首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea stacks are common and striking coastal landforms, but few details are known about how, how quickly, and under what conditions they form. We present numerical and analytical models of sea stack formation due to preferential erosion along a pre‐existing headland to address these basic questions. On sediment‐rich rocky coasts, as sea cliffs erode and retreat, they produce beach sediment that is distributed by alongshore sediment transport and controls future sea cliff retreat rates. Depending on their width, beaches can encourage or discourage sea cliff erosion by acting either as an abrasive tool or a protective cover that dissipates wave energy seaward of the cliff. Along the flanks of rocky headlands where pocket beaches are often curved and narrow due to wave field variability, abrasion can accelerate alongshore‐directed sea cliff erosion. Eventually, abrasion‐induced preferential erosion can cut a channel through a headland, separating it from the mainland to become a sea stack. Under a symmetrical wave climate (i.e. equal influence of waves approaching the coastline from the right and from the left), numerical and analytical model results suggest that sea stack formation time and plan‐view size are proportional to preferential erosion intensity (caused by, for example, abrasion and/or local rock weakness from joints, faults, or fractures) and initial headland aspect ratio, and that sea stack formation is discouraged when the sediment input from sea cliff retreat is too high (i.e. sea cliffs retreat quickly or are sand‐rich). When initial headland aspect ratio is too small, and the headland is ‘rounded’ (much wider in the alongshore direction at its base than at its seaward apex), the headland is less conducive to sea stack formation. On top of these geomorphic and morphologic controls, a highly asymmetrical wave climate decreases sea stack size and discourages stack formation through rock–sediment interactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Erosion of hard‐rock coastal cliffs is understood to be caused by a combination of both marine and sub‐aerial processes. Beach morphology, tidal elevation and significant wave heights, especially under extreme storm conditions, can lead to variability in wave energy flux to the cliff‐toe. Wave and water level measurements in the nearshore under energetic conditions are difficult to obtain and in situ observations are rare. Here we use monthly cliff‐face volume changes detected using terrestrial laser scanning alongside beach morphological changes and modelled nearshore hydrodynamics to examine how exposed cliffs respond to changes in extreme wave conditions and beach morphology. The measurements cover the North Atlantic storms of 2013 to 2014 and consider two exposed stretches of coastline (Porthleven and Godrevy, UK) with contrasting beach morphology fronting the cliffs; a flat dissipative sandy beach at Godrevy and a steep reflective gravel beach at Porthleven. Beach slope and the elevation of the beach–cliff junction were found to influence the frequency of cliff inundation and the power of wave–cliff impacts. Numerical modelling (XBeach‐G) showed that under highly energetic wave conditions, i.e. those that occurred in the North Atlantic during winter 2013–2014, with Hs = 5.5 m (dissipative site) and 8 m (reflective site), the combination of greater wave height and steeper beach at the reflective site led to amplified wave run‐up, subjecting these cliffs to waves over four times as powerful as those impacting the cliffs at the dissipative site (39 kWm‐1 compared with 9 kWm‐1). This study highlighted the sensitivity of cliff erosion to extreme wave conditions, where the majority (over 90% of the annual value) of cliff‐face erosion ensued during the winter. The significance of these short‐term erosion rates in the context of long‐term retreat illustrates the importance of incorporating short‐term beach and wave dynamics into geomorphological studies of coastal cliff change. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

3.
