)D范围内分别设置20 t/3 m、20 t/6 m、20 t/9 m的临时压重,且在掌子面前方4D和后方4D范围内为先建隧道设置临时内撑,可以较好地减小由于后挖隧道施工引起的先建隧道附加不均匀变形。  相似文献   

9.
A geogrid reinforced steep slope was built and monitored during construction and during the first ten months of service. The slope is located between Régua and Reconcos in the new Portuguese main itinerary, IP3, and is a part of reestablishment 2. The reinforced slope has an extension of about 206.2m, is in curve and the reinforced area reaches a maximum height of about 19.6m in the outside curve slope at 150.0m of extension (km 0+150). The monitored slope cross section is at km 0+150. The reinforcements are high density polyethylene geogrids;. materials with different tensile strength values were used. The reinforcement strains were measured at three reinforcement levels using linear extensometers. The soil vertical stresses were recorded using load cells. The internal horizontal displacements of the slope were recorded using two inclinometer tubes. The face displacements were recorded topographically in points spaced approximately 1.2m vertically along the face of the slope on the km 0+150 cross section. The reinforced slope behaviour was observed during a period of about 13 months, which includes three months of construction period. This way it was possible to obtain information about the slope behaviour during and after construction (the first 10 months of service). The behaviour of the observed reinforced slope is characterized by: low values of face displacements, slope internal horizontal displacements and reinforcement strains; change of the face displacements configuration at the end of construction during service;tendency to stabilization of the horizontal displacements in a relatively short period of service; change, during service, of the position of the line passing through the points of the reinforcements where maximum strains were recorded. The reinforced slope behaviour express the conservative design of Equilibrium Limit methods and encourage the research on new design methods for geosynthetic reinforced soil systems.  相似文献   

10.
复杂条件下隧道支护结构稳定性分析   总被引:1,自引:0,他引:1  
贾剑青  王宏图  李晶  张宪  胡国忠 《岩土力学》2010,31(11):3599-3603
以方斗山隧道为研究对象,建立三维有限元数值分析模型,模拟分析了隧道支护结构的稳定性。以距离隧道洞口10 m处断面支护结构为例,分析了该断面初次支护和二次衬砌的水平应力、竖向应力、竖向位移、锚杆轴力及支护结构破坏域等随掌子面推进的变化规律,并对该断面支护结构特征点的稳定性进行追踪研究。研究结果表明,当掌子面与断面间距离小于30 m左右时,随着掌子面的推进,支护结构应力及位移等均有一定程度的增长,其后支护结构应力及位移基本收敛,且收敛值均较小,表明支护结构是稳定的。对隧道初次支护应力及锚杆轴力的现场监测结果及数值模拟结果进行对比分析,结果表明,数值模拟与现场监测结果基本一致。  相似文献   

11.
Drilling of the new Gotthard rail base tunnel (central Alps) opened a large number of water-conducting fractures in granite and gneiss of the crystalline basement. The overburden reaches locally more than 2000 m and water and rock temperature is up to 45 °C. The tunnel crosses a series of steeply dipping fractured rock units that also crop out at the surface above the tunnel. Recharge water enters the fractured rocks in the high mountainous area, migrates gravity driven to the sampling locality in the tunnel. Along its flow path it reacts with rocks exposed on the fractures where it dissolves the principal granite minerals, resulting in high-pH Na2CO3 waters.The tunnel waters contain unusually high concentrations of fluoride ranging from 5 to 29 mg/L. Alteration of F-bearing biotite to F-free chlorite is one of the sources of fluorine. The highest F-concentrations result from the equilibration of low-Ca waters with fluorite. Fluoride concentration is strongly lithology-dependent and sharp discontinuities in both, concentration and saturation state with respect to fluorite occur at the contacts of the different gneiss and granite slabs.Chloride concentrations vary between 1 and 1300 mg/L. In contrast, the Cl/Br mass ratio exhibits small variations and centers around 110 suggesting a common source for the Cl and Br, which is independent of the lithology. In the northern part of the tunnel, Cl and Br are chiefly derived from saline pore fluids of one lithology which is then mixed with low-salinity water along flow paths. Cl/Br ratios of the waters in the southern part of the tunnel section are similar to those measured in experimental leachates from different tunnel rocks, suggesting that leaching of metamorphic fluids in the pore space is the main source of both Cl and Br.  相似文献   

