首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The South Kitakami Massif is one of the oldest geological domains in Japan having Silurian strata with acidic pyroclastic rocks and Ordovician–Silurian granodiorite–tonalite basement, suggesting that it was matured enough to develop acidic volcanisms in the Silurian period. On the northern and western margin of the South Kitakami Massif, an Ordovician arc ophiolite (Hayachine–Miyamori Ophiolite) and high‐pressure and low‐temperature metamorphic rocks (Motai metamorphic rocks) exhumed sometime in the Ordovician–Devonian periods are distributed. Chronological, geological, and petrochemical studies on the Hayachine–Miyamori Ophiolite, Motai metamorphic rocks, and other early Paleozoic geological units of the South Kitakami Massif are reviewed for reconstruction of the South Kitakami arc system during Ordovician to Devonian times with supplementary new data. The reconstruction suggests a change in the convergence polarity from eastward‐ to westward‐dipping subduction sometime before the Late Devonian period. The Hayachine–Miyamori Ophiolite was developed above the eastward‐dipping subduction through three distinctive stages. Two separate stages of overriding plate extension inducing decompressional melting with minor involvement of slab‐derived fluid occurred before and after a stage of melting under strong influence of slab‐derived fluids. The first overriding plate extension took place in the back‐arc side forming a back‐arc basin. The second one took place immediately before the ophiolite exhumation and near the fore‐arc region. We postulate that the second decompressional melting was triggered by slab breakoff, which was preceded by slab rollback inducing trench‐parallel wedge mantle flow and non‐steady fluid and heat transport leaving exceptionally hydrous residual mantle. The formation history of the Hayachine–Miyamori Ophiolite implies that weaker plate coupling may provide preferential conditions for exhumation of very hydrous mantle. Very hydrous peridotites involved in arc magmatism have not yet been discovered except for in the Cambrian–Ordovician periods, suggesting its implications for global geodynamics, such as the thermal state and water circulation in the mantle.  相似文献   

2.
This paper is concerned with an interpretation of the Bouguer anomaly on the Western flank of the Brabant Massif (Belgium). The position, shape, and density contrast of elementary bodies in the upper part of the earth's crust are determined in a purely numerical manner. A batholith-like body and a basin-type structure both adequately account for the observed surface field, at least from a one-sided geophysical and mathematical point of view. Since seismological control is lacking the two models are representative of the ambiguity and indeterminacy of the definitions of the geologic cause of the anomalous features, if the data are restricted to gravity information alone.  相似文献   

3.
Makran is one of the largest accretionary prisms on Earth, formed by the closure of the Neotethys ocean which is now represented by its remnant, the Gulf of Oman. Tectonic evolution of the Makran island‐arc system is explored within the context of a north dipping subduction zone, with temporal variations in slab dip arrangement. In a Middle Jurassic–Early Paleocene steep slab dip arrangement, the Mesozoic magmatic arc and the Proto‐Jaz Murian depression, which was an intra‐arc extensional basin, were developed. This was associated with development of outer‐arc ophiolitic mélange and oceanward migration of the Bajgan–Durkan continental sliver, which is the continuation of the Sanandaj–Sirjan zone of the Zagros orogenic belt into the Makran region. In a Late Paleocene to Late Pliocene moderate to shallow slab dip arrangement, compression and tectonic inversion of the Proto‐Jaz Murian extensional basin into the Jaz Murian compressive basin was associated with the uplift of the southern part of the Jaz Murian Depression along the South Jaz Murian Fault, and emplacement of the Paleogene–Neogene magmatic arc, behind the Jaz Murian compressive basin. A shallow slab dip arrangement in the Quaternary led to the emplacement of a third magmatic arc inland, over the southern part of the Yazd–Tabas–Lut micro‐continental block. It is envisioned that the Makran island‐arc system will pass through similar tectonic events in the future, as the Zagros island‐arc system did in the past. However, a future remnant and/or residual basin similar to the present Gulf of Oman will continue to survive to the east.  相似文献   

