首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
相容元素——不相容元素协变图在岩石成因研究中的意义   总被引:7,自引:1,他引:6  
笔者根据前人提出的各种岩浆作用模式,如分离结晶作用、部分熔融作用、岩浆混合作用等,通过纯数学推导,提出一套判别岩浆岩形成机制的相容元素—不相容元素协变图。 从几何图形的讨论,指出相容元素i(Di〉2)和不相容元素j的CTi—CTi和IogCTi—logCTi图解上可以区分不同成因的岩石,包括分离结晶作用、平衡结晶作用、实比和非实比分离熔融作用,实比和非实比分批熔融作用以及岩浆混合作用。不同成因岩石在协变图上其成分点的分布有明显差别,这在解释山西临县紫金山碱性环状杂岩体的成因中获得满意的效果,从而确认该者体是多次分批部分熔融作用的产物。  相似文献   

2.
对主要岩浆作用过程中痕量元素协变方程和实例的分析表明,正确选择元素做图是应用协交图形判别岩浆作用类型的前提,并非任意元素-元素、比值-元素和比值-比值协变图形都能有效判别岩浆作用过程。文中给出了不同形式的协交图形中元素的选择标准,指出强相容元素与强不相容元素的元素-元素协变图形对判别岩浆分离结晶作用和部分熔融作用更为有效和实用,同时也是判别岩浆同化混染作用的重要图解。  相似文献   

3.
Cenozoic(Miocene to Pleistocene) basaltic rocks in Jiangsu province of eastern China include olivine tholeiite and alkali basalt.We present major,trace element and Sr-Nd isotopic data as well as Ar-Ar dating of these basalts to discuss the petrogenesis of the basalts and identify the geological processes beneath the study area.On the basis of chemical compisitions and Ar-Ar dating of Cenonoic basaltic rocks from Jiangsu province,we suggest that these basalts may belong to the same magmatic system.The alkali basalts found in Jiangsu province have higherΣFeO,MgO,CaO,Na2O, TiO2 and P2O5 and incompatible elements,but lower Al2O3 and compatible elements contents than olivine tholeiite which may be caused by fractional crystallization of olivine,pyroxene and minor plagioclase.In Jiangsu basaltic rocks the incompatible elements increase with decreasing MgO/ΣFeO ratios.The primitive mantle-normalized incompatible elements and chondrite-normalized REE patterns of basaltic rocks found in Jiangsu province are similar to those of OIB.Partial loss of the mantle lithosphere accompanied by rising of asthenospheric mantle may accelerate the generation of the basaltic magma.The 143Nd/144Nd vs.87Sr/86Sr plot indicates a mixing of a depleted asthenospheric mantle source and an EMI component in the study area.According to Shaw’s equation,the basalts from Jiangsu province may be formed by l%-5%partial melting of a depleted asthenospheric mantle source.On the basis of Ar-Ar ages of this study and the fractional crystallization model proposed by Brooks and Nielsen(1982),we suggest that basalts from Jiangsu province may belong to a magmatic system with JF-2 as the primitive magma which has undergone fractional crystallization and evolved progressively to produce other types of basalts.  相似文献   

4.
Petro Gram is an Excel?based magmatic petrology program that generates numerical and graphical models.Petro Gram can model the magmatic processes such as melting,crystallization,assimilation and magma mixing based on the trace element and isotopic data.The program can produce both inverse and forward geochemical models for melting processes(e.g.forward model for batch,fractional and dynamic melting,and inverse model for batch and dynamic melting).However,the program uses a forward modeling approach for magma differentiation processes such as crystallization(EC:Equilibruim Crystallization,FC:Fractional Crystallization,IFC:Imperfect Fractional Crystallization and In-situ Crystallization),assimilation(AFC:Assimilation Fractional Crystallization,Decoupled FC-A:Decoupled Fractional Crystallization and Assimillation,A-IFC:Assimilation and Imperfect Fractional Crystallization)and magma mixing.One of the most important advantages of the program is that the melt composition obtained from any partial melting model can be used as a starting composition of the crystallization,assimilation and magma mixing.In addition,Petro Gram is able to carry out the classification,tectonic setting,multi-element(spider)and isotope correlation diagrams,and basic calculations including Mg^#,Eu/Eu^*,εSrandεNdwidely used in magmatic petrology.  相似文献   

