首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This study develops a framework to evaluate ground motion selection and modification (GMSM) procedures. The context is probabilistic seismic demand analysis, where response history analyses of a given structure, using ground motions determined by a GMSM procedure, are performed in order to estimate the seismic demand hazard curve (SDHC) for the structure at a given site. Currently, a GMSM procedure is evaluated in this context by comparing several resulting estimates of the SDHC, each derived from a different definition of the conditioning intensity measure (IM). Using a simple case study, we demonstrate that conclusions from such an approach are not always definitive; therefore, an alternative approach is desirable. In the alternative proposed herein, all estimates of the SDHC from GMSM procedures are compared against a benchmark SDHC, under a common set of ground motion information. This benchmark SDHC is determined by incorporating a prediction model for the seismic demand into the probabilistic seismic hazard analysis calculations. To develop an understanding of why one GMSM procedure may provide more accurate estimates of the SDHC than another procedure, we identify the role of ‘IM sufficiency’ in the relationship between (i) bias in the SDHC estimate and (ii) ‘hazard consistency’ of the corresponding ground motions obtained from a GMSM procedure. Finally, we provide examples of how misleading conclusions may potentially be obtained from erroneous implementations of the proposed framework. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
基于改进云图法的结构概率地震需求分析   总被引:2,自引:0,他引:2  
概率地震需求分析是美国太平洋地震工程研究中心(Pacific Earthquake Engineering ResearchCenter,PEER)提出的新一代"性能化地震工程(Performance-Based Earthquake Engineering,PBEE)"理论框架的重要一环。传统的概率地震需求分析方法称为"云图法",这种方法针对确定性结构进行一系列地震动作用下的非线性动力分析,从而得到地震动强度参数与结构地震需求的"云图"。然而,传统的云图法只能考虑地震动的不确定性,而无法考虑结构的不确定性。为此,结合拉丁超立方体抽样技术,提出一种能综合考虑地震动不确定性和结构不确定性的改进云图法,并将传统的概率地震需求分析内容拓展为概率地震需求模型、概率地震需求易损性分析、概率地震需求危险性分析三个层次。以一榀五层三跨钢筋混凝土框架结构为例,分别采用传统云图法和改进云图法对其进行概率地震需求分析,得到了该结构的概率地震需求模型、地震需求易损性曲线和地震需求危险性曲线。分析结果表明:提出的方法可以有效地考虑地震动与结构的不确定性,避免不考虑结构的不确定性而低估结构的地震风险性。  相似文献   

3.
This paper presents a proposed method of aftershock probabilistic seismic hazard analysis (APSHA) similar to conventional ‘mainshock’ PSHA in that it estimates the likelihoods of ground motion intensity (in terms of peak ground accelerations, spectral accelerations or other ground motion intensity measures) due to aftershocks following a mainshock occurrence. This proposed methodology differs from the conventional mainshock PSHA in that mainshock occurrence rates remain constant for a conventional (homogeneous Poisson) earthquake occurrence model, whereas aftershock occurrence rates decrease with increased elapsed time from the initial occurrence of the mainshock. In addition, the aftershock ground motion hazard at a site depends on the magnitude and location of the causative mainshock, and the location of aftershocks is limited to an aftershock zone, which is also dependent on the location and magnitude of the initial mainshock. APSHA is useful for post‐earthquake safety evaluation where there is a need to quantify the rates of occurrence of ground motions caused by aftershocks following the initial rupture. This knowledge will permit, for example, more informed decisions to be made for building tagging and entry of damaged buildings for rescue, repair or normal occupancy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
In probabilistic seismic demand analysis, evaluation of the sufficiency of an intensity measure (IM) is an important criterion to avoid biased assessment of the demand hazard. However, there exists no metric to quantify the degree of sufficiency as per the criterion of Luco and Cornell (2007). This paper proposes a site‐specific unified measure for degree of sufficiency from all seismological parameters under consideration using a total information gain metric. This unified metric for sufficiency supports not only comparison of the performance of different IMs given a response quantity but also assessment of the performance of a particular IM across different response quantities. The proposed sufficiency metric was evaluated for a 4‐story steel moment frame building, and the influence of ground motion selection on the degree of sufficiency was investigated. It was observed that ground motion selection can have a significant impact on IM sufficiency. Because computing the total information gain requires continuous deaggregation across the IM space, an approximate deaggregation technique that allows for a more practical estimation of marginal deaggregation probabilities is proposed. It is expected that the total information gain metric proposed in this paper will aid in understanding the efficiency‐sufficiency relation, thus enabling the selection of a proper scalar IM for a given site and application in probabilistic seismic demand analysis.  相似文献   

5.
