首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Eastern Layered Intrusion of the Rum Layered Suite comprisespaired peridotite and allivalite (troctolite and gabbro) layersforming 16 macro-rhythmic units. Whereas the majority of thesemacro-units are believed to have formed by a process of crystal–liquiddifferentiation involving successive accumulation of crystalsfrom multiple picritic replenishments of the chamber, the Unit9 peridotite is interpreted as a layer-parallel picrite intrusion.Closely correlated with this discontinuous peridotite body isa distinctive feature generally known as the Wavy Horizon, whichdivides the overlying allivalite into a lower troctolite andan upper gabbro along a well-defined undulating contact. Wepropose that the Wavy Horizon is a metasomatic feature formedconsequent to the removal of clinopyroxene from an originalgabbroic mush. Foundering of the mush into the picritic sillresulted in the replacement of the original interstitial liquidby one saturated only in olivine (± plagioclase). Progressivethrough-flow of this liquid resulted in the stripping out ofclinopyroxene from the lower parts of the allivalite. We interpretthe Wavy Horizon as a reaction front, representing the pointat which the invading liquid became saturated in clinopyroxene.The distinctive pyroxene-enriched zone immediately above theWavy Horizon could have formed when mixing of the interstitialliquids on either side of the reaction front formed a supercooledliquid oversaturated in pyroxene, as a result of the curvatureof the olivine–plagioclase–clinopyroxene cotectic.The presence of many such approximately layer-parallel features,defined by differences in pyroxene content, in the Eastern LayeredIntrusion of Rum suggests that such an infiltration–reactionprocess was not unique to Unit 9. KEY WORDS: cumulate; infiltration metasomatism; Rum; Eastern Layered Intrusion  相似文献   

2.
Textural maturity describes the extent to which a rock has evolvedfrom the initial reaction-controlled texture towards texturalequilibrium controlled by the minimization of interfacial energy.Solidification in a magma chamber results in the formation ofan impingement texture by the random juxtaposition of planar-sidedgrains. Orthocumulates, in which the initial melt-filled poresare pseudomorphed by later-crystallizing phases, have an ophiticor intersertal texture immediately after complete solidification,which then evolves towards solid-state equilibrium by roundingof initially planar grain boundaries and an increase in themedian dihedral angle subtended at the junctions of two primocrysticgrains with the interstitial phase. The bulk of the increasein angle occurs just below the solidus temperature in kilometre-scalemafic plutons. Quantification of textural maturity via measurementof dihedral angle populations in troctolitic and gabbroic cumulatesfrom the Rum Eastern Layered Intrusion and the Skaergaard Intrusiondemonstrates that the rocks preserve a record of thermal eventsrelated to magma chamber replenishment and the onset of chamber-wideconvection. Textural maturity is also a function of the liquidusphase assemblage: for systems in which only olivine and plagioclaseare liquidus (i.e. cumulus) phases in the main magma body abovethe crystal mush, the texture is significantly less mature thanthat in systems in which clinopyroxene is an additional liquidusphase. The difference in textural maturity reflects differencesin the cooling and solidification rate, and demonstrates directlythat the liquidus phase assemblage plays a role in determiningthe thermal history of plutons. KEY WORDS: cumulates; dihedral angles; Rum; Skaergaard; textures  相似文献   

3.
Abundant and diverse platinum-group minerals (PGM) occur throughout the Tertiary layered intrusion on Rum, Scotland. In this paper we document the distribution of PGM within the Eastern Layered Series (ELS) on Rum, which comprises 16 alternating units of olivine-dominant feldspathic peridotite grading to plagioclase-dominant allivalite. The PGM occur in six main chrome-spinel layers in the Eastern Layered Series and are clearly associated with minor concentrations of interstitial sulphides. Common PGM phases include: Pd–Cu alloys, Pt–Fe alloys, native Pt, laurite, moncheite, sperrylite, isomertiete, cooperite and braggite along with a large number of other less common arsenide, bismuthotelluride and sulphide phases. Analyses of the discrete chromitite layers yield up to ΣPGE + Au 2618 ppb. Although present throughout the 750-m-thick ELS, there are clear stratigraphical changes in the PGM assemblage. The presence of PGM in the ELS on Rum are interpreted as being caused by mantle melting associated with the proto-Icelandic `hot spot', followed by localised concentration because of the combined effects of magma mixing, sulphide-silicate liquid immiscibility and fractional crystallisation. Most of the PGM are magmatic in origin but some grains show evidence of hydrothermal alteration. Received: 27 November 1999 / Accepted: 27 April 2000  相似文献   