5.
The Cenozoic volcanic rock of Shandong Province are mainly alkalic and strongly alkalic basaltic rocks.The Contents of major and trace elements including transitional,incompatible and rare-earth elements were determined.The chemical characterisitics of major and trace elements indicate that these basaltic rocks were derived from a mantle source and probably represent a primary magma,I,e.,unmodifiecd partical melts of mantle peridotite in terms of Mg values,correlatione between P2O5 and Ce,Sr,Ni and Rb concentrations,mantle xenoliths,etc.The abundances of trace elements vary systematically from west to east.The compatible transition elements such as Co,Ni,and Cr show a remarkable depletion,whereas the incompatible and rare-earth elements are abundant as viewed from the chondrite-nor-malized patterns.The chemical composition and correlation are consistent with the tectonic setting.According to the batch and fractional partial melting theory,the trace element contents of Shandong volcanic rocks can be calculated from the two-component mixing model.  相似文献   

6.
准噶尔北缘中泥盆统北塔山组富辉橄玄岩是一种富含单斜辉石斑晶的岛弧玄武岩,被认为是洋脊俯冲作用的产物,但具体成因机制并不清楚。本文对老山口地区富辉橄玄岩进行了岩石地球化学研究,同时系统测定了其单斜辉石斑晶的成分及其环带变化规律。结果表明,富辉橄玄岩的相容元素和不相容元素的变化规律具有岩浆混合作用的特征,而透辉石斑晶的反环带则将岩浆混合作用限定于高Mg~#熔浆的上涌过程。富辉橄玄岩极高的相容元素含量将上涌的高Mg~#熔浆限定为苦橄质熔浆,而富辉橄玄岩中顽透辉石是被苦橄质熔体携带而来的斑晶物质。主导老山口富辉橄玄岩形成的岩浆过程是苦橄质熔浆的连续补给过程,而苦橄质熔浆被认为是板片窗处软流圈高程度部分熔融的产物。老山口富辉橄玄岩形成的岩浆过程与洋脊俯冲的板片窗模型吻合,因此老山口富辉橄玄岩可能是洋脊俯冲的产物。  相似文献   

7.
The results of experimental studies and examination of variations in major elements, trace elements and Sr isotopes indicate that fractionation, assimilation and magma mixing combined to produce the lavas at Medicine Lake Highland. Some characteristics of the compositional differences among the members of the calc-alkalic association (basalt-andesite-dacite-rhyolite) can be produced by fractional crystallization, and a fractionation model reproduces the major element trends. Other variations are inconsistent with a fractionation origin. Elevated incompatible element abundances (K and Rb) observed in lavas intermediate between basalt and rhyolite can be produced through assimilation of a crustal component. An accompanying increase in 87Sr/86Sr from ∼ 0.07030 in basalt to ∼0.7040 in rhyolite is also consistent with crustal assimilation. The compatible trace element contents (Ni and Sr) of intermediate lavas can not be produced by fractional crystallization, and suggest a magma-mixing origin for some lavas. Unusual phenocryst assemblages and textural criteria in these lavas provide additional evidence for magma mixing. A phase diagram constructed from the low pressure melting experiments identifies a distributary reaction point, where olivine+augite react to pigeonite. Parental basalts reach this point at low pressures and undergo iron-enrichment at constant SiO2 content. The resulting liquid line of descent is characteristic of the tholeiitic trend. Calc-alkalic differentiation trends circumvent the distributary reaction point by three processes: fractionation at elevated pH2O, assimilation and magma mixing.  相似文献   