One habitat management requirement forced by 21st century relative sea‐level rise (RSLR), will be the need to re‐comprehend the dimensions of long‐term transgressive behaviour of coastal systems being forced by such RSLR. Fresh approaches to the conceptual modelling and subsequent implementation of new coastal and peri‐marine habitats will be required. There is concern that existing approaches to forecasting coastal systems development (and by implication their associated scarce coastal habitats) over the next century depend on a certain premise of orderly spatial succession of habitats. This assumption is shown to be questionable given the possible future rates of RSLR, magnitude of shoreline retreat and the lack of coastal sediment to maintain the protective morphologies to low‐energy coastal habitats. Of these issues, sediment deficiency is regarded as one of the major problem for future habitat development. Examples of contemporary behaviour of UK coasts show evidence of coastal sediment starvation resulting from relatively stable RSLR, anthropogenic sealing of coastal sources, and intercepted coastal sediment pathways, which together force segmentation of coastal systems. From these examples key principles are deduced which may prejudice the existence of future habitats: accelerated future sediment demand due to RSLR may not be met by supply and, if short‐ to medium‐term hold‐the‐line policies predominate, long‐term strategies for managed realignment and habitat enhancement may prove impossible goals. Methods of contemporary sediment husbandry may help sustain some habitats in place but otherwise, instead of integrated coastal organization, managers may need to consider coastal breakdown, segmentation and habitat reduction as the basis of 21st century coastal evolution and planning. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Shoreline evolution due to longshore sediment transport is one of the most important problems in coastal engineering and management. This paper describes a method to predict the probability distributions of long-term shoreline positions in which the evolution process is based on the standard one-line model recast into a stochastic differential equation. The time-dependent and spatially varying probability density function of the shoreline position leads to a Fokker–Planck equation model. The behaviour of the model is evaluated by applying it to two simple shoreline configurations: a single long jetty perpendicular to a straight shoreline and a rectangular beach nourishment case. The sensitivity of the model predictions to variations in the wave climate parameters is shown. The results indicate that the proposed model is robust and computationally efficient compared with the conventional Monte Carlo simulations.  相似文献   

5.
A series of airborne topographic LiDAR data were obtained from May 2008 to January 2014 over two coastal sites of northern France (Bay of Wissant and east of Dunkirk). These data were used with wind and tide gauge measurements to assess the impacts of storms on beaches and coastal dunes, and particularly of the series of major storms that hit western Europe during the fall and early winter of 2013. Our results show a high variability in shoreline response from one site to the other, but also within each coastal site. Coastal dune erosion and shoreline retreat occurred at both sites, particularly on the coast of the Bay of Wissant where shoreline retreat up to about 40 m was measured. However, stability or even shoreline advance were also observed despite the occurrence of an extreme water level with a return period >100 years during the storm Xaver in early December 2013. Comparison of shoreline change with variations of coastal dune and upper beach volumes revealed only weak relationships. Our results nevertheless showed that shoreline behavior seems to strongly depend on the initial sediment volume on the upper beach before the occurrence of the storms. According to our measurements, an upper beach volume of about 30 m3 m?1 between the dune toe and the mean high water level is sufficient at these sites to protect the coastal dunes from storm waves associated with high water levels with return periods >10 years. The identification of such thresholds in terms of upper beach width or sediment volume may represent valuable information for improving the management of shoreline change by providing an estimate of the minimum quantity of sand on the upper beach necessary to ensure shoreline stability in this region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Tidal inlets interrupt longshore sediment transport, thereby exerting an influence on adjacent beach morphology. To investigate the details and spatial extent of an inlet's influence, we examine beach topographic change along a 1.5 km coastal reach adjacent to Matanzas Inlet, on the Florida Atlantic coast. Analyses of beach morphology reveal a behavioral change between 0.64 and 0.86 km from the inlet channel centerline, interpreted to represent the spatial extent of inlet