4.
The melt-filled pore structure in the final stages of solidificationof cumulates must lie somewhere between the two end-membersof impingement (in which pore topology is controlled entirelyby the juxtaposition of growth faces of adjacent grains) andtextural equilibrium (in which pore topology is controlled bythe minimization of internal energies). The exact position betweenthese two end-members is controlled by the relative rates ofcrystal growth and textural equilibration. For samples in whichgrowth has stopped, or is very slow, textural equilibrium willprevail. A close examination of dihedral angles in natural examplesdemonstrates that these two end-member textures can be distinguished.The impingement end-member results in a population of apparentsolid–melt dihedral angles with a median of 60° anda standard deviation of 25–30°, whereas the texturallyequilibrated end-member population has a median of 28° anda standard deviation of 14°. For the specific case of cumulatesin the Rum Layered Intrusion, residual porosity in troctoliticcumulates was close to the impingement end-member, whereas thatin peridotites was close to melt-bearing textural equilibrium.Suites of glass-bearing samples from small, or frequently disturbed,magma systems show modification of initial impingement textures.These modifications may be a consequence of textural equilibrationor of diffusion-limited growth during quenching. Distinctioncan be made between these two processes by a consideration ofgrain shape. The geometry of interstitial phases in suites offully solidified cumulates from the Rum Layered Intrusion showsvariable approach to sub-solidus textural equilibrium from aninitial state inherited by pseudmorphing of the last melt. Texturalequilibration at pore corners occurs as a continuous process,with a gradual movement of the entire dihedral angle populationtowards the equilibrium final state. If the initial, pseudomorphedstate is one of disequilibrium (i.e. a melt-present impingementtexture) this change is accompanied by a reduction in the spreadof the population. If it is one of equilibrium, the change isaccompanied by an initial increase in the spread of the population,followed by a decrease. These observations demonstrate thatpreviously published models of dihedral angle change involvingthe instantaneous establishment of the equilibrium angle inthe immediate vicinity of the pore corner are incorrect. KEY WORDS: cumulate; dihedral angle; textural evolution; Rum intrusion; Kula; Santorini  相似文献   

5.
LATYPOV  RAIS M. 《Journal of Petrology》2003,44(9):1579-1618
Marginal reversals—a common feature of many basic differentiatedigneous bodies regardless of their size and bulk composition—areremarkable in being a mirror of the Layered Series. These aredistinguished by: (1) an apparent lack of mass balance betweenthe lower part of the marginal reversals, including chilledmargins, and the bulk composition of the intrusions; (2) mineralcrystallization sequences and (3) mineral compositional trends,which are both essentially the opposite of those in the LayeredSeries; (4) the cotectic composition of rocks composing themarginal reversals; (5) the capacity to form from both phenocryst-richand phenocryst-free parental magmas; (6) the capability to developalong the floor, subvertical walls and even the roof of magmachambers. None of the current models of magma chamber evolutioncan provide an adequate explanation for the characteristic featuresof the marginal reversals. The problem can be resolved in thecontext of a model combining Soret diffusion in thin liquidboundary layers at the magma chamber margins and vigorous convectionin the main magma body. The key proposal is that the formationof marginal reversals takes place through the non-equilibriumevolution of liquid boundary layers as a result of a temperaturegradient imposed by the cold country rock. The fundamental explanationfor the mirror image of a marginal reversal is that the non-equilibriumSoret fractionation works in a manner opposite to that of theequilibrium crystal–liquid fractionation that producesthe Layered Series. KEY WORDS: marginal compositional reversals; sills; layered intrusions; Soret fractionation  相似文献   