12.
The 2002 earthquake sequence of October 31 and November 1 (main shocks Mw = 5.7) struck an area of the Molise region in Southern Italy. In this paper we analyzed the co-seismic deformation related to the Molise seismic sequence, inferred from GPS data collected before and after the earthquake, that ruptured a rather deep portion of crust releasing a moderate amount of seismic energy with no surface rupture. The GPS data have been reduced using two different processing strategies and softwares (Bernese and GIPSY) to have an increased control over the result accuracy, since the expected surface displacements induced by the Molise earthquake are in the order of the GPS reliability. The surface deformations obtained from the two approaches are statistically equivalent and show a displacement field consistent with the expected deformation mechanism and with no rupture at the surface. In order to relate this observation with the seismic source, an elastic modeling of fault dislocation rupture has been performed using seismological parameters as constraints to the model input and comparing calculated surface displacements with the observed ones. The sum of the seismic moments (8.9 × 1017 Nm) of the two main events have been used as a constraint for the size and amount of slip on the model fault while its geometry has been constrained using the focal mechanisms and aftershocks locations. Since the two main shocks exhibit the same fault parameters (strike of the plane, dip and co-seismic slip), we modelled a single square fault, size of 15 km × 15 km, assumed to accommodate the whole rupture of both events of the seismic sequence. A vertical E–W trending fault (strike = 266°) has been modeled, with a horizontal slip of 120 mm. Sensitivity tests have been performed to infer the slip distribution at depth. The comparison between GPS observations and displacement vectors predicted by the dislocation model is consistent with a source fault placed between 5 and 20 km of depth with a constant pure right-lateral strike-slip in agreement with fault slip distribution analyses using seismological information. The GPS strain field obtained doesn't require a geodetic moment release larger than the one inferred from the seismological information ruling out significant post-seismic deformation or geodetic deformation released at frequencies not detectable by seismic instruments. The Molise sequence has a critical seismotectonic significance because it occurred in an area where no historical seismicity or seismogenic faults are reported. The focal location of the sequence and the strike-slip kinematics of main shocks allow to distinguish it from the shallower and extensional seismicity of the southern Apennines being more likely related to the decoupling of the southern Adriatic block from the northern one.  相似文献   

13.
Sorption of the 14 rare earth elements (REE) by basaltic rock is investigated as a function of pH, ionic strength and aqueous REE concentrations. The rock sample, originating from a terrestrial basalt flow (Rio Grande do Sul State, Brazil), is composed of plagioclase, pyroxene and cryptocrystalline phases. Small amounts of clay minerals are present, due to rock weathering. Batch sorption experiments are carried out under controlled temperature conditions of 20 °C with the <125 μm fraction of the ground rock in solutions of 0.025 M and 0.5 M NaCl and at pH ranging from 2.7 to 8. All 14 REEs are investigated simultaneously with initial concentrations varying from 10−7 to 10−4 mol/L. Some experiments are repeated with only europium present to evaluate possible competitive effects between REE. Experimental results show the preferential retention of the heavy REEs at high ionic strength and circumneutral pH conditions. Moreover, results show that REE sorption increases strongly with decreasing ionic strength, indicating two types of sorption sites: exchange and specific sites. Sorption data are described by a Generalised Composite (GC) non-electrostatic model: two kinds of surface reactions are treated, i.e. cation exchange at >XNa sites, and surface complexation at >SOH sites. Total site density (>XNa + >SOH) is determined by measuring the cation exchange capacity (CEC = 52 μmol/m2). Specific concentrations of exchange sites and complexation sites are determined by fitting the Langmuir equation to sorption isotherms of REE and phosphate ions. Site densities of 22 ± 5 and 30 ± 5 μmol/m2 are obtained for [>XNa] and [>SOH], respectively. The entire set of REE experimental data is modeled using a single exchange constant (log Kex = 9.7) and a surface complexation constant that progressively increases from log K = −1.15 for La(III) to −0.4 for Lu(III).The model proves to be fairly robust in describing other aluminosilicate systems. Maintaining the same set of sorption constants and only adjusting the site densities, we obtain good agreement with the literature data on REE/kaolinite and REE/smectite sorption. The Generalised Composite non-electrostatic model appears as an easy and efficient tool for describing sorption by complex aluminosilicate mineral assemblages.  相似文献   