influence. Beyond this boundary, the beach is narrow, exhibits a statistically significant inverse correlation of shoreline position with offshore wave conditions, and has a uniform alongshore pattern in temporal behavior, as determined from empirical orthogonal function (EOF) analysis. On the inlet side of the boundary, the beach experiences monotonic widening (with proximity to the inlet), lacks spatial consistency in correlation between shoreline position and wave conditions, and exhibits an irregular pattern in spatial EOF modes. We augment the field observations with numerical modeling that provides calculations of wave setup and nearshore current patterns near the inlet, highlighting the effects of the ebb‐tidal delta on the assailing waves. The modeling results are verified by a natural experiment that occurred during May 2009, when a storm‐produced sedimentary mass accreted to the lower beach, then subsequently split into two oppositely directed waves of sediment that migrated away from the initial accretion site in the subsequent months. Our results suggest that the ebb‐tidal delta produces a pattern of wave setup that creates a pressure gradient driving an alongshore flow that opposes the longshore currents derived from breaking of obliquely oriented incident waves. The resulting recirculation pattern on the margin of the ebb‐tidal delta provides a mechanism through which the inlet influences adjacent barrier island beach morphology. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Research indicates that the aeolianite (Kurkar) cliffs along the Israeli Mediterranean coastline have continuously retreated eastward during the last few decades. There seems to be no dispute among Earth scientists regarding the general trend of cliff retreat. However the majority of papers displaying cliff retreat rates are based upon comparison of aerial photographs. Their lack of advanced geometric measurement methods causes a high margin of error. Public attention is focused upon the Beit‐Yannay coastal cliff since private homes are located along the southern section of the cliff crest. The current research compares the historic location of the cliff crest edge at Beit‐Yannay as observed in a series of aerial photographs taken during the period 1918–2000. Quantitative measurement methods included applications of satellite geodesy and digital photogrammetry and mapping. Research results offer quantitative, consecutive and highly accurate data regarding retreat rates over a relatively long period of 82 years. It is concluded that: 1. Annual average cliff retreat rates of the cliff crest is 20 cm/year. 2. Categorization of the study time span reveals periods displaying varying retreat rates such as 27 cm/year during 1918–1946, 21 cm/year during 1946–1973 and 10 cm/year during 1973–2000. 3. Maximum retreat distances of the cliff crest, over the study period were found to be approximately 25 m along the northern, lowest section of the cliff. Minimum distances of 11 m were identi?ed at the highest, southern section of the cliff. 4. The eolianite (Kurkar) cliffs along the Israeli Mediterranean coast throughout the 20th century have been an important source of sediment, contributing approximately 24 × 106 m3 of sediments to the sediment balance of Israeli beaches. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Previous studies have estimated that coastal cliffs exist on about 80% of the global shoreline, but have not been validated on a global scale. This study uses two approaches to capture information on the worldwide existence and erosion of coastal cliffs: a detailed literature survey and imagery search, and a GIS-based global mapping analysis. The literature and imagery review show coastal cliffs exist in 93% of the combined recognized independent coastal states and non-independent coastal regions worldwide (total of 213 geographic units). Additionally, cliff retreat rates have been quantified in at least one location within 33% of independent coastal states and 15% of non-independent regions. The GIS-based mapping used the near-global Shuttle Radar Topography Mission 3 arc second digital elevation model and Arctic Coastal Dynamics Database to obtain near-global backshore coastal elevations at 1 km alongshore intervals comprising about 1,340,000 locations (81% of the world vector shoreline). Backshore coastal elevations were compared with the mapped distribution of European coastal cliffs to produce a model training set, and this relationship was extended globally to map the likelihood of coastal cliff locations. About 21% of the transects (17% of the world vector shoreline) were identified as mangroves and eliminated as potential cliff locations. The results were combined with estimates of cliff percentages for Greenland and Antarctica from the literature, extending the global coverage to estimate cliff occurrence across 89% of the world vector shoreline. The results suggest coastal cliffs likely exist on about 52% of the global shoreline. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

9.
