首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the 21-cm rotation curve of the nearby galaxy M33 out to a galactocentric distance of 16 kpc (13 disc scalelengths). The rotation curve keeps rising out to the last measured point and implies a dark halo mass ≳5×1010 M. The stellar and gaseous discs provide virtually equal contributions to the galaxy gravitational potential at large galactocentric radii, but no obvious correlation is found between the radial distribution of dark matter and the distribution of stars or gas.
Results of the best fit to the mass distribution in M33 picture a dark halo which controls the gravitational potential from 3 kpc outward, with a matter density which decreases radially as R −1.3. The density profile is consistent with the theoretical predictions for structure formation in hierarchical clustering cold dark matter (CDM) models, and favours lower mass concentrations than those expected in the standard cosmogony.  相似文献   

2.
3.
4.
5.
Published maps of red giant stars in the halo region of M31 exhibit a giant stellar stream to the south of this galaxy, as well as a giant 'shelf' to the northeast of M31's centre. Using these maps, we find that there is a fainter shelf of comparable size on the western side as well. By choosing appropriate structural and orbital parameters for an accreting dwarf satellite within the accurate M31 potential model of Geehan et al., we produce a very similar structure in an N -body simulation. In this scenario, the tidal stream produced at pericentre of the satellite's orbit matches the observed southern stream, while the forward continuation of this tidal stream makes up two orbital loops, broadened into fan-like structures by successive pericentric passages; these loops correspond to the north-eastern and western shelves. The tidal debris from the satellite also reproduces a previously observed 'stream' of counterrotating planetary nebulae and a related stream seen in red giant stars. The debris pattern in our simulation resembles the shell systems detected around many elliptical galaxies, though this is the first identification of a shell system in a spiral galaxy and the first in any galaxy close enough to allow measurements of stellar velocities and relative distances. We discuss the physics of these partial shells, highlighting the role played by spatial and velocity caustics in the observations. We show that kinematic surveys of the tidal debris will provide a sensitive measurement of M31's halo potential, while quantifying the surface density of debris in the shelves will let us reconstruct the original mass and time of disruption of the progenitor satellite.  相似文献   

6.
7.
We present radial velocities for a sample of 723 planetary nebulae in the disc and bulge of M31, measured using the WYFFOS fibre spectrograph on the William Herschel Telescope. Velocities are determined using the [O  iii ] λ5007 emission line. Rotation and velocity dispersion are measured to a radius of 50 arcmin (11.5 kpc), the first stellar rotation curve and velocity dispersion profile for M31 to such a radius. Our kinematics are consistent with rotational support at radii well beyond the bulge effective radius of 1.4 kpc, although our data beyond a radius of 5 kpc are limited. We present tentative evidence for kinematic substructure in the bulge of M31 to be studied fully in a later work. This paper is part of an ongoing project to constrain the total mass, mass distribution and velocity anisotropy of the disc, bulge and halo of M31.  相似文献   

8.
We have performed a wide-area ultraviolet (UV) imaging survey using the GALaxy Evolution eXplorer to search for bright, point-like UV sources behind M31's extended halo. Our survey consisted of 46 pointings covering an effective area of ≈50 deg2, in both the far-UV and near-UV channels. We combined these data with optical R -band observations acquired with the WIYN Mosaic-1 imager on the Kitt Peak National Observatory 0.9-m WIYN telescope. An analysis of the brightness and colours of sources matched between our photometric catalogues yielded ≈100 UV-bright quasar candidates. We have obtained discovery spectra for 76 of these targets with the Kast spectrometer on the Lick 3-m telescope and confirmed 30 active galactic nuclei and quasars, 29 galaxies at   z > 0.02  including several early-type systems, 16 Galactic stars (hot main-sequence stars) and one featureless source previously identified as a BL Lac object. Future UV spectroscopy of the brightest targets with the Cosmic Origins Spectrograph on the Hubble Space Telescope will enable a systematic search for diffuse gas in the extended halo of M31.  相似文献   

9.
We present a possible orbit for the Southern Stream of stars in M31, which connects it to the Northern Spur. Support for this model comes from the dynamics of planetary nebulae (PNe) in the disc of M31: analysis of a new sample of 2611 PNe obtained using the Planetary Nebula Spectrograph reveals ∼20 objects with kinematics inconsistent with the normal components of the galaxy, but which lie at the right positions and velocities to connect the two photometric features via this orbit. The satellite galaxy M32 is coincident with the stream both in position and velocity, adding weight to the hypothesis that the stream comprises its tidal debris.  相似文献   