An improved seismic hazard model for use in performance‐based earthquake engineering is presented. The model is an improved approximation from the so‐called ‘power law’ model, which is linear in log–log space. The mathematics of the model and uncertainty incorporation is briefly discussed. Various means of fitting the approximation to hazard data derived from probabilistic seismic hazard analysis are discussed, including the limitations of the model. Based on these ‘exact’ hazard data for major centres in New Zealand, the parameters for the proposed model are calibrated. To illustrate the significance of the proposed model, a performance‐based assessment is conducted on a typical bridge, via probabilistic seismic demand analysis. The new hazard model is compared to the current power law relationship to illustrate its effects on the risk assessment. The propagation of epistemic uncertainty in the seismic hazard is also considered. To allow further use of the model in conceptual calculations, a semi‐analytical method is proposed to calculate the demand hazard in closed form. For the case study shown, the resulting semi‐analytical closed form solution is shown to be significantly more accurate than the analytical closed‐form solution using the power law hazard model, capturing the ‘exact’ numerical integration solution to within 7% accuracy over the entire range of exceedance rate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A versatile, simulation‐based framework for risk assessment and probabilistic sensitivity analysis of base‐isolated structures is discussed in this work. A probabilistic foundation is used to address the various sources of uncertainties, either excitation or structural, and to characterize seismic risk. This risk is given, in this stochastic setting, by some statistics of the system response over the adopted probability models and stochastic simulation is implemented for its evaluation. An efficient, sampling‐based approach is also introduced for establishing a probabilistic sensitivity analysis to identify the importance of each of the uncertain model parameters in affecting the overall risk. This framework facilitates use of complex models for the structural system and the excitation. The adopted structural model explicitly addresses nonlinear characteristics of the isolators and of any supplemental dampers, and the effect of seismic pounding of the base to the surrounding retaining walls. An efficient stochastic ground motion model is also discussed for characterizing future near‐fault ground motions and relating them to the seismic hazard for the structural site. An illustrative example is presented that emphasizes the results from the novel probabilistic sensitivity analysis and their dependence on seismic pounding occurrences and on addition of supplemental dampers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This paper analyzes the influence of damper properties on the probabilistic seismic performance of building frames equipped with viscous dampers. In particular, a probabilistic methodology is employed to evaluate the influence of the damper nonlinearity, measured by the damper exponent, on the performance of structural and nonstructural components of building frames, as described by the response hazard curves of the relevant engineering demand parameters. The performance variations due to changes in the damper nonlinearity level are evaluated and highlighted by considering two realistic design scenarios and by comparing the results of a set of cases involving dampers with different exponents designed to provide the same deterministic performance. By this way, it is possible to evaluate the influence of the nonlinear response and of its dispersion on the demand hazard. It is shown that the damper nonlinearity level strongly affects the seismic performance and different trends are observed for the demand parameters of interest. A comparison with code provisions shows that further investigation is necessary to provide more reliable design formulas accounting for the damping nonlinearity level. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This paper examines the potential development of a probabilistic design methodology, considering hysteretic energy demand, within the framework of performance‐based seismic design of buildings. This article does not propose specific energy‐based criteria for design guidelines, but explores how such criteria can be treated from a probabilistic design perspective. Uniform hazard spectra for normalized hysteretic energy are constructed to characterize seismic demand at a specific site. These spectra, in combination with an equivalent systems methodology, are used to estimate hysteretic energy demand on real building structures. A design checking equation for a (hypothetical) probabilistic energy‐based performance criterion is developed by accounting for the randomness of the earthquake phenomenon, the uncertainties associated with the equivalent system analysis technique, and with the site soil factor. The developed design checking equation itself is deterministic, and requires no probabilistic analysis for use. The application of the proposed equation is demonstrated by applying it to a trial design of a three‐storey