6.
LATYPOV  RAIS M. 《Journal of Petrology》2003,44(9):1619-1656
An attempt is made to develop an in situ crystallization modelbased on the concept of Soret fractionation to explain the originof commonly observed S-, D-, and I-shaped compositional profilesin sills formed from a single pulse of phenocryst-poor parentalmagma. The model envisages that the various compositional profilesobserved in sills can be interpreted in terms of different combinationsof four principal units—Basal Zone and Layered Seriesforming the floor sequence, and Top Zone and Upper Border Seriesconstituting the roof sequence. The Basal and Top Zones representmirror images of the Layered and Upper Border Series, respectively,and therefore are referred to as basal and top reversals. Itis proposed that the formation of basal and top reversals takesplace through the non-equilibrium Soret differentiation of liquidboundary layers which form as a consequence of the temperaturegradient imposed by the cold country rock. In contrast, theLayered and Upper Border Series originate predominantly throughthe crystal–liquid boundary layers developing in equilibriumconditions. The model permits the production of S-, D-, andI-shaped compositional profiles from the same magma composition.All that is necessary to produce a specific shape of compositionalprofile is an appropriate temperature gradient imposed by thecold country rock on the liquid boundary layers of a parentalmagma of a given composition. KEY WORDS: sills; compositional profiles; in situ crystallization; Soret fractionation  相似文献   

7.
Dendritic crystal morphologies occur in a number of igneousrocks and are thought to originate from the rapid growth ofcrystals, yet many examples of dendritic morphologies are foundin plutonic igneous rocks where cooling rates should be low.Results from crystal size distribution (CSD) measurements onharrisitic olivines from Rum, Scotland, combined with estimatedolivine growth rates, suggest that the characteristic skeletalhopper and branching olivines of harrisitic cumulates that areup to centimetres long, may have exceptionally short crystalgrowth times (several hours to several hundreds of days). This,together with very low calculated nucleation densities for harrisiticolivine, supports the interpretation of harrisite being a disequilibriumtexture, developed in response to supersaturation of the magmain olivine. We propose that this supersaturation arose throughundercooling of thin picrite sheets emplaced along the Rum magmachamber floor, beneath cooler resident magma. It is envisagedthat the picrite sheets were largely free of suspended olivinecrystals. Coupled with the olivine-enriched composition of themelt and the increasing cooling rate, this allowed homogeneousnucleation of olivine to set in at deeper undercooling and greaterolivine supersaturation than if there had been plentiful suspendedolivines to act as heterogeneous nuclei. The enhanced supersaturationcaused rapid growth of olivine once nucleation began, with skeletaland dendritic shapes. It is suggested that the observed, interlayeredsequences of harrisite and cumulus peridotite found throughoutthe Rum Layered Suite are a result of multiple episodes of harrisitecrystallization resulting from picrite emplacement that alternatedwith periods of crystal growth and accumulation in the mainbody of magma at lesser degrees of undercooling. KEY WORDS: crystal size distribution; harrisite; crystal growth rates; Rum Layered Suite  相似文献   