10.
11.
The inclination of M31 is too close to edge-on for a bar component to be easily recognized and is not sufficiently edge-on for a boxy/peanut bulge to protrude clearly out of the equatorial plane. Nevertheless, a sufficient number of clues allow us to argue that this galaxy is barred. We use fully self-consistent N -body simulations of barred galaxies and compare them with both photometric and kinematic observational data for M31. In particular, we rely on the near-infrared photometry presented in a companion paper. We compare isodensity contours to isophotal contours and the light profile along cuts parallel to the galaxy major axis and offset towards the north, or the south, to mass profiles along similar cuts on the model. All these comparisons, as well as position–velocity diagrams for the gaseous component, give us strong arguments that M31 is barred. We compare four fiducial N -body models to the data and thus set constraints on the parameters of the M31 bar, as its strength, length and orientation. Our 'best' models, although not meant to be exact models of M31, reproduce in a very satisfactory way the main relevant observations. We present arguments that M31 has both a classical and a boxy/peanut bulge. Its pseudo-ring-like structure at roughly 50 arcmin is near the outer Lindblad resonance of the bar and could thus be an outer ring, as often observed in barred galaxies. The shape of the isophotes also argues that the vertically thin part of the M31 bar extends considerably further out than its boxy bulge, that is, that the boxy bulge is only part of the bar, thus confirming predictions from orbital structure studies and from previous N -body simulations. It seems very likely that the backbone of M31's boxy bulge is families of periodic orbits, members of the x1-tree and bifurcating from the x1 family at its higher order vertical resonances, such as the x1v3 or x1v4 families.  相似文献   

12.
13.
14.
15.
In the current ΛCDM cosmological scenario, N -body simulations provide us with a universal mass profile, and consequently a universal equilibrium circular velocity of the virialized objects, as galaxies. In this paper we obtain, by combining kinematical data of their inner regions with global observational properties, the universal rotation curve of disc galaxies and the corresponding mass distribution out to their virial radius. This curve extends the results of Paper I, concerning the inner luminous regions of Sb–Im spirals, out to the edge of the galaxy haloes.  相似文献   

16.
We derive the disc masses of 18 spiral galaxies of different luminosity and Hubble type, both by mass modelling their rotation curves and by fitting their spectral energy distribution with spectrophotometric models. The good agreement of the estimates obtained from these two different methods allows us to quantify the reliability of their performance and to derive very accurate stellar mass-to-light ratio versus colour (and stellar mass) relationships.  相似文献   

17.
18.
19.
This paper argues that the Milky Way galaxy is probably the largest member of the Local Group. The evidence comes from estimates of the total mass of the Andromeda galaxy (M31) derived from the three-dimensional positions and radial velocities of its satellite galaxies, as well as the projected positions and radial velocities of its distant globular clusters and planetary nebulae. The available data set comprises 10 satellite galaxies, 17 distant globular clusters and nine halo planetary nebulae with radial velocities. We find that the halo of Andromeda has a mass of together with a scalelength of 90 kpc and a predominantly isotropic velocity distribution. For comparison, our earlier estimate for the Milky Way halo is Although the error bars are admittedly large, this suggests that the total mass of M31 is probably less than that of the Milky Way . We verify the robustness of our results to changes in the modelling assumptions and to errors caused by the small size and incompleteness of the data set.
Our surprising claim can be checked in several ways in the near future. The numbers of satellite galaxies, planetary nebulae and globular clusters with radial velocities can be increased by ground-based spectroscopy, while the proper motions of the companion galaxies and the unresolved cores of the globular clusters can be measured using the astrometric satellites Space Interferometry Mission ( SIM ) and Global Astrometric Interferometer for Astrophysics ( GAIA ). Using 100 globular clusters at projected radii 20 R 50 kpc with both radial velocities and proper motions, it will be possible to estimate the mass within 50 kpc to an accuracy of 20 per cent. Measuring the proper motions of the companion galaxies with SIM and GAIA will reduce the uncertainty in the total mass caused by the small size of the data set to 22 per cent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号