steel moment frame. The design checking equation represents a first step toward the development of a performance‐based seismic design procedure based on energy criterion, and additional works needed to fully implement this are discussed in brief at the end of the paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This paper compares the seismic demands obtained from an intensity‐based assessment, as conventionally considered in seismic design guidelines, with the seismic demand hazard. Intensity‐based assessments utilize the distribution of seismic demand from ground motions that have a specific value of some conditioning intensity measure, and the mean of this distribution is conventionally used in design verification. The seismic demand hazard provides the rate of exceedance of various seismic demand values and is obtained by integrating the distribution of seismic demand at multiple intensity levels with the seismic hazard curve. The seismic demand hazard is a more robust metric for quantifying seismic performance, because seismic demands from an intensity‐based assessment: (i) are not unique, with different values obtained using different conditioning intensity measures; and (ii) do not consider the possibility that demand values could be exceeded from different intensity ground motions. Empirical results, for a bridge‐foundation‐soil system, illustrate that the mean seismic demand from an intensity‐based assessment almost always underestimates the demand hazard value for the exceedance rate considered, on average by 17% and with a large variability. Furthermore, modification factors based on approximate theory are found to be unreliable. Adopting the maximum of the mean values from multiple intensity‐based assessments, with different conditional intensity measures, provides a less biased prediction of the seismic demand hazard value, but with still a large variability, and a proportional increase the required number of analyses. For an equivalent number of analyses, direct computation of the seismic demand hazard is a more logical choice and provides additional performance insight. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper proposes a probabilistic approach for the pre‐event assessment of seismic resilience of bridges, including uncertainties associated with expected damage, restoration process, and rebuilding/rehabilitation costs. A fragility analysis performs the probabilistic evaluation of the level of damage (none, slight, moderate, extensive, and complete) induced on bridges by a seismic event. Then, a probabilistic six‐parameter sinusoidal‐based function describes the bridge functionality over time. Depending on the level of regional seismic hazard, the level of performance that decision makers plan to achieve, the allowable economic impact, and the available budget for post‐event rehabilitation activities, a wide spectrum of scenarios are provided. Possible restoration strategies accounting for the desired level of resilience and direct and indirect costs are investigated by performing a Monte Carlo simulation based on Latin hypercube sampling. Sensitivity analyses show how the recovery parameters affect the resilience assessment and seismic impact. Finally, the proposed approach is applied to an existing highway bridge located along a segment of I‐15, between the cities of Corona and Murrieta, in California. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Previous comparison studies on seismic isolation have demonstrated its beneficial and detrimental effects on the structural performance of high‐speed rail bridges during earthquakes. Striking a balance between these 2 competing effects requires proper tuning of the controlling design parameters in the design of the seismic isolation system. This results in a challenging problem for practical design in performance‐based engineering, particularly when the uncertainty in seismic loading needs to be explicitly accounted for. This problem can be tackled using a novel probabilistic performance‐based optimum seismic design (PPBOSD) framework, which has been previously proposed as an extension of the performance‐based earthquake engineering methodology. For this purpose, a parametric probabilistic demand hazard analysis is performed over a grid in the seismic isolator parameter space, using high‐throughput cloud‐computing resources, for a California high‐speed rail (CHSR) prototype bridge. The derived probabilistic structural demand hazard results conditional on a seismic hazard level and unconditional, i.e., accounting for all seismic hazard levels, are used to define 2 families of risk features, respectively. Various risk features are explored as functions of the key isolator parameters and are used to construct probabilistic objective and constraint functions in defining well‐posed optimization problems. These optimization problems are solved using a grid‐based, brute‐force approach as an application of the PPBOSD framework, seeking optimum seismic isolator parameters for the CHSR prototype bridge. This research shows the promising use of seismic isolation for CHSR bridges, as well as the potential of the versatile PPBOSD framework in solving probabilistic performance‐based real‐world design problems.  相似文献   

12.