8.
We present a detailed microstructural and geochemical study of reactive liquid flow in Unit 9 of the Rum Eastern Layered Intrusion, Scotland. Unit 9 comprises an underlying lens-like body of peridotite overlain by a sequence of troctolite and gabbro (termed allivalite), with some local and minor anorthosite. The troctolite is separated from the overlying gabbro by a distinct, sub-horizontal, undulose horizon (the ‘major wavy horizon’). Higher in the stratigraphy is another, similar, horizon (the ‘minor wavy horizon’) that separates relatively clinopyroxene-poor gabbro from an overlying gabbro. To the north of the peridotite lens, both troctolite and gabbro grade into poikilitic gabbro. Clinopyroxene habit in the allivalite varies from thin rims around olivine in troctolite to equigranular crystals in gabbro and to oikocrysts in poikilitic gabbro. The poikilitic gabbros contain multiple generations of clinopyroxene, with Cr-rich (~1.1 wt% Cr2O3) anhedral cores with moderate REE concentrations (core1) overgrown by an anhedral REE-depleted second generation with moderate Cr (~0.7 wt% Cr2O3) (core2). These composite cores are rimmed by Cr-poor (~0.2 wt% Cr2O3) and REE-poor to -moderate clinopyroxene. We interpret these microstructures as a consequence of two separate episodes of partial melting triggered by the intrusion of hot olivine-phyric picrite to form the discontinuous lenses that comprise the Unit 9 peridotite. Loss of clinopyroxene-saturated partial melt from the lower part of the allivalite immediately following the early stages of sill intrusion resulted in the formation of clinopyroxene-poor gabbro. The spatial extent of clinopyroxene loss is marked by the minor wavy horizon. A second partial melting event stripped out almost all clinopyroxene from the lowest allivalite to form a troctolite, with the major wavy horizon marking the extent of melting during this episode. The poikilitic gabbro formed from clinopyroxene-saturated melt moving upwards and laterally through the remobilized cumulate pile and precipitating clinopyroxene en route. This process, called reactive liquid flow, is potentially important in open magma chambers.  相似文献   

9.
Thirteen Cr-bearing spinels from major horizons of magma replenishment in the open-system Rum Layered Suite have been analysed by X-ray single crystal diffraction and electron microprobe analyses. On the basis of the structural parameters and the chemistry of these spinels the so-called Rum trend, in which Al-content increases at the expense of Cr and Fe3+, has been easily recognised. In addition, natural spinels with Fe3+ content similar to synthetic spinels on the MgCr2O4?CMgFe2O4 join have been analysed for the first time. Layers of chromitite, anorthosite and peridotite situated within several cm of one another have yielded different intracrystalline exchange temperatures using an intercrystalline spinel-olivine thermometer. The Rum anorthosite Cr-spinels are interpreted as having crystallised within the cumulus pile following rejuvenation of the crystal mush. Their low Al-content is a function of simultaneous plagioclase crystallisation, reducing the amount of Al3+ present for the Cr-spinel. By contrast, Cr-spinels in well-known Archean anorthosites (e.g. Ujaragssuit nunat and Fisken?sset, western Greenland) and Sittampundi (southern India) are very aluminous in composition, attributed to crystallisation of Cr-spinel from high-alumina basalts in lower crustal magma chambers and linked to the control exerted by plagioclase crystallisation on Al content of the melt, in the absence of clinopyroxene crystallisation. The compositional differences between the Rum anorthosite Cr-spinels and the Fisken?sset and Sittampundi Cr-spinels suggest that postcumulus reaction of Cr-spinel and melt to low (800?C900°C) temperatures, as invoked for the Rum crystals, may not have been as important a process in the Archean anorthosites.  相似文献   

10.
The Rum Layered Suite (NW Scotland) is generally regarded as one of a handful of classic examples of open‐system layered mafic‐ultramafic intrusions, or ‘fossilized’ basaltic magma chambers, world‐wide. The eastern portion of the Rum intrusion is constructed of sixteen repeated, coupled, peridotite–troctolite units. Each major cyclic unit has been linked to a major magma replenishment event, with repeated settling out of ‘crops’ of olivine and plagioclase crystals to form the cumulate rocks. However, there are variations in the lithological succession that complicate this oversimplified model, including the presence of chromitite (>60 vol. percent Cr‐spinel) seams. The ~2 mm thick chromitite seams host significant platinum‐group element (PGE) enrichment (e.g. ~2 ppm Pt) and likely formed in situ, i.e. at the crystal mush–magma interface. Given that the bulk of the world's exploited PGE come from a layered intrusion that bears remarkable structural and lithological similarities to Rum, the Bushveld Complex (South Africa), comparisons between these intrusions raise intriguing implications for precious metal mineralization in layered intrusions.  相似文献   