4.
The petrography and chemical composition of minerals of quartz-rich diamondiferous rocks from the Kokchetav Massif, especially the zonation of garnet, were studied and compared with diamondiferous quartzofeldspathic rocks from the Saxonian Erzgebirge. Many compositional and textural features were found to be similar. For instance, microdiamonds are enclosed systematically in a specific intermediate growth zone of garnet in these rocks. On the basis of experimental data, a magmatic scenario was constructed to check if the quartz-rich diamondiferous rocks are of magmatic origin. By this, the P-T paths, derived here for the Kokchetav rocks, and the textural observations it is concluded that the minerals of the diamondiferous rocks have crystallized from silicate melts. These melts originated by anatexis of deeply submerged metasediments (Erzgebirge: at T as high as 1200°C, Kokchetav Massif: at 50-100°C lower T) and ascended from at least 200 km depth. Relics of the pre-anatectic evolution are still present, for instance, as garnet cores. After ascent and emplacement of the magma in deep portions of thickened continental crust (Kokchetav Massif: 45-50 km close to 800°C, Erzgebirge: 55-60 km at 30-50°C lower T) considerable quantities of (white and/or dark) micas formed by peritectic reactions from melt. For instance, garnets could be resorbed at this stage and biotite grew instead. After the magmatic stage, retrogression took place much stronger in the Kokchetav Massif. This was accompanied by deformation transforming broadly the magmatic texture of quartz-rich diamondiferous rocks from the Kokchetav Massif to a gneissic texture.  相似文献   

5.
The Precordillera of Argentina is widely accepted as an exotic terrane of Laurentian (North American) affinity. Newly acquired U/Pb ages on individual detrital zircons from Lower Cambrian and Upper Ordovician quartz sandstone beds in the Argentine Precordillera indicate a Gondwanan provenance not associated with any known part of Laurentia. Accordingly, the Precordillera terrane is likely underlain by basement rock of Gondwanan affinity. In addition, detrital zircons from the Upper Ordovician sandstone bed provide no evidence for a Mid Ordovician position against the inboard Famatina arc. These results demand critical re-evaluation of widely held assumptions regarding the paleogeography of the Argentine Precordillera.  相似文献   

6.
A joint palaeomagnetic and 40Ar/39Ar study has been performed on two olistolithic blocks from the Cabrières Wildflysch in the Montagne Noire region of the Massif Central in France. There, andesitic volcanic and volcaniclastic rocks of Llanvirn-Early Caradoc age (ca 470-458 Ma) occur. Despite extensive secondary alteration, destruction of the dominant magnetic mineral phase and 40Ar/39Ar whole rock experiments that demonstrate that the volcanic rocks suffered significant argon loss, a positive fold test and the presence of dual polarities suggest that a primary, Ordovician magnetisation has mostly survived. This is one of the few documented cases where the argon system was substantially reset whilst a subordinate set of small, relatively unaltered magnetite grains, probably hosted in silicates, still carry the original, in this case Ordovician, remanence.The new data show that the Montagne Noire region was located at high southerly latitudes (68° +17/-15) during the Mid-Ordovician. This latitude represents the location for NW Gondwana of which the Massif Central was a part. Palaeomagnetic data from all the Central European massifs and terranes demonstrate a close link to the Gondwana Margin during the Lower and Middle Ordovician.  相似文献   

7.
We are proposing a hypothesis that earthquake swarms in the West Bohemia/Vogtland seismoactive region are generated by magmatic activity currently transported to the upper crustal layers. We assume that the injection of magma and/or related fluids and gases causes hydraulic fracturing which is manifested as an earthquake swarm at the surface. Our statements are supported by three spheres of evidence coming from the western part of the Bohemian Massif: characteristic manifestations of recent geodynamic activity, the information from the neighbouring KTB deep drilling project and from the 9HR seismic reflection profile, and the detailed analysis of local seismological data. (1) Recent manifestations of geodynamic activity include Quaternary volcanism, rich CO 2 emissions, anomalies of mantle-derived 3 He, mineral springs, moffets, etc. (2) The fluid injection experiment in the neighbouring KTB deep borehole at a depth of 9 km induced hundreds of micro-earthquakes. This indicates that the Earth's crust is near frictional failure in the western part of the Bohemian Massif and an addition of a small amount of energy to the tectonic stress is enough to induce an earthquake. Some pronounced reflections in the closely passing 9HR seismic reflection profile are interpreted as being caused by recent magmatic sills in the crust. (3) The local broadband seismological network WEBNET provides high quality data that enable precise localization of seismic events. The events of the January 1997 earthquake swarm are confined to an extremely narrow volume at depths of about 9 km. Their seismograms display pronounced reflections of P- and S-waves in the upper crust. The analysis of the process of faulting has disclosed a considerable variability of the source mechanism during the swarm. We conclude that the mechanism of intraplate earthquake swarms generated by magma intrusions is similar to that of induced seismicity. As the recent tectonic processes and manifestations of geodynamic activity are similar in European areas with repeated earthquake swarm occurrence (Bohemian Massif, French Massif Central, Rhine Graben), we assume that magma intrusions and related fluid and gas release at depths of about 10 km are the universal cause of intraplate earthquake swarm generation  相似文献   