The building code of any country is considered to be a basic technical guidance document for the seismic design of structures. However, building codes are typically developed for the whole country, without considering site specific models that incorporate detailed site-specific data. Therefore, the adequacy of the design spectrum for building codes may sometimes be questionable. To study the sufficiency of the building codes of Pakistan (BCP-SP-2007), a deterministic seismic hazard analysis (DSHA) based spectrum was developed for a site in the Muzaffargarh area, Pakistan, using an updated earthquake catalogue, seismic source model, and a next generation attenuation model (NGA-WEST-2). Further, an International Building Code (IBC-2000) spectrum was developed for the study area to compare the results. The DSHA-based response spectrum resulted in a peak ground acceleration (PGA) value of 0.21 g for the Chaudwan fault. The evaluation of BCP-SP-2007 and IBC-2000 spectra provided a critical assessment for analyzing the associated margins. A comparison with the DSHA-based response spectrum showed that the BCP-SP-2007 design spectrum mostly overlapped with the DSHA spectrum unlike IBC-2000. However, special attention is needed for designing buildings in the study area when considering earthquake periods longer than 1 s, and the BCP-SP-2007 spectrum can be enhanced when considering a period range of 0.12–0.64 s. Finally, BCP-SP-2007 is based on a probabilistic approach and its comparison with deterministic results showed the significance of both methods in terms of design.  相似文献   

13.
A fundamental issue in the framework of seismic probabilistic risk analysis is the choice of ground motion intensity measures (IMs). Based on the floor response spectrum method, the present contribution focuses on the ability of IMs to predict non‐structural components (NSCs) horizontal acceleration demand. A large panel of IMs is examined and a new IM, namely equipment relative average spectral acceleration (E‐ASAR), is proposed for the purpose of NSCs acceleration demand prediction. The IMs efficiency and sufficiency comparisons are based on (i) the use of a large dataset of recorded earthquake ground motions; (ii) numerical analyses performed on three‐dimensional numerical models, representing actual structural wall and frame buildings; and (iii) systematic statistical analysis of the results. From the comparative study, the herein introduced E‐ASAR shows high efficiency with respect to the estimation of maximum floor response spectra ordinates. Such efficiency is particularly remarkable in the case of structural wall buildings. Besides, the sufficiency and the simple formulation allowing the use of existing ground motion prediction models make the E‐ASAR a promising IMs for seismic probabilistic risk assessment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The conditional spectrum (CS, with mean and variability) is a target response spectrum that links nonlinear dynamic analysis back to probabilistic seismic hazard analysis for ground motion selection. The CS is computed on the basis of a specified conditioning period, whereas structures under consideration may be sensitive to response spectral amplitudes at multiple periods of excitation. Questions remain regarding the appropriate choice of conditioning period when utilizing the CS as the target spectrum. This paper focuses on risk‐based assessments, which estimate the annual rate of exceeding a specified structural response amplitude. Seismic hazard analysis, ground motion selection, and nonlinear dynamic analysis are performed, using the conditional spectra with varying conditioning periods, to assess the performance of a 20‐story reinforced concrete frame structure. It is shown here that risk‐based assessments are relatively insensitive to the choice of conditioning period when the ground motions are carefully selected to ensure hazard consistency. This observed insensitivity to the conditioning period comes from the fact that, when CS‐based ground motion selection is used, the distributions of response spectra of the selected ground motions are consistent with the site ground motion hazard curves at all relevant periods; this consistency with the site hazard curves is independent of the conditioning period. The importance of an exact CS (which incorporates multiple causal earthquakes and ground motion prediction models) to achieve the appropriate spectral variability at periods away from the conditioning period is also highlighted. The findings of this paper are expected theoretically but have not been empirically demonstrated previously. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This study presents a novel approach for evaluating ground motion selection and modification (GMSM) procedures in the context of probabilistic seismic demand analysis. In essence, synthetic ground motions are employed to derive the benchmark seismic demand hazard curve (SDHC), for any structure and response quantity of interest, and to establish the causal relationship between a GMSM procedure and the bias in its resulting estimate of the SDHC. An example is presented to illustrate how GMSM procedures may be evaluated using synthetic motions. To demonstrate the robustness of the proposed approach, two significantly different stochastic models for simulating ground motions are considered. By quantifying the bias in any estimate of the SDHC, the proposed approach enables the analyst to rank GMSM procedures in their ability to accurately estimate the SDHC, examine the sufficiency of intensity measures employed in ground motion selection, and assess the significance of the conditioning intensity measure in probabilistic seismic demand analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
张宝一  龚平  王丽芳 《地震研究》2006,29(2):209-213
介绍了地理信息系统的主要特征、概率性地震危险性分析的一般步骤及其在MapGIS软件上的实现方法。并以三峡坝区某工程场地为例对程序进行了测试。GIS的用户界面使用户易于掌握概率性地震危险性分析的流程和数据。更重要的是它提高了用户对复杂地震危险性分析过程的认知能力,可以帮助用户在地震危险性分析中从空间数据中挖掘更多的信息。  相似文献   

17.