14.
The 400 km-long Karakax left-lateral strike-slip fault is the westernmost segment of the Altyn Tagh fault. It separates northwestern Tibet to the south from the Tarim basin to the north. The western section of the Karakax fault exhibits clear co-seismic surface ruptures of past large earthquakes. Geomorphic offset measurements from the field and high-resolution Ikonos images along 1.5 km across the Sanshiliyingfang fan and along 55 km of the fault, range from 3 to 28 m, with distinct clusters at 6 ± 2(3), 14 ± 2, 19 ± 2 and 24 ± 3 m. The cluster of the smallest offsets around 6 m (full range from 3 to 10 m) distributed over a minimum length of 55 km, is attributed to the last largest surface rupturing event that testifies of the occurrence of a magnitude Mw 7.4-7.6 earthquake along the Karakax fault. We interpret the other offset clusters as the possible repetition of similarly sized events thus favoring a characteristic slip model for the Karakax fault. In a 3 m-deep trench dug across the active trace of the fault we can identify the main rupture strands of the last and penultimate events. The penultimate event horizon, a silty-sand layer, has been radiocarbon dated at 975-1020 AD (AMS 14C age). It is proposed that large Mw 7.4-7.6 events with co-seismic slip of about 6 m rupture the Karakax fault with a return time of about 900 years implying an average slip-rate of about 6-7 mm/years during the late Holocene. These results suggest that the Karakax fault is the largest left-lateral strike-slip fault at the rim of northwestern Tibet accommodating eastward movement of Tibet due to the India-Eurasia collision.  相似文献   

15.
现场量测位移反分析法及在地下工程中的应用   总被引:3,自引:0,他引:3  
现场量测位移的分析法是通过测量开挖硐室、隧道、井巷等地下工程的周边和围岩内的相对位移和绝对位移值来反推岩体的原始地应力场及岩体参力参数,利用线弹性有限元位移反析程序计算出某石棉矿区的初始地应力场值,并得出圈套的水平应力,这正是该矿地压严重显现原因之一。  相似文献   

16.
By using the axisymmetric finite elements static limit analysis formulation, proposed recently by the authors, the stability numbers (γH/co) for an unsupported vertical circular excavation in clays, whose cohesion increases with depth, have been determined under undrained condition; γ = unit weight, H = height of the excavation and co = cohesion along ground surface. The results are obtained for various values of H/b and m; where b = the radius of the excavation and m = a non-dimensional parameter which accounts for the rate of the increase of cohesion with depth. The values of the stability numbers increase continuously both with increases in H/b and m. The results obtained in this study compare well with those available in literature.  相似文献   

17.
吴宏  叶治  张宇亭  刘华北 《岩土力学》2023,(4):1204-1216
地震液化对隧道结构有重大威胁,且位于不同抗液化能力地层交界处的盾构隧道段更易发生严重的地震破坏。采用三维数值方法研究穿越不同密实度状态饱和砂土地层的盾构隧道的地震响应规律。饱和砂土用一种描述不同密实度砂土液化行为的边界面模型进行模拟,首先通过隧道液化上浮的振动台试验结果验证该本构模型的合理性。其次,应用多自由度连接弹簧表征管片环间相互作用,采用文献中的拼装管片的逐级加载试验结果验证该方法的可行性。最后,建立穿越两种不同密实度饱和砂土地层的盾构隧道三维数值模型,研究相对密实度、输入加速度峰值和交界面倾角对砂土地层-盾构隧道系统动力响应的影响。结果表明,可液化地层中隧道结构位移模式是水平地震激励下产生的水平位移与由于液化上浮效应产生的竖向位移的耦合作用,加之隧道在不同土层中变形存在差异,从而导致隧道呈现扭转的变形形态。在靠近交界面处,隧道整体上浮量急剧变化且该处结构上浮量随着交界面倾角增大而增大,同时管片结构弯矩出现突变,接头螺栓的环间剪切和拉伸位移也显著增加。分析结果进一步印证地震作用下盾构隧道在不同性质饱和砂土地层交界面处更易破坏,在设计阶段应予以重点关注。  相似文献   