8.
Trace element modelling has been widely used for petrogenetic interpretation of basaltic systems. This paper indicates how to select trace element pairs having very different bulk distribution coefficients (D) which when plotted on simple log-log diagrams permit the identification of the main magmatic process (magma mixing, partial melting, fractional crystallization) involved in the genesis of plutonic rocks. Fractional crystallization gives a straight line on such a diagram with a strong decrease of the compatible element whereas the concentrations of the element with D ⪡ 1 increase slowly. A similar evolution of the solids in equilibrium is observed and when data of at least one of the cumulates are directly available, it is possible to calculate the D and F parameters of the sequence of fractional crystallization.An example of this procedure is shown for a French Hercynian plutonic suite: the basic suite of Variscan Corsica.  相似文献   

9.
河南省安林矽卡岩型铁矿的成岩时代和成矿物质来源探讨   总被引:4,自引:1,他引:3  
陈艳  张招崇  朱江 《岩石学报》2014,30(5):1307-1321
位于华北克拉通中部的河南省安林铁矿是典型的邯邢式矽卡岩型铁矿,矿体产于闪长质岩石和中奥陶统灰岩的接触带。LA-ICPMS锆石U-Pb定年结果表明安林闪长岩体的侵位年龄为123.38±0.81Ma,略晚于华北克拉通东部地区的含矿岩体,形成于岩石圈大规模减薄伸展时期。但其中含有古老的锆石说明岩浆经历了地壳的混染。闪长质岩石具有相对低SiO2、高Mg#、高碱,富集Ba、Sr和LREE大离子亲石元素,亏损Nb、Ti、Ta等高场强元素的特点,暗示了其形成于岩石圈地幔。岩相学特征以及Harker图解指示了岩浆经历了较强的分离结晶作用,因此推断安林闪长岩可能是软流圈地幔上涌导致富集的岩石圈地幔发生部分熔融形成原始的辉长质岩浆在上升过程中或岩浆房中发生了以铁镁矿物为主的分离结晶作用,同时受到地壳物质的混染的结果。安林地区矿石具有和闪长岩体相似的稀土元素地球化学特征,反映铁的成矿作用与岩浆作用密切相关。矿床中闪长岩体、矽卡岩、矿石和碳酸盐围岩的主量元素对比研究表明钠交代作用引起Na、K、Fe、Si等元素在各岩类间的迁移,其中迁移出的铁为成矿提供了物质基础。安林地区初始岩浆富含水,分离结晶作用使残留岩浆水饱和而发生出溶;且岩浆在演化过程中受到区内膏盐层和碳酸盐地层的混染,促进了岩浆中流体的出溶并使出溶的流体富含Cl-,为有利于铁质活化的富Cl-岩浆流体的形成创造了条件。  相似文献   

10.
ABSTRACT

Several alkaline massifs on inland southeastern Brazil extend offshore, roughly parallel to ~20° S, through a seamount chain of the Vitoria-Trindade ridge. This paper presents the first extensive work on the Martin Vaz volcano through whole-rock and Sr and Nd isotopic composition of volcanic and subvolcanic lithotypes from the Martin Vaz Island, located at the easternmost of this volcanic chain. These alkaline rocks were generated during the Plio-Pleistocene (~0.47 My, 40Ar/39Ar dating in whole-rock) and represent the crystallization of sodic magmas of nephelinitic composition that evolved through fractional crystallization towards phonolites. Calculations from P–TLiquidus using PELE software show temperatures of 1045°C and 818°C, viscosity of 2.47 log Poise and 5.02 log Poise, and densities of 2.57 g/cm3 and 2.26 g/cm3 for nephelinite and phonolite, respectively. Like in Trindade Island, the nephelinitic volcanism in Martin Vaz may represent a Strombolian and/or Hawaii-type eruption due to low viscosity magma according to its physical properties whereas phonolitic intrusions present higher viscosity characteristics forming lava domes. The 87Sr/86Sr (~ 0.703800) and 143Nd/144Nd (~ 0.512750) ratios of lavas from the seamounts and Martin Vaz do not vary significantly, pointing to partial melting process from a homogeneous mantle source showing isotope signature close to HIMU. Beside the restrict variation on these isotopic ratios, a conspicuous enrichment in incompatible trace elements, mainly LREE, indicates that metasomatism is a recent process and not a long-term source characteristic. Non-modal partial melting models (fractional melting and batch melting) suggest that the source of the Martin Vaz magmatism is consistent with the garnet-lherzolite mantle stability field (>90 km depth; Tb/Yb >0.7), generated about 3.0 GPa by very small degree of partial melting of an enriched wet mantle source (F = 0.030.04) with 2.5 wt. % of CO2.  相似文献   