8.
Placing ore formation within the overall tectonic framework of an evolving orogenic system provides important constraints for the development of plate tectonic models. Distinct metallogenic associations across the Palaeozoic Lachlan Orogen in SE Australia are interpreted to be the manifestation of interactions between several microplates and three accretionary complexes in an oceanic back-arc setting. In the Ordovician, significant orogenic gold deposits formed within a developing accretionary wedge along the Pacific margin of Gondwana. At the same time, major porphyry Cu-Au systems formed in an oceanic island arc outboard of an evolved magmatic arc that, in turn, gave rise to granite-related Sn-W deposits in the Early Silurian. During the ongoing evolution of the orogen in the Late Silurian to Early Devonian, sediment-hosted Cu-Au and Pb-Zn deposits formed in short-lived intra-arc basins, whereas a developing fore-arc system provided the conditions for the formation of several volcanogenic massive sulphide deposits. Inversion of these basins and accretion to the Australian continental margin triggered another pulse of orogenic gold mineralisation during the final consolidation of the orogenic belt in the Middle to Late Devonian.  相似文献   

9.
Collision tectonics in the New Hebrides arc (Vanuatu)   总被引:1,自引:0,他引:1  
Abstract The New Hebrides island arc in Vanuatu has been significantly modified by collision with several major submarine ridges and plateaux. Bathymetric sections taken at intervals along the arc, perpendicular to the trench, show that prior to collision at 3 Ma the morphology was typical of modern intraoceanic island arcs. Collision has caused uplift of the trench and forearc (up to 6000 m), subsidence around the arc volcanic edifices (up to 2500 m), forming a large intra-arc basin and uplift of the arc-backarc transition (up to 2000 m). In the transition zone between collisional and non-collisional sections of the arc, subsidence occurs in the forearc and uplift occurs around the arc volcanoes. Many of these characteristics are typical of collisions in other Western Pacific island arcs such as the Tonga–Kermadec and Izu–Bonin arcs. The pattern of uplift and subsidence has important implications for the tectonic history of the New Hebrides system. The morphology of the arc shows that collision of the West Torres Massif probably accounts for at least half the uplift. Arrival at 0.7 Ma of the West Torres Massif in the trench may have caused the slowing of subduction in the entire northern half of the arc and not just in the central segment as previously suggested. Re-equilibration of the arc following collision probably masks any evidence of collision prior to 3 Ma. For example, the Efate re-entrant, a large indentation in the arc immediately to the south of the collision zone, probably originated as a result of erosion during collision followed by subsidence after collision. The Vanuatu collision shows that the subduction of seamounts and ridges in an intraoceanic arc temporarily changes the arc morphology, allowing the development of angular unconformities and changing the pattern of sedimentation. This provides information which can be used to facilitate recognition of these events in ancient arc-related sequences.  相似文献   

10.
The Caledonian geology of western Ireland records the collision of two arc complexes with the Laurentian Margin during the closure of the Iapetus Ocean. An earlier complex collided with this hitherto passive margin in the mid-Ordovician during the Grampian Orogeny. Subsequently, arc magmatism developed along the Laurentian margin and continued until the late Silurian collision between Laurentian and Avalonia. The Ordovician volcanic and sedimentary rocks comprising the South Connemara Group lie along the Southern Uplands Fault, the terrane boundary separating these two arc complexes. Palaeontological dating indicates an Arenig-Llanvirn age for part of this complex (Williams, Armstrong and Harper, 1988), making it contemporaneous with the earlier arcs. However, most authors correlate this complex with the northern belt of the Southern Uplands (Morris, 1983; Williams, D.M., 1984. The stratigraphy and sedimentology of the Ordovician Party Group, south-eastern Murrisk, Ireland. Geological Journal, 19, 173–186; Williams et al., 1988), associated with post-Grampian subduction of north directed polarity. We present new field evidence that the South Connemara Group is tectonically disrupted by bedding parallel shear zones and that contacts previously interpreted as conformable are marked by units of tectonic mélange. We present structural and provenance arguments consistent with the mélanges forming above a north-dipping subduction zone after 463Ma. This Group is reinterpreted as occurring within a subduction–accretion complex that was generated by the accretion of early Ordovician mafic seamounts into a post-Grampian trench, thus reconciling the age of the Group with its generally accepted tectonic setting. We discuss the regional significance of this finding with respect to the Caledonide-Appalachian orogeny and argue that this is the site along which the Iapetus Ocean closed.  相似文献   

