共查询到20条相似文献,搜索用时 15 毫秒
1.
Anomalously High Nitrate Concentrations in Ground Water 总被引:5,自引:0,他引:5
Jordi Guimerà 《Ground water》1998,36(2):275-282
2.
Trace metal clean sampling and analysis techniques were used to examine the temporal patterns of Hg, Cu, and Zn concentrations in shallow ground water, and the relationships between metal concentrations in ground water and in a hydrologically connected river. Hg, Cu, and Zn concentrations in ground water ranged from 0.07 to 4.6 ng L−1, 0.07 to 3.10 μg L−1, and 0.17 to 2.18 μg L−1, respectively. There was no apparent seasonal pattern in any of the metal concentrations. Filtrable Hg, Cu, and Zn concentrations in the North Branch of the Milwaukee River ranged from below the detection limit to 2.65 ng Hg L−1,0.51 to 4.30 μg Cu L−1, and 0.34 to 2.33 μg Zn L−1. Thus, metal concentrations in ground water were sufficiently high to account for a substantial fraction of the filtrable trace metal concentration in the river. Metal concentrations in the soil ranged from 8 to 86 ng Hg g−1, 10 to 39 μg Cu g−1, and 15 to 84 μg Zn g−1. Distribution coefficients, KD, in the aquifer were 7900,22,000, and 23,000 L kg−1 for Hg, Cu, and Zn, respectively. These values were three to 40 times smaller than KD values observed in the Milwaukee River for suspended particulate matter. 相似文献
3.
4.
5.
《Ground Water Monitoring & Remediation》1986,6(3):92-98
A number of samples of polyvinyl chloride (PVC) well casings used for ground water monitoring that varied in schedule, diameter or manufacturer were placed in contact with low concentrations of aqueous solutions of TNT, RDX, HMX and 2,4-DNT for 80 days. Analysis indicated that there was more loss of TNT and HMX with the PVC casing than with the glass controls, but that the amount lost was, for the most part, equivalent among different types. A second experiment was performed to determine if these losses were due to sorption or if biodegradation was involved. Several different ground water conditions were simulated by varying salinity, initial pH and dissolved oxygen content. The only case where there was an in-creased loss of any substance due to the presence of PVC casing was with the TNT solution under non-sterile conditions. The extent of loss was small, however, considering the length of the equilibration period. This increased loss is thought to be associated with increased microbial degradation rather than sorption. Several samples of PVC casing were also leached with ground water for 80 days. No detectable interferences were found by reversed-phase high performance liquid chromatography (HPLC) analysis. Therefore, it is concluded that PVC well casings are suitable for monitoring ground water for the presence of these munitions. 相似文献
6.
7.
Fred M. Phillips Stanley N. Davis Peter Kubik 《Ground Water Monitoring & Remediation》1990,10(3):106-113
Chlorine-36 has been produced in large amounts by hundreds of nuclear explosions on the Nevada Test Site as well as 12 off-site explosions at eight locations in five states. Continued monitoring of the redistribution of radionuclides by subsurface water is of concern in most of the areas affected by the detonations. Chlorine-36 has the following advantages as a built-in tracer for this redistribution: its mobility is equal to or greater than water, its long half-life assures its continued usefulness over long periods, collection and storage of samples is simple, it is not subject to vapor transport at ordinary temperatures, its natural background is very low, and it does not form insoluble precipitates. Chlorine-36 from the Gnome event near Carlsbad, New Mexico, illustrates how 36 C1 can be used to help study the redistribution of radionuclides in the soil profile. Chlorine-36 is also potentially useful as a tracer to study movement of contaminants around large nuclear reactor complexes and near respositories for radioactive waste. 相似文献
8.
9.
10.
11.
An in vivo SCID mouse infectivity assay was used to determine its capacity to detect the infectivity of low concentrations of Cryptosporidium parvum oocysts in water. This biological test can be applied to demonstrate oocysts infectivity in water samples derived from drinking water supply and/or environmental sources. 相似文献
12.