11.
The Kap Edvard Holm Layered Series forms part of the East GreenlandTertiary Province, and was emplaced at shallow crustal level(at depths corresponding to a pressure of 1–2 kbar) duringcontinental break-up. It consists of two suites: a gabbro suitecomprising olivine and oxide gabbros, leucocratic olivine gabbrosand anorthosites, and a suite of wehrlites that formed fromthe intrusion of the gabbros during their solidification bya hydrous, high-MgO magma. Ion microprobe analyses of clinopyroxenereveal chemical contrasts between the parental melt of the wehrlitesuite and that of the gabbro suite. Thin sills (1–2 mthick) of the wehrlite suite, however, have clinopyroxene compositionssimilar to the gabbro suite, and were formed by interactionwith interstitial melts from the host layered gabbros. All evolvedmembers of the gabbro suite have elevated Nd, Zr and Sr concentrationsand Nd/Yb ratios, relative to the melt parental to the gabbrosuite. These characteristics are attributed to establishmentof a magma chamber at depths corresponding to a pressure of10 kbar, where melts evolved before injection into the low-pressuremagma chamber. Anorthosites of the gabbro suite are believedto have crystallized from such injections. The melts becamesupersaturated in plagioclase by the pressure release that followedtransportation to the low-pressure magma chamber after initialfractionation at 10 kbar. The most evolved gabbros formed bysubsequent fractionation within the low-pressure magma chamber.Our results indicate that high-pressure fractionation may beimportant in generating some of the lithological variationsin layered intrusions. KEY WORDS: fractionation; ion microprobe; layered intrusions; rift processes; trace elements *Corresponding author.  相似文献   

12.
Seven alkali basalt centers in the southern Canadian Cordilleracontain mantle xenolith suites that comprise spinel Cr-diopsideperidotites, spinel augite-bearing wehrlites and orthopyroxene-poorlherzolites, and minor pyroxenites. The Cr-diopside peridotitesappear to be residues of the extraction of Mg-rich basalts byup to 15% partial melting (median 5–10%) of a pyrolite-likesource in the spinel stability field. The xenoliths are similarto other mantle xenolith suites derived from beneath convergentcontinental margins, but are less depleted, less oxidized, andhave lower spinel mg-number than peridotites found in fore-arcsettings. Their dominant high field strength element depletedcharacter, however, is typical of arc lavas, and may suggestthat fluids or melts circulating through the Canadian Cordilleralithosphere were subduction related. Modeling using MELTS isconsistent with the augite-bearing xenoliths being formed byinteraction between crystallizing alkaline melts and peridotite.Assimilation–fractional crystallization modeling suggeststhat the trace element patterns of liquids in equilibrium withthe augite xenoliths may represent the initial melts that reactedwith the peridotite. Moreover, the compositions of these meltsare similar to those of some glasses observed in the mantlexenoliths. Melt–rock interaction may thus be a viablemechanism for the formation of Si- and alkali-rich glass inperidotites. KEY WORDS: Canadian Cordillera; mantle xenolith; peridotite; wehrlite; melt–rock reaction  相似文献   

13.
We present the first data on the petrology of the mantle lithosphereof the Southeastern (SE) Slave craton, Canada. These are basedon petrographic, mineralogical and geochemical studies of mantlexenoliths in Pipe 5034 of the Cambrian Gahcho Kué kimberlitecluster. Major types of mantle xenoliths include altered eclogite,coarse garnet or spinel peridotite, and deformed garnet peridotite.The peridotites belong to the low-temperature suite and formedat T=600–1300°C and P= 25–80 kbar in a thick(at least 220–250 km), cool lithosphere. The SE Slavemantle is cooler than the mantle of other Archaean cratons andthat below other terranes of the Slave craton. The thick lithosphereand the relatively cool thermal regime provide favourable conditionsfor formation and preservation of diamonds beneath the SE Slaveterrane. Similar to average Archaean mantle worldwide, the SESlave peridotite is depleted in magmaphile major elements andcontains olivine with forsterite content of 91–93·5.With respect to olivine composition and mode, all terranes ofthe Slave mantle show broadly similar compositions and are relativelyorthopyroxene-poor compared with those of the Kaapvaal and Siberiancratons. The SE Slave spinel peridotite is poorer in Al, Caand Fe, and richer in Mg than deeper garnet peridotite. Thegreater chemical depletion of the shallow upper mantle is typicalof all terranes of the Slave craton and may be common for thesubcontinental lithospheric peridotitic mantle in general. Peridotiticxenoliths of the SE Slave craton were impregnated by kimberliticfluids that caused late-stage recrystallization of primary clinopyroxene,spinel, olivine and spinel-facies orthopyroxene, and formationof interstitial clinopyroxene. This kimberlite-related recrystallizationdepleted primary pyroxenes and spinel in Al. The kimberliticfluid was oxidizing, Ti-, Fe- and K-rich, and Na-poor, and introducedserpentine, chlorite, phlogopite and spinel into peridotitesat P < 35 kbar. KEY WORDS: kimberlite xenolith; lithosphere; mantle terrane; chemical zoning; thermobarometry; Slave craton  相似文献   