18.
Controlling the face stability of shallow shield tunnels is difficult due to the inadequate understanding of face failure mechanism. The failure mechanism and the limit support pressure of a tunnel face in dry sandy ground were investigated by using discrete element method (DEM), which has particular advantages for revealing mechanical properties of granular materials. The contact parameters of the dry sand particles were obtained by calibrating the results of laboratory direct shear tests. A series of three-dimensional DEM models for different ratios of the cover depth to the diameter of the tunnel (C/= 0.5, 1, and 2; i.e., relative depth) were then built to simulated the process of tunnel face failure. The limit support pressure, failure zone and soil arching were discussed and compared with other methods. The results of DEM simulations show that the process of tunnel face failure can be divided into two stages. With the increase of the horizontal displacement of the tunnel face, the support pressure decreases to the limit support pressure and then increases to the residual support pressure. The limit support pressure increases with the rise of relative depth and then tends to be constant. In the process of tunnel face failure, the failure zone is gradually enlarged in size and expands to the ground surface. The numerical results also demonstrate that soil arching occurs in the upper part of the failure zone and the soil becomes loosened in the failure zone. Consequently, the comprehensive analysis of tunnel face failure may help to guarantee safe construction during tunneling.  相似文献   

19.
A 2D horizontal reactive transport model of a chromate-contaminated site near Rivera, Switzerland, was developed using the computer code CrunchFlow to evaluate site remediation strategies. Transport processes were defined according to the results of an existing hydrological model, and the definition of geochemical (reactive) processes is based on the results of a detailed mineralogical and geochemical site characterization leading to a comprehensive conceptual site model. Kinetics of naturally occurring Cr(VI) reduction by Fe(II) and natural solid organic matter is quantified by fitting measured Cr isotope ratios to a modeled 1D section along the best constrained flow line. The simulation of Cr isotope fractionation was also incorporated into the 2D model. Simulation of the measured present day Cr(VI) plume and δ53Cr value distribution was used for the 2D model calibration and corresponds to a situation where only monitored natural attenuation (MNA) is occurring. Other 2D model runs simulate alternate excavation scenarios. The simulations show that with an excavation of the top 2–4 m the groundwater Cr(VI) plume can be minimized, and that a deeper excavation depth only diminishes the plume if all the contaminants can be removed. A combination of an excavation of the top 2–4 m and monitoring of the ongoing natural Cr(VI) reduction is suggested as the most ecological and economical remediation strategy, even though a remaining time period with ongoing subsoil Cr(VI) contamination in the order of 1 ka is predicted.  相似文献   

20.
The paper presents the results of electromagnetic radiation (EMR) measurements in the Feuerberg tunnel in southwest Germany. EMR is associated with small scale fracturing processes. The measured numbers of EMR impulses are shown to be proportional to shear stresses. From the correlation of EMR and shear stresses along the long axis of the tunnel, orientations and magnitudes of the horizontal principal stresses are determined. The major horizontal principal stress is 3.6±0.3 MPa and has an azimuth of 143±6°. The minor principal horizontal stress is 2.1±0.3 MPa. Zones in the tunnel are located where low shear stresses occur because vertical overburden and horizontal stresses are equal. In these zones also minimum radiation was detected. A possible stress accumulation close to a fault is suggested by higher EMR values in a part of the tunnel. Orientations and magnitudes of the horizontal principal stresses, which are derived from the measurements of EMR, correlate well with conventional stress measurements. It is suggested that the cross-section measuring method described in the study is used to determine regional stress fields as well as to investigate endangered zones with high stresses in underground facilities, which may be critical with regard to stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号