11.
Mt. Shasta andesite and dacite lavas contain high MgO (3.5–5 wt.%), very low FeO*/MgO (1–1.5) and 60–66 wt.% SiO2. The range of major and trace element compositions of the Shasta lavas can be explained through fractional crystallization (~50–60 wt.%) with subsequent magma mixing of a parent magma that had the major element composition of an H2O-rich primitive magnesian andesite (PMA). Isotopic and trace element characteristics of the Mt. Shasta stratocone lavas are highly variable and span the same range of compositions that is found in the parental basaltic andesite and PMA lavas. This variability is inherited from compositional variations in the input contributed from melting of mantle wedge peridotite that was fluxed by a slab-derived, fluid-rich component. Evidence preserved in phenocryst assemblages indicates mixing of magmas that experienced variable amounts of fractional crystallization over a range of crustal depths from ~25 to ~4 km beneath Mt. Shasta. Major and trace element evidence is also consistent with magma mixing. Pre-eruptive crystallization extended from shallow crustal levels under degassed conditions (~4 wt.% H2O) to lower crustal depths with magmatic H2O contents of ~10–15 wt.%. Oxygen fugacity varied over 2 log units from one above to one below the Nickel-Nickel Oxide buffer. The input of buoyant H2O-rich magmas containing 10–15 wt.% H2O may have triggered magma mixing and facilitated eruption. Alternatively, vesiculation of oversaturated H2O-rich melts could also play an important role in mixing and eruption.  相似文献   

12.
Summary ?Major and trace element contents and Sr–Nd isotope ratios of selected volcanics of Pliocene age from the Almopia area, central Macedonia, Greece, have been determined. These rocks are mainly distinguished as two groups based on geographical, petrological and isotopic data: a) the east–central western group (E–CW) and b) the south western group (SW). The absence of contemporaneous basic volcanics in the Almopia area coupled with the considerable scatter of elements in variation diagrams rule out fractional crystallization as the dominant differentiation process. Instead, disequilibrium textures along with the positive correlation of Sr-isotope ratios with differentiation suggest mixing between a basic and an acid component combined with assimilation and fractionation. The spider diagrams of the most silica-poor volcanics show evidence of subduction-related processes, indicating that the parental magmas may have been derived from partial melting of mantle wedge enriched in LILE and LREE by subducted slab-derived fluids. Previous data on the oxygen isotope composition of the same volcanics are consistent with this genetic hypothesis. Lastly, the relatively high 87Sr/86Sr and low 143Nd/144Nd ratios (0.7080 and 0.512370, respectively) of the volcanic sample inferred to be compositionally the closest one to the parental magma of Almopia rocks suggest that the incompatible element enrichment of the mantle source is old, probably of Proterozoic age. Received December 12, 2001; revised version accepted June 20, 2002 Published online November 29, 2002  相似文献   