11.
Meta-igneous mafic and ultramafic rocks, which constitute about 60% of the granulitic xenoliths enclosed in the Neogene alkali basalts of the Bournac pipe (French Massif Central) have well preserved magmatic trends of element variations. The meta-igneous suite was probably derived from at least two different parental magmas and it may be a part of a gabbroic complex which resembles mafic bodies associated with anorthosites. The xenoliths are also very similar to many other granulitic xenoliths and to meta-igneous mafic granulitic massifs. This indicates that the gabbroic intrusions may be widespread in the lower crust and the close association of gabbroic rocks with meta-sedimentary granulites suggests a model for the composition of the lower continental crust.  相似文献   

12.
Summary Field mapping, analysis of borehole core and studies of geophysical potential field and seismic data can be used to demonstrate the existence of a number of distinct crustal blocks within Eastern Avalonia beneath eastern England and the southern North Sea. At the core of these blocks is the Midlands Microcraton which is flanked by Ordovician volcanic arc complexes exposed in Wales and the Lake District. A possible volcanic arc complex of comparable age in eastern England is concealed by late Palaeozoic and Mesozoic cover. These volcanic arc complexes resulted from subduction of oceanic lithosphere beneath Avalonia prior to collision with Baltica and Laurentia in late Ordovician and Silurian time, respectively. The nature of the crust north and east of the concealed Caledonides of Eastern England and south of the lapetus Suture/Tornquist Sea Suture, which forms the basement to the southern North Sea, is unclear. Late Ordovician metamorphic ages from cores penetrating deformed metasedimentary rocks on the Mid-North Sea High suggest these rocks were involved in Avalonia-Baltica collision before final closure of the lapetus Ocean between Laurentia and Avalonia.  相似文献   

13.
While postulated causes of initial subduction and trench formation include underthrusting, controls on its location and age have not been determined. Consideration of the age of subduction zones bordering five collisional orogens suggests that subduction may have been initiated by foreland thrusts and back-thrusts. Foreland thrusts develop within a continental foreland on the subducting plate mostly within 50 my of collision with an arc system; where the foreland is narrow the thrusts may intersect the continent-ocean crust boundary. Back-thrusts develop in the fore-arc or back-arc area on the overriding plate within 10 to 20 my of collision, and can result in tectonic burial of the magmatic arc; where the arc system is oceanic the back-thrusts may intersect the arc-ocean crust boundary. Possible examples of subduction initiated by foreland thrusts are the start of subduction in the late Jurassic beneath the northern Sunda Arc, and at the end-Miocene in the Negros Trench. Examples of back-thrusts which have initiated or may initiate subduction are the late Cenozoic eastward translation of Taiwan over the Philippine Sea plate, the incipient southward subduction of the Banda Sea beneath Timor, and the W-dipping back-thrust comprising the Highland Boundary Fault zone and postulated early Ordovician thrusts to the SE in Scotland. The suggested relationship of subduction to collision helps to explain the persistence of Wilson cycles in the still-active late Mesozoic to Cenozoic orogenic belts and implies that orogeny will cease only with collision between major continents.  相似文献   