Pesticides in Nebraska's Ground Water 总被引:1,自引:0,他引:1
《Ground Water Monitoring & Remediation》1989,9(4):126-133
More than 2263 well water samples were collected throughout Nebraska and analyzed for pesticides. Thirteen and one-half percent contained detectable levels of atrazine, but only 22 wells exceeded the health advisory of 3.0 ppb. Although the samples came from almost every county in the state, this sampling is not based solely on a randomly selected group of wells. The highest frequency of detections occurred in irrigated corn-growing areas with less than 50 feet to ground water. These areas were sampled at a greater frequency than the less vulnerable areas. Cyanazine, together with the additional triazines — simazine, propazine, prometone, and ametryne, also were detected in some well waters; however, their frequency of detection was well below that of atrazine. The triazine metribuzin was not detected.
Alachlor, propachlor, and metolachlor also were detected in trace levels in several wells. Five of 2072 samples analyzed for alachlor exceeded the health advisory of 0.4 ppb. Almost all of the contaminated wells were in vulnerable areas. The relatively high frequency of propachlor detections occurred in predominately irrigated corn-growing areas, rather than in areas where propachlor is traditionally applied.
The factors that appear most directly involved in the observed distribution of pesticides in ground water are the intensity of areal usage, pesticide persistence and mobility, irrigation, soil drainage capacity, and depth to ground water.
Fifteen pesticide residues were detected during this study. If ethylene dibromide and carbon tetrachloride, which were detected in ground water adjacent to grain elevators are included, a total of 17 pesticide residues have been detected in Nebraska's ground water. 相似文献
Alachlor, propachlor, and metolachlor also were detected in trace levels in several wells. Five of 2072 samples analyzed for alachlor exceeded the health advisory of 0.4 ppb. Almost all of the contaminated wells were in vulnerable areas. The relatively high frequency of propachlor detections occurred in predominately irrigated corn-growing areas, rather than in areas where propachlor is traditionally applied.
The factors that appear most directly involved in the observed distribution of pesticides in ground water are the intensity of areal usage, pesticide persistence and mobility, irrigation, soil drainage capacity, and depth to ground water.
Fifteen pesticide residues were detected during this study. If ethylene dibromide and carbon tetrachloride, which were detected in ground water adjacent to grain elevators are included, a total of 17 pesticide residues have been detected in Nebraska's ground water. 相似文献
13.
TOC Determinations in Ground Water 总被引:2,自引:0,他引:2
Michael J. Barcelona 《Ground water》1984,22(1):18-24
Determinations of total organic carbon (TOC) can provide valuable diagnostic evidence of the extent of ground-water contamination by organic compounds. The usefulness of conventional TOC results in monitoring efforts is limited by the bias introduced during the purging of inorganic carbon prior to analysis. A modified TOC procedure has been evaluated to permit the quantitation of the volatile organic carbon (VOC) fraction in water samples. The methodology consists of trapping the VOC in a manner analogous to commercial purge and trap instruments which are used for specific organic compound separations. The method has been found to be sensitive, accurate and reasonably precise for TOC determinations of standard solutions as well as on ground-water samples. Volatile organic carbon levels can range from 9–50% of the TOC in both uncontaminated and contaminated ground waters. The reporting of the volatile and nonvolatile fractions of the TOC will enhance both monitoring and research efforts, since it permits more complete characterization of the organic carbon content of ground-water samples. 相似文献
14.
Fluoride in Nebraska's Ground Water 总被引:1,自引:0,他引:1
David C. Gosselin Jacqueline Headrick F. Edwin Harvey Rod Tremblay Kimberly McFarland 《Ground Water Monitoring & Remediation》1999,19(2):87-95
Fluoride concentrations in ground water are generally low but play an important role in dental health. This study evaluates the vertical and spatial distribution of fluoride in Nebraska's ground water and examines the geological and geochemical processes that control its concentration. Data from 1794 domestic wells sampled by the Nebraska Department of Health and Human Services. Regulation, and Licensure (NDOH) had a range of fluoride concentrations from <0.1 to 2.6 mg/L. and a median concentration of 0.3 mg/L. The median fluoride concentrations for Nebraska's 13 ground water regions varied from 0.2 to 0.7 mg/L. In each of these regions, individual wells may have either insufficient or overabundant F concentrations; we recommend that individual private water systems be tested for fluoride. Based on these data, system-specific recommendations can be made regarding the necessity for fluoridation.