13.
The Malayer–Boroujerd plutonic complex (MBPC) in western Iran, consists of a portion of a magmatic arc built by the northeast verging subduction of the Neo-Tethys plate beneath the Central Iranian Microcontinent (CIMC). Middle Jurassic-aged felsic magmatic activity in MBPC is manifested by I-type and S-type granites. The mafic rocks include gabbroic intrusions and dykes and intermediate rocks are dioritic dykes and minor intrusions, as well as mafic microgranular enclaves (MMEs). MBPC Jurassic-aged rocks exhibit arc-like geochemical signatures, as they are LILE- and LREE-enriched and HFSE- and HREE-depleted and display negative Nb–Ta anomalies. The gabbro dykes and intrusions originated from metasomatically enriched garnet-spinel lherzolite [Degree of melting (fmel) ~ 15%] and exhibit negative Nd and positive to slightly negative εHf(T) (+ 3.0 to ? 1.6). The data reveal that evolution of Middle Jurassic magmatism occurred in two stages: (1) deep mantle-crust interplay zone and (2) the shallow level upper crustal magma chamber. The geochemical and isotopic data, as well as trace element modeling, indicate the parent magma for the MBPC S-type granites are products of upper crustal greywacke (fmel: 0.2), while I-type granites formed by partial melting of amphibolitic lower crust (fmel: 0.25) and mixing with upper crustal greywacke melt in a shallow level magma chamber [Degree of mixing (fmix): 0.3]. Mixing between andesitic melt leaving behind a refractory dense cumulates during partial crystallization of mantle-derived magma and lower crustal partial melt most likely produced MMEs (fmix: 0.2). However, enriched and moderately variable εNd(T) (? 3.21 to ? 4.33) and high (87Sr/86Sr)i (0.7085–0.7092) in dioritic intrusions indicate that these magmas are likely experienced assimilation of upper crustal materials. The interpretations of magmatic activity in the MBPC is consistent with the role considered for mantle-derived magma as heat and mass supplier for initiation and evolution of magmatism in continental arc setting, elsewhere.  相似文献   

14.
The last 10,000 years of activity at the Medicine Lake volcanic center in northern California is characterized by bimodal mafic and siliceous volcanism. Interflow element variations are complex and exhibit a discontinuity for most elements between 57 and 62 per cent SiO2. No simple linear or curvilinear element trends exist between the mafic (Modoc) and siliceous (glass) volcanics.The geochemical variation patterns exhibited by volcanic rocks from the Medicine Lake volcanic center preclude any simple model for magma origin involving either varying degrees of melting or of fractional crystallization. A model is tentatively invoked for the andesites and basalts involving ? 35 per cent melting of eclogite (of altered rise tholeiite composition) in a descending slab followed by varying amounts of fractional crystallization and perhaps magma mixing. Up to 20 per cent of shallow fractional crystallization of plagioclase and minor Ti-magnetite seems to be required by the Sr, Eu anomaly, and TiO2 distributions.Compositional variation and high δO18 values in most dacite glass flows are best interpreted in terms of a crustal origin involving up to 50 per cent partial melting of average continental crust. Rhyolite glasses may have formed by small degrees of melting (20–30 per cent) of this crust followed by 5–10 per cent of shallow fractional crystallization (removing dominantly plagioclase) or by 40–50 per cent fractional crystallization of a dacite parent (~63 per cent SiO2) produced in the crust. The shallow fractional crystallization is necessary to explain the low Sr contents and large negative Eu anomalies in the rhyolites. Dacites from the Composite Flow are tentatively interpreted to have formed by shallow mixing of a hybrid magma (composed of varying amounts of andesite and dacite) with rhyolite prior to and during eruption.  相似文献   

15.
Initial 87Sr/86Sr ratios, major and trace element compositions have been determined for the Paleogene granitic rocks in the Tsukuba district, Japan. Isotopic ages strongly suggest that the granitic rocks (seven units) were continuously emplaced and solidified during a short time interval. Initial 87Sr/86Sr ratios for seven granitic units vary from 0.7082 to 0.7132, while sedimentary and metasedimentary country rocks have ratios at the time of granitic magma emplacement ranging from 0.7149 to 0.7298. Continuous linear arrays for the granitic rocks in the diagrams of initial 87Sr/86Sr ratios versus some chemical parameters can be explained by either of following two processes. One is the assimilation — fractional crystallization (AFC) process between the parental magma (SiO2 of 68% and initial ratio of 0.7078) and sedimentary country rocks, and the other is magma mixing process between above parental magma and sediment derived acidic magma (melt) (SiO2 of 75%). The high initial ratios (0.7078–0.7098) for basic rocks such as gabbro or diorite in the Tsukuba district and the similar characteristics observed in the rocks of Ryoke belt (SW Japan) suggest that the parental magma had the same source region as the basic rocks, probably the lower crustal source.  相似文献   