14.
Piera  Spadea  Massimo  D'Antonio 《Island Arc》2006,15(1):7-25
Abstract The Southern Uralides are a collisional orogen generated in the Late Devonian–Early Carboniferous by the collision of the Magnitogorsk island arc (MA) generated in the Early to Middle Devonian by intra‐oceanic convergence opposite to the continental margin, and the continental margin of the East European craton. A suture zone of the arc to the continental margin, the Main Uralian Fault (MUF), is marked by ophiolites and exhumed high‐pressure–low‐temperature metamorphic rocks of continental origin. The pre‐orogenic events of the Southern Urals and their geodynamic setting are traced by means of fluid‐immobile incompatible trace elements (rare earth elements and high field strength elements) and Sr–Nd–Pb isotope geochemistry of the MA suites, in particular the protoarc suite with boninites and probably ankaramites, and the mature arc comprised of island arc tholeiitic (IAT) suites, transitional IAT to calc‐alkaline (CA), and CA suites. The MA volcanics result in genetically distinct magmatic source components. In particular, depleted normal‐mid‐oceanic ridge basalt‐type mantle sources with various enrichments in a slab‐derived aqueous fluid component are evident. The enriched component is not involved in significant amounts, as testified by the rather radiogenic Nd isotopes and unradiogenic Pb isotopes. Further information on the pre‐orogenic events is provided by the Mindyak Massif metagabbros derived from diverse gabbroic protoliths that were affected by oceanic rodingitization, and subsequently by a high‐temperature (HT) metamorphism related to the development of a metamorphic sole. The HT metamorphism has the same age as the protoarc volcanism, and constrains the initiation of subduction at approximately 410 Ma. Consequently, the maximum timespan between initial intra‐oceanic convergence and final collision is approximately 31 my, a duration consistent with that of present‐day ongoing collisions in the western Pacific. The characteristics of early volcanism and the traces of a metamorphic sole provide useful criteria to attribute most MUF ophiolites to the Tethyan type with a complex pre‐orogenic evolution.  相似文献   

15.
The border area between the Bohemian Massif and the Carpathians arc is covered by dense networks of repeated levellings as well as horizontal (triangulation, trilateration) measurements. The results were adjusted in separate vertical or horizontal networks respectively. Derived rates of vertical and horizontal movements are presented. The properties of these movements are discussed as a background to the tectonic development of the area under study.  相似文献   

16.
Takayuki  Uchino  Makoto  Kawamura 《Island Arc》2010,19(1):177-191
The Nedamo Terrane, an Early Carboniferous accretionary complex, is the oldest biostratigraphically dated accretionary complex in Japan. The purpose of this study is to describe and interpret a conglomerate from the Nedamo Terrane that contains clasts of high-pressure/low-temperature (high- P/T ) schist (mainly garnet-bearing phengite schist) and ultramafic rock, and to infer the tectonics of an Early Carboniferous arc–trench system at the eastern margin of the paleo-Asian continent. Clasts of high- P/T schist and ultramafic rock within the conglomerate make up 8.4 and 6.7% of the total clasts, respectively, based on modal counts. These clasts are subangular to subrounded, whereas volcanic clasts are well rounded. The source of the schist clasts, which yield a radiometric age of 347–317 Ma, is considered to be the Renge Metamorphic Rocks of Southwest Japan or equivalent rocks. Based on the chemical composition of chromian spinel, the source of ultramafic clasts is inferred to be the island-arc-type Ordovician Miyamori and Hayachine ultramafic complexes in the Kitakami Massif. The conglomerate records multiple provenance regions, including an island arc (South Kitakami Terrane) and a forearc ridge; the high P/T schist and ultramafic rocks were exhumed in the forearc region. The duration of the interval from the early stages of exhumation of the schist to its deposition in the trench as clasts is estimated to have been less than 30 my.  相似文献   

17.
The study of nearly 100 new trace element analyses of late Cambrian/early Ordovician greenstones from the Grong, Løkken, Støren and Stavenes areas of central and southern Norway indicates the presence of ocean floor type basalts in all four areas, and the presence of low-potassium tholeiites of island arc affinity in at least two of the areas. From this result an ocean floor-based Ordovician/early Silurian island arc complex and back-arc eugeosynclinal pile is recognised in the Trondheim region and its principal features described. This complex is considered to have been obducted during an early stage of the Middle Silurian orogeny upon an Eocambrian/Ordovician miogeosynclinal sedimentary succession which had developed on continental crust. During a later stage of the major folding and metamorphism of the juxtaposed sequences, further eastward thrusting took place such that total displacement of some allochthonous sheets may be in the order of several hundred kilometres.  相似文献   