14.
This comment addresses the interpretation of oxygen fugacitydata for spinel peridotite xenoliths from five Mexican volcanicfields presented by Luhr & Aranda-Gomez (Journal of Petrology,38, 1075–1112, 1997). The postulated east–west increaseof the FMQ (‘relative oxygen fugacity’, where FMQis fayalite–magnetite–quartz) values is inherentto the method and therefore of questionable geological significance.Increases in FMQ do not necessarily mirror oxidation processesin the mantle controlled by subduction-related fluids. KEY WORDS: mantle metasomatism; Mexico; peridotite xenoliths; relative oxygen fugacity  相似文献   

15.
Origin of the UG2 chromitite layer, Bushveld Complex   总被引:3,自引:0,他引:3  
Chromitite layers are common in large mafic layered intrusions.A widely accepted hypothesis holds that the chromitites formedas a consequence of injection and mixing of a chemically relativelyprimitive magma into a chamber occupied by more evolved magma.This forces supersaturation of the mixture in chromite, whichupon crystallization accumulates on the magma chamber floorto form a nearly monomineralic layer. To evaluate this and othergenetic hypotheses to explain the chromitite layers of the BushveldComplex, we have conducted a detailed study of the silicate-richlayers immediately above and below the UG2 chromitite and anotherchromitite layer lower in the stratigraphic section, at thetop of the Lower Critical Zone. The UG2 chromitite is well knownbecause it is enriched in the platinum-group elements and extendsfor nearly the entire 400 km strike length of the eastern andwestern limbs of the Bushveld Complex. Where we have studiedthe sequence in the central sector of the eastern Bushveld,the UG2 chromitite is embedded in a massive, 25 m thick plagioclasepyroxenite consisting of 60–70 vol. % granular (cumulus)orthopyroxene with interstitial plagioclase, clinopyroxene,and accessory phases. Throughout the entire pyroxenite layerorthopyroxene exhibits no stratigraphic variations in majoror minor elements (Mg-number = 79·3–81·1).However, the 6 m of pyroxenite below the chromitite (footwallpyroxenite) is petrographically distinct from the 17 m of hangingwall pyroxenite. Among the differences are (1) phlogopite, K-feldspar,and quartz are ubiquitous and locally abundant in the footwallpyroxenite but generally absent in the hanging wall pyroxenite,and (2) plagioclase in the footwall pyroxenite is distinctlymore sodic and potassic than that in the hanging wall pyroxenite(An45–60 vs An70–75). The Lower Critical Zone chromititeis also hosted by orthopyroxenite, but in this case the rocksabove and below the chromitite are texturally and compositionallyidentical. For the UG2, we interpret the interstitial assemblageof the footwall pyroxenite to represent either interstitialmelt that formed in situ by fractional crystallization or chemicallyevolved melt that infiltrated from below. In either case, themelt was trapped in the footwall pyroxenite because the overlyingUG2 chromitite was less permeable. If this interpretation iscorrect, the footwall and hanging wall pyroxenites were essentiallyidentical when they initially formed. However, all the modelsof chromitite formation that call on mixing of magmas of differentcompositions or on other processes that result in changes inthe chemical or physical conditions attendant on the magma predictthat the rocks immediately above and below the chromitite layersshould be different. This leads us to propose that the Bushveldchromitites formed by injection of new batches of magma witha composition similar to the resident magma but carrying a suspendedload of chromite crystals. The model is supported by the commonobservation of phenocrysts, including those of chromite, inlavas and hypabyssal rocks, and by chromite abundances in lavasand peridotite sills associated with the Bushveld Complex indicatingthat geologically reasonable amounts of magma can account foreven the massive, 70 cm thick UG2 chromitite. The model requiressome crystallization to have occurred in a deeper chamber, forwhich there is ample geochemical evidence. KEY WORDS: Bushveld complex; chromite; crystal-laden magma; crustal contamination; magma mixing; UG2 chromitite  相似文献   