16.
Post-collisional, potassic magmatic rocks widely distributed in the eastern Lhasa terrane provide significant information for comprehensive understanding of geodynamic processes of northward subduction of the Indian lithosphere and uplift of the Tibetan Plateau. A combined dataset of whole-rock major and trace elements, Sr–Nd–Pb isotopes, and in situ zircon U–Pb dating and Hf–O isotopic analyses are presented for the Yangying potassic volcanic rocks (YPVR) in the eastern part of the Lhasa terrane, South Tibet. These volcanic rocks consist of trachytes, which are characterized by high K2O (5.46–9.30 wt.%), SiO2 (61.34–68.62 wt.%) and Al2O3 (15.06–17.36 wt.%), and relatively low MgO (0.47–2.80 wt.%) and FeOt (1.70–4.90 wt.%). Chondrite-normalized rare earth elements (REE) patterns display clearly negative Eu anomalies. Primitive mantle-normalized incompatible trace elements diagrams exhibit strong enrichment in large ion lithophile elements (LILE) relative to high field strength elements (HFSE) and display significantly negative Nb–Ta–Ti anomalies. Initial isotopic compositions indicate relatively radiogenic Sr [(87Sr/86Sr)i = 0.711978–0.712090)] and unradiogenic Nd [(143Nd/144Nd)i = 0.512121–0.512148]. Combined with their Pb isotopic compositions [(206Pb/204Pb)i = 18.615–18.774, (207Pb/204Pb)i = 15.708–15.793, (208Pb/204Pb)i = 39.274–39.355)], these data are consistent with the involvement of component from subducted continental crustal sediment in their source region. The whole-rock Sr–Nd–Pb isotopic compositions exhibit linear trends between enriched mantle-derived mafic ultrapotassic magmas and relatively depleted crustal contaminants from the Lhasa terrane. The enrichment of the upper mantle below South Tibet is considered to result from the addition of components derived from subducted Indian continental crust to depleted MORB-source mantle during northward underthrusting of the Indian continental lithosphere beneath the Lhasa terrane since India–Asia collision at ~ 55 Ma. Secondary Ion Mass Spectrometry (SIMS) U–Pb zircon analyses yield the eruptive ages of 10.61 ± 0.10 Ma and 10.70 ± 0.18 Ma (weighted mean ages). Zircon Hf isotope compositions [ƐHf(t) = −4.79 to −0.17], combined with zircon O isotope ratios (5.51–7.22‰), imply an addition of crustal material in their petrogenesis. Clinopyroxene-liquid thermobarometer reveals pressure (2.5–4.1 kbar) and temperature (1029.4–1082.9 °C) of clinopyroxene crystallization, suggesting that depth of the magma chamber was 11.6–16.4 km. Energy-constrained assimilation and fractional crystallization (EC–AFC) model calculation indicates depth of assimilation and fractional crystallization in the region of 14.40–18.75 km underneath the Lhasa terrane, which is in consistent with depth of the magma chamber as suggested by clinopyroxene-liquid thermobarometer. Based on the whole-rock major and trace elements and Sr–Nd–Pb isotope compositions, combined with EC–AFC modeling simulations and zircon Hf–O isotope data, we propose that the YPVR resulted from assimilation and fractional crystallization (AFC) process of the K-rich mafic primitive magmas, which were caused by partial melting of the Indian continental subduction-induced mélange rocks.  相似文献   