Geochemical data indicated that the majority of fluoride occurs as F. Dissolution of F-bearing minerals controls fluoride occurrence. Apatite plus minor amounts of fluorite along with significant ground water residence times are the primary factors controlling F in the water from the Dakota Formation in Knox County, as well as in other parts of northeastern Nebraska. In western and southwestern Nebraska, dissolution of volcanic glass is the most probable source of F Long residence times plus fluorite also may contribute to the F concentrations in the Chadron Formation. 相似文献
Geochemical data indicated that the majority of fluoride occurs as F. Dissolution of F-bearing minerals controls fluoride occurrence. Apatite plus minor amounts of fluorite along with significant ground water residence times are the primary factors controlling F in the water from the Dakota Formation in Knox County, as well as in other parts of northeastern Nebraska. In western and southwestern Nebraska, dissolution of volcanic glass is the most probable source of F Long residence times plus fluorite also may contribute to the F concentrations in the Chadron Formation. 相似文献
15.
16.
17.
Variations in concentrations of trichloroethylene and related compounds in ground water obtained from seven ground water samplers were used to compare the performance of three submersible pumps, a centrifugal pump, two peristaltic pumps, and a bailer. Two- and 4-inch diameter submersible pumps and a centrifugal pump produced samples whose trichloroethylene concentrations, on the average, did not differ significantly from each other. Ground water samples collected by using a peristaltic pump and silicone tubing had significantly lower trichloroethylene concentrations than samples from the submersible pumps. Concentrations of 1,2-dichloroethylene and trichloroethylene in ground water samples collected by using a bailer were indistinguishable from those in samples taken by a submersible pump when the concentrations were as much as 96 and 76 micrograms per liter, respectively, but were 15 and 12 percent lower when concentrations were as low as 29 and 23 micrograms per liter, respectively. Tests of different configurations of sampler placement in observation wells indicate that pump placement, rate of pumping, duration of pumping, and the uniformity of the vertical and lateral distribution of trichloroethylene in ground water near the well screen have a potentially significant influence on trichloroethylene concentrations in ground water samples and that these factors can have a greater effect than the type of sampler used. 相似文献
18.
Water from the San Joaquin Delta, having chloride concentrations up to 3590 mg/L, has intruded fresh water aquifers underlying Stockton, California. Changes in chloride concentrations at depth within these aquifers were evaluated using sequential electromagnetic (EM) induction logs collected during 2004 through 2007 at seven multiple‐well sites as deep as 268 m. Sequential EM logging is useful for identifying changes in groundwater quality through polyvinyl chloride‐cased wells in intervals not screened by wells. These unscreened intervals represent more than 90% of the aquifer at the sites studied. Sequential EM logging suggested degrading groundwater quality in numerous thin intervals, typically between 1 and 7 m in thickness, especially in the northern part of the study area. Some of these intervals were unscreened by wells, and would not have been identified by traditional groundwater sample collection. Sequential logging also identified intervals with improving water quality—possibly due to groundwater management practices that have limited pumping and promoted artificial recharge. EM resistivity was correlated with chloride concentrations in sampled wells and in water from core material. Natural gamma log data were used to account for the effect of aquifer lithology on EM resistivity. Results of this study show that a sequential EM logging is useful for identifying and monitoring the movement of high‐chloride water, having lower salinities and chloride concentrations than sea water, in aquifer intervals not screened by wells, and that increases in chloride in water from wells in the area are consistent with high‐chloride water originating from the San Joaquin Delta rather than from the underlying saline aquifer. 相似文献
19.
20.