16.
The Eastern Layered Series of the Rum Layered Suite, NW Scotland, comprises a sequence of sixteen (30–150 m thick) cyclic units. The upper troctolite–olivine gabbro parts of each of these units exhibit small-scale modal layering and a pervasive, layer-parallel mineral lamination that is often associated with ‘soft-sediment’ deformation structures. A sporadic, macroscopic magmatic lineation measurable on mineral lamination surfaces is also observed in places. Anisotropy of magnetic susceptibility (AMS) fabrics were studied in three of these cyclic units, (8, 9, and 10) in the northern part of the Eastern Layered Series. Magnetic fabrics measured in the troctolites and gabbros yield one dominant trend in which magnetic foliations parallel magmatic layering and magnetic lineations trend NW–SE and plunge gently. Magnetic fabrics measured for two detailed traverses through Unit 10 on the northern side of Hallival also yield one dominant trend, similar to that measured elsewhere in the Eastern Layered Series. However, toward the centre of Unit 10 in each traverse, magnetic lineations sometimes plunge approximately downdip (SW) on the magnetic foliation planes. The implications of these results are discussed with reference to previous textural and fabric observations on Rum. A model is suggested in which weak linear arrangements of cumulus olivine and plagioclase crystals are developed due to slumping and soft-sediment deformation of unconsolidated crystal mushes during central sagging of the Rum Layered Suite.  相似文献   

17.
The clinopyroxene–plagioclase–plagioclase dihedralangle, cpp, in gabbroic cumulates records the time-integratedthermal history in the sub-solidus and provides a measure oftextural maturity. Variations in cpp through the Layered Seriesof the Skaergaard intrusion, East Greenland, demonstrate thatthe onset of crystallization of clinopyroxene (within LZa),Fe–Ti oxides (at the base of LZc) and apatite (at thebase of UZb) as liquidus phases in the bulk magma is recordedby a stepwise increase in textural maturity, related to an increasein the contribution of latent heat to the total heat loss tothe surroundings and a reduction in the specific cooling rateat the crystallization front of the intrusion. The onset ofboth liquidus Fe–Ti oxide and apatite crystallizationis marked by a transient increase in textural maturity, probablylinked to overstepping before nucleation. Textural maturationat pyroxene–plagioclase–plagioclase triple junctionseffectively ceases in the uppermost parts of the Layered Seriesas a result of the entire pluton cooling below the closure temperaturefor dihedral angle change, which is 1075°C. Solidificationof the Layered Series of the Skaergaard intrusion occurred viathe upwards propagation of a mush zone only a few metres thick. KEY WORDS: magma; partial melting; asthenosphere; olivine; mantle  相似文献   

18.
IONOV  DMITRI 《Journal of Petrology》2004,45(2):343-367
Peridotite xenoliths in a Miocene picrite tuff from the Vitimvolcanic province east of Lake Baikal, Siberia, are samplesof the off-craton lithospheric mantle that span a depth rangefrom the spinel to garnet facies in a mainly fertile domain.Their major and trace element compositions show some scatter(unrelated to sampling or analytical problems), which is notconsistent with different degrees of partial melting or metasomatism.Some spinel peridotites and, to a lesser degree, garnet-bearingperidotites are depleted in heavy rare earth elements (HREE)relative to middle REE (MREE), whereas some garnet peridotitesare enriched in HREE relative to MREE, with Lu abundances muchhigher than in primitive mantle estimates. Clinopyroxenes fromseveral spinel peridotites have HREE-depleted patterns, whichare normally seen only in clinopyroxenes coexisting with garnet.Garnets in peridotites with similar modal and major elementcompositions have a broad range of Lu and Yb abundances. Overall,HREE are decoupled from MREE and Hf and are poorly correlatedwith partial melting indices. It appears that elements withhigh affinity to garnet were partially redistributed in theVitim peridotite series following partial melting, with feweffects for other elements. The Lu–Hf decoupling may disturbHf-isotope depletion ages and their correlations with meltingindices. KEY WORDS: garnet peridotite; lithospheric mantle; Lu–Hf isotope system; Siberia; trace elements  相似文献   