18.
This report proposes a plate tectonic model that can explain the Early/Middle Ordovician erosional unconformity observed along much of the western margin of the Appalachian orogen. In order for the model to apply, the Taconic allochthons must represent an outer arc (accretionary wedge) and the related subduction zone and Benioff zone must have dipped east (this report reviews the evidence for these assumptions). If these suppositions are correct, then the observed unconformity may have resulted from upwarp along a peripheral bulge (which occurs seaward of present-day oceanic trenches) as the Ordovician continental margin drifted east into the trench. Theoretical calculations show that the amount of uplift experienced by a continental plate over a peripheral bulge is on the order of the amount of uplift observed on the unconformity in Newfoundland. Furthermore, the sequence of events in Taconic times along the western margin of the Appalachian orogen supports the hypothesis that the paleocontinental margin drifted east over a peripheral bulge and on into the trench. The Ordovician shallow-water carbonate bank on the continental margin of the North American plate was uplifted (peripheral bulge) and then rapidly down-dropped to abyssal depths (continental margin entering trench) where it was first covered by flysch and then structurally overlain by the Taconic allochthons (continental margin underthrusting the outer arc). The present western boundary of the maximum relief on the unconformity would delineate the trend and approximate position of the bulge when the craton jammed the subduction zone and ceased convergence with the island arc (in Caradocian times).  相似文献   

19.
The Aegean volcanic arc is the result of a lithosphere subduction process during the Quaternary time. Starting from the Soussaki area, from west to east, the arc proceeds through the islands of Egina, Methana, Milos, Santorini, the Columbus Bank, Kos and Nisyros. Volcano-tectonic activities are still pronounced at Santorini and Nisyros in form of seismic activity, craters of hydrothermal explosions, hot fumaroles and thermal springs. A significant number of cold water springs emerge in the vicinity of hot waters on these islands.Chemical and isotopic analyses were applied on water and fumaroles samples collected in different areas of the volcanic arc in order to attempt the assessment of these fluids. Stable isotopes of water and carbon have been used to evaluate the origin of cold and thermal water and CO2.Chemical solute concentrations and isotopic contents of waters show that the fluids emerging in Egina, Soussaki, Methana and Kos areas represent geothermal systems in their waning stage, while the fluids from Milos, Santorini and Nisyros proceed from active geothermal systems.The δ2H–δ18O–Cl? relationships suggest that the parent hydrothermal liquids of Nisyros and Milos are produced through mixing of seawater and Arc-Type Magmatic Water (ATMW), with negligible to nil contribution of local ground waters and with very high participation of the magmatic component, which is close to 70% in both sites. A very high magmatic contribution to the deep geothermal system could occur at Santorini as well, perhaps with a percentage similar to Nisyros and Milos, but it cannot be calculated because of steam condensation heavily affecting the fumarolic fluids of Nea Kameni before the surface discharge.The parent hydrothermal liquid at Methana originates through mixing of local groundwaters, seawater and ATMW, with a magmatic participation close to 19%. All in all, the contribution of ATMW is higher in the central–eastern part of the Aegean volcanic arc than in the western sector. This difference, which is spotted in the variable isotopic composition of the sampled fluids from west to east along the arc, is probably due to several causes, including the tectonic regime, the depth of the deep reservoir below sea level, the age of volcanic activity and in general the geomorphologic state of each island.  相似文献   

20.
A biotite dacite that intrudes metamorphic rocks on Okinawa in the Ryukyu island arc has been dated at 12 m.y. by the40Ar/39Ar method. The details of this age measurement and a compilation of radiometric ages for the Ryukyu island arc and adjacent regions are presented. These data suggest that from 65 to 12 m.y. ago the magmatic axis of the Ryukyu arc was confined to a very narrow zone along the arc. In Kyushu and Shikoku, the southern Japanese islands, intrusive and volcanic igneous rocks dated as 21?12 m.y. occur over a much wider zone than in the Ryukyu arc. The apparent difference in width of the magmatic zones may be due to different absolute motions of the overthrust plates of those two regions of subduction. The dissimilarity of available radiometric ages for the Ryukyu arc and for Taiwan suggest different histories for the development of these two features. The occurrence of active volcanoes in association with the Okinawa Trough, northwest of the Ryukyu island arc, may indicate that the trough itself developed in the last 12 m.y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号