17.
马遥  刘学飞  梁亚运  杨溢 《岩石学报》2019,35(5):1566-1582
胶东地区广泛发育早白垩世中-酸性脉岩群,但是其成因演化及成岩地质背景至今仍存在诸多争论。本文利用电子探针(EMPA)与激光剥蚀电感藕合等离子质谱(LA-ICP-MS)技术分析了胶东早白垩世石英闪长脉岩与闪长脉岩中主要造岩矿物(斜长石和黑云母)的主、微量元素组成;并结合岩石地球化学特征,对两者的岩浆源区和岩浆演化进行了研究探讨。石英闪长脉岩与闪长脉岩中黑云母低于检测线的Ca O含量与斜长石主量元素之间良好的线性关系指示两者为未受到后期变质作用影响的原生矿物,进一步说明胶东中生代石英闪长脉岩与闪长脉岩岩浆形成后,在上涌成岩过程中未受到变质作用的影响。石英闪长脉岩中壳源黑云母矿物成分基本一致的,以及斜长石正环带中核边部线性变化的An值与Fe、Mg、Sr、Ba等不相容元素特征指示石英闪长脉岩源于华北克拉通东部古老的加厚下地壳部分熔融作用,并在岩浆演化早期和晚期有一定幔源镁铁质岩浆混入,整个岩浆演化过程并未受到大气、俯冲、变质流体混入或构造作用的影响。闪长脉岩中黑云母矿物较大的Fe2+/(Fe2++Mg)比值范围,Al含量与结晶压力高度正相关以及斜长石中不相容元素特征指示本次研究中胶东闪长脉岩源自俯冲的板片来源的流体或沉积物混入所形成富集岩石圈地幔源区。胶东早白垩世石英闪长脉岩与闪长脉岩形成的大地构造动力学背景为古太平洋板俯冲-回撤引起热-机械侵蚀,进而导致岩石圈地幔减薄。在此情况下软流圈地幔上涌加热导致胶东富集岩石圈地幔部分熔融形成地幔熔体。这些幔源熔体经历分离结晶形成早白垩世闪长脉岩。此外,幔源镁铁质岩浆持续加热导致加厚下地壳部分熔融,形成了石英闪长脉岩。  相似文献   

18.
Two distinct series of Variscan granitic rocks have been distinguished in the Gravanho-Gouveia area of Portugal, based on field work, variation diagrams for major and trace elements, rare earth patterns and δ18O versus total FeO diagram of rocks, anorthite content of plagioclase, BaO and P2O5 contents of feldspars and AlVI versus Fe2+ diagram for magmatic muscovite. One series consists of a late-orogenic porphyritic biotite > muscovite granite (G1), less evolved beryl-columbite pegmatites and more evolved beryl-columbite pegmatites showing gradational contacts. The other series consists of post-orogenic porphyritic muscovite > biotite granodiorite to granite (G2), slightly porphyritic muscovite > biotite granite (G3) and lepidolite pegmatites. In each series, pegmatites are derived from the parent granite magma by fractional crystallization of quartz, plagioclase, K-feldspar, biotite and ilmenite. Some metasomatic effects occur like muscovite replacing feldspars, chlorite in pegmatites of the first series and a late muscovite in pegmatites of the second series, probably due to hydrothermal fluids. The lepidolite pegmatites contain cassiterite and two generations of rutile. The first magmatic generation consists of homogeneous crystals and the second generation occurs as heterogeneous zoned crystals derived from hydrothermal fluids. The beryl-columbite pegmatites and lepidolite pegmatites also contain the first magmatic generation and the late hydrothermal generation of zoned columbite-group minerals. More evolved beryl-columbite pegmatites were converted into episyenite by intense hydrothermal alteration and regional circulation of fluids in the granitic rocks.  相似文献   

19.
The Urumieh-Dokhtar magmatic arc (UDMA) of Central Iran has been formed during Neotethyan Ocean subduction underneath Eurasia. The Rabor-Lalehzar magmatic complex (RLMC), covers an area ~1000?km2 in the Kerman magmatic belt (KMB), SE of UDMA. RLMC magmatic rocks include both granitoids and volcanic rocks with calc-alkaline and adakitic signatures but with different ages.Miocene adakitic rocks are characterd by relatively enrichmented in incompatible elements, high (Sr/Y)(N) (>40), and (La/Yb)(N) (>10) ratios with slightly negative Eu anomalies (EuN/Eu*≈ 0.9), depletion in HFSEs, and relatively non-radiogenic Sr isotope signatures (87Sr/86Sr?=?0.7048–0.7049). In contrast, the Oligocene granitoids exhibit low Sr/Y (<20) and La/Yb (<9) ratios, negative Eu anomalies (EuN/Eu*?≈?0.5), and enrichment in HFSEs and radiogenic Sr isotope signatures (87Sr/86Sr?=?0.7050–0.7052), showing affinity to the island arc rocks. Eocene volcanic rocks which crusscut the younger granitoid rocks comprise andesites and dacites. Geochemically, lavas show calc-alkaline character without any Eu anomaly (EuN/Eu*?≈?1.0). Based on the geochemical and isotopic data we propose that melt source for both calc-alkaline and adakitic rocks from the RLMC can be related to the melting of a sub-continental lithospheric mantle (SCLM). Basaltic melts derived from a metasomatized mantle wedge might be emplaced at the mantle-crust boundary and formed the juvenile mafic lower crust. However, some melts fractionated in the shallow magma chambers and continued to rise forming the volcanic intermediate-mafic rocks at the surface. On the other hand, the assimilation and fractional crystallization in the shallow magma chambers of may have been responsible for the development of Oligocene granitoids with calc-alkaline affinity. In the mid-Late Miocene, following the collision between Afro-Arabia and Iranian block the juvenile mafic crust of UDMA underwent thickening and metamorphosed into garnet-amphibolites. Subsequent upwelling of a hot asthenosphere during Miocene was responsible for partial melting of thickened juvenile crust of the SE UDMA (RLM complex). The adakitic melts ascended to the shallow crust to form the adakitic rocks in the KMB.  相似文献   