19.
Major and trace element data for the Tertiary, Shiant IslesMain Sill, NW Scotland, are used to discuss its complex internaldifferentiation. Vertical sections through the sill exhibitsharp breaks in chemistry that coincide with changes in texture,grain size and mineralogy. These breaks are paired, top andbottom, and correspond to the boundaries of intrusive units,confirming a four-phase multiple-intrusion model based on fieldrelations, petrography, mineralogy and isotopes. Whole-rockchemistry is consistent with this model and necessitates onlyminor revisions to the intrusive and differentiation mechanismspreviously proposed. The rocks contain strongly zoned minerals(e.g. olivine Fo70–5, clinopyroxene Mg# = 75–5,plagioclase An75–5) indicating almost perfect fractionalcrystallization, but whole-rock compositions do not show suchextreme variations. Thus, while residual liquids became highlyevolved in situ, they mainly became trapped within the crystalnetwork and did not undergo wholesale inward migration. Someinward (mainly upward) concentration of residual liquids didoccur to form a ‘sandwich horizon’, but the morevolatile-rich, late-stage liquids that did not crystallize insitu appear to have migrated to higher levels in the sill toform pegmatitic horizons. Parental liquid compositions are modelledfor the intrusive units and it is concluded that the originalparent magma formed by partial melting of upper mantle thatwas more depleted in LREE than the sources of most ScottishTertiary basaltic rocks. Incompatible trace elements in thepicrodolerite–crinanite intrusive unit support isotopeevidence that its parent magma was contaminated by crustal material.Attempts to reconcile the chemical characteristics of the sillwith a recently proposed petrogenetic model based on a singleintrusion of magma differentiated by novel, but controversial,processes fail comprehensively. It is predicted that the complexpetrogenetic history of the Shiant Isles sill is not unusualand could become the model for other large (>50 m thick)sills. KEY WORDS: alkali basalt; differentiation; geochemistry; multiple intrusion; Shiant Isles; sill  相似文献   

20.
The metamorphic evolution of the garnet peridotite body of AlpeArami, Central Alps, is a matter of current controversy. Inthis paper, the inter- and intragrain distribution of majorand trace elements obtained by electron and ion probe microanalysesis used to better constrain the P–T evolution of thisperidotite. Using the compositions of homogeneous porphyroclastcores, peak metamorphic conditions of 1180 ± 40°Cand 5·9 ± 0·3 GPa are estimated, basedon consistent results from the application of several independentthermometers (Fe–Mg exchange between garnet, pyroxenesand olivine, Ni exchange between garnet and olivine, Co andNi exchange between orthopyroxene and clinopyroxene), the Al-in-orthopyroxenebarometer and the Ca–Cr systematics of garnet. Orthopyroxeneand clinopyroxene porphyroclasts are, however, not in equilibriumwith respect to some elements with low diffusivities, such asCa, Ti, Cr, V and Sc. This disequilibrium appears to be themain cause for the lower P–T values suggested by someof the previous workers. On the other hand, there is no evidencefor an ultradeep (>200 km) origin of the Alpe Arami bodyas postulated recently. Chemical zonation profiles across mineralgrains suggest that during retrograde evolution a near-isothermaldecompression was followed by accelerated cooling. KEY WORDS: Alpe Arami; Central Alps; garnet peridotite; ultrahigh-pressure metamorphism; geothermobarometry; secondary ion mass spectrometry (SIMS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号