This paper makes a summary of status of delimitation of seismic zones and belts of China firstly in aspects of studying history,purpose,usage,delimiting principles,various presenting forms and main spectialties.Then the viewpoints are emphasized,making geographical divisions by seismicity is just the most important purpose of delimiting seismic belts and the concept of seismic belt is also quite different from that of seismic statistical zone used in CPSHA method.The concept of seismic statistical zone and its history of evolvement are introduced too.Large differences between these two concepts exist separately in their statistical property,actual meaning,gradation,required scale,and property of refusing to overlap each other,aim and usage of delimitation.But in current engineering practice,these two concepts are confused.On the one hand,it causes no fit theory for delimiting seismic statistical zone in PSHA to be set up;on the other hand,researches about delimitation of seismic belts with purposes of seismicity zoning and studying on structural environment,mechanism of earthquake generating also paues to go abead.Major conclusions are given in the end of this paper,that seismic statistical zone bases on the result of seismic belt delimiting,it only arises in and can be used in the especial PSHA method of China with considering spatially and termporally inhomogeneous seismic activities,and its concept should be clearly differentiated from the comcept of seismic belt.  相似文献   

18.
The seismic hazard of research area is evaluated by probabilistic analysis method for three different seismic statistical zone scenarios.The influence of uncertainty in seismic statistical zone delimiting on the evaluation result is discussed too.It can be seen that for those local sites along zone‘s border or within areas with vast change of upper bound magnitude among different scenarios the influence on seismic hazard result should not be neglected.  相似文献   

19.
地震带与地震统计区关系探究   总被引:5,自引:0,他引:5       下载免费PDF全文
潘华  金严  胡聿贤 《地震学报》2003,25(3):308-313
总结和分析了中国地震带划分的研究历史、目的和用途、划分原则、表现形式以及基本特点,指出地震带是以地震活动性区域划分研究为目的,它不同于概率地震危险性方法中的地震统计区的概念.文中对地震统计区概念及其演化历史进行了分析和论述,认为地震统计区与地震带在统计意义、物理内涵、层次性、划分规模的要求、对空间重叠的排斥性以及划分目的和用途等方面,均存在较大差异.现行工作中将两者不加区分地使用是不合适的, 一方面造成地震统计区未形成自身的适应概率地震危险性分析方法的划分理论,另一方面也造成以地震活动特征和地震孕育发生环境、机制研究为目的的地震带划分研究的停滞不前.文中最后指出,地震统计区划分是以地震带划分研究为基础,它产生并服务于考虑地震活动时空不均匀性的概率地震危险性分析方法,应将其与地震带概念加以明确区分,并加强其划分原则、理论和方法的研究.   相似文献   

20.
This paper summarizes results of a comprehensive analytical study aimed at evaluating the amplitude and heightwise distribution of residual drift demands in multi‐storey moment‐resisting frames after earthquake excitation. For that purpose, a family of 12 one‐bay two‐dimensional generic frame models was subjected to an ensemble of 40 ground motions scaled to different intensities. In this investigation, an inelastic ground motion intensity measure was employed to scale each record, which allowed reducing the record‐to‐record variability in the estimation of residual drift demands. The results were statistically processed in order to evaluate the influence of ground motion intensity, number of stories, period of vibration, frame mechanism, system overstrength, and hysteretic behaviour on central tendency of residual drift demands. In addition, a special emphasis was given to evaluate the uncertainty in the estimation of residual drift demands. Results of incremental dynamic analyses indicate that the amplitude and heightwise distribution of residual drift demands strongly depends on the frame mechanism, the heightwise system structural overstrength and the component hysteretic behaviour. An important conclusion for performance‐based assessment is that the evaluation of residual drift demands involves significantly larger levels of uncertainty (i.e. record‐to‐record variability) than that of maximum drift demands, which suggests that this variability and corresponding uncertainty should be explicitly taken into account when estimating residual drift demands during performance‐based seismic assessment of frame buildings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号