20.
In the Northern Andes of Ecuador, a broad Quaternary volcanic arc with significant across-arc geochemical changes sits upon continental crust consisting of accreted oceanic and continental terranes. Quaternary volcanic centers occur, from west to east, along the Western Cordillera (frontal arc), in the Inter-Andean Depression and along the Eastern Cordillera (main arc), and in the Sub-Andean Zone (back-arc). The adakite-like signatures of the frontal and main arc volcanoes have been interpreted either as the result of slab melting plus subsequent slab melt–mantle interactions or of lower crustal melting, fractional crystallization, and assimilation processes. In this paper, we present petrographic, geochemical, and isotopic (Sr, Nd, Pb) data on dominantly andesitic to dacitic volcanic rocks as well as crustal xenolith and cumulate samples from five volcanic centers (Pululagua, Pichincha, Ilalo, Chacana, Sumaco) forming a NW–SE transect at about 0° latitude and encompassing the frontal (Pululagua, Pichincha), main (Ilalo, Chacana), and back-arc (Sumaco) chains. All rocks display typical subduction-related geochemical signatures, such as Nb and Ta negative anomalies and LILE enrichment. They show a relative depletion of fluid-mobile elements and a general increase in incompatible elements from the front to the back-arc suggesting derivation from progressively lower degrees of partial melting of the mantle wedge induced by decreasing amounts of fluids released from the slab. We observe widespread petrographic evidence of interaction of primary melts with mafic xenoliths as well as with clinopyroxene- and/or amphibole-bearing cumulates and of magma mixing at all frontal and main arc volcanic centers. Within each volcanic center, rocks display correlations between evolution indices and radiogenic isotopes, although absolute variations of radiogenic isotopes are small and their values are overall rather primitive (e.g., εNd = +1.5 to +6, 87Sr/86Sr = 0.7040–0.70435). Rare earth element patterns are characterized by variably fractionated light to heavy REE (La/YbN = 5.7–34) and by the absence of Eu negative anomalies suggesting evolution of these rocks with limited plagioclase fractionation. We interpret the petrographic, geochemical, and isotopic data as indicating open-system evolution at all volcanic centers characterized by fractional crystallization and magma mixing processes at different lower- to mid-crustal levels as well as by assimilation of mafic lower crust and/or its partial melts. Thus, we propose that the adakite-like signatures of Ecuadorian rocks (e.g., high Sr/Y and La/Yb values) are primarily the result of lower- to mid-crustal processing of mantle-derived melts, rather than of slab melts and slab melt–mantle interactions. The isotopic signatures of the least evolved adakite-like rocks of the active and recent volcanoes are the same as those of Tertiary ”normal” calc-alkaline magmatic rocks of Ecuador suggesting that the source of the magma did not change through time. What changed was the depth of magmatic evolution, probably as a consequence of increased compression induced by the stronger coupling between the subducting and overriding plates associated with subduction of the aseismic Carnegie Ridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号