Sediment dynamics below retreating cliffs   总被引:1,自引:0,他引:1  
The retreat of cliffs may constitute the dominant erosional response to base‐level fall in arid settings underlain by horizontally‐bedded sedimentary rock. These vertical cliffs typically loom above a relatively straight bedrock slope (‘plinth’) that is mantled with a thin layer of sediment and perched near the angle of repose. In detail, a plinth consists of a system of quasi‐parallel ridges and channels. We ask how the sediment supplied from a retreating cliff influences the erosion of the plinth hillslopes and channels, and how this affects the rate of cliff retreat. Motivated by field observations and high‐resolution topographic data from two sites in western Colorado, we develop a two‐dimensional (2D), rules‐based numerical model to simulate the erosion of channels draining a plinth and diffusive erosion of the intervening interfluves. In this model, retreat of a cliffband occurs when the height of the vertical cliff exceeds a threshold due to incision by channels on the plinth below. Debris derived from cliff retreat is distributed over the model plinth according to the local topography and distance from the source. This debris then weathers in place, and importantly can act to reduce local bedrock erosion rates, protecting both the plinth and ultimately the cliff from erosion. In this paper, we focus on two sets of numerical model experiments. In one suite, we regulate the rate of rockfall to limit the cliff retreat rate; in most cases, this results in complete loss of the plinth by erosion. In a second suite, we do not impose a limit on the cliff retreat rate, but instead vary the weathering rate of the rockfall debris. These runs result in temporally steady cliff‐plinth forms and retreat rates; both depend on the weathering rate of the debris. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The dynamical responses of a shoreline over long-term (years or decades) is a non-linear and time-dependent random process. It is affected by both longshore and cross-shore sediment transports. The former tends to cause cumulative changes in the mean shoreline position while the latter usually only leads to beach profile fluctuations relative to the moving mean beach profile. Due to the time-dependency of the process the life-cycle approach is ideally suited to formulate the probability distribution of extreme shoreline erosion. A model based on such approach and using standard Monte Carlo simulation techniques has been reported by Dong and Chen (1999). In this paper a simplified procedure is developed by introducing the assumption that the longshore and cross-shore processes are statistically independent. This then allows the probability distribution of the extreme erosion to be calculated in terms of the marginal probability distributions of the maximum recessions due to purely longshore and purely cross-shore transport. This method was applied to two idealised shoreline configurations and its usefulness for engineering applications is evaluated by comparison with the full Monte Carlo method.  相似文献   

11.
Uplift of the shoreline in tectonically‐active areas can have a profound influence on geomorphology changing the entire process dynamics of the coast as the landforms are removed from the influence of the sea. Over decadal timescales it is possible for the landforms to return to their pre‐earthquake condition and this paper examines the re‐establishment of mixed sand and gravel beaches on the coast of Wellington, New Zealand, subsequent to an uplift event in 1855. Over 60 topographic profiles were surveyed, seven sets of aerial photographs from a 67 year period were mapped and sediment size analyses conducted in order to quantify the nature of beach change following uplift, and associated relative sea level fall. These data were supported by surveys using ground penetrating radar. It is found that uplift raised the gravel beaches out of the swash zone thereby removing them from the littoral zone. Intertidal rocky reefs which occur between each embayment were also uplifted during the same event and completely interrupted the longshore transport system. Continued input of gravel material to the littoral zone allowed beaches to re‐establish sequentially along the coast as each embayment was infilled with sediment. This reconnection of the embayments with the longshore drift system is associated with the beach planform being initially drift dominated during infill but then switching to swash alignment once the embayment becomes infilled. This has resulted in shoreline accretion of over 100 m in some places, at rates of up to 4 m/yr, covering shore protection works built in the past few decades. The ability of the shore to adjust back to its pre‐uplift condition appears to be a function of the accommodation space created during uplift and the rate of sediment supply. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Sandbars, submerged ridges of sand parallel to the shoreline, affect surfzone circulation, beach topography and beach width. Under time‐varying wave forcing, sandbars may migrate onshore and offshore, referred to as two‐dimensional (2D) behaviour, and vary in planshape from alongshore uniform ridges to alongshore non‐uniform ridges through the growth and decay of three‐dimensional (3D) patterns, referred to as 3D behaviour. Although 2D and 3D sandbar behaviour is reasonably well understood along straight coasts, this is not the case for curved coasts, where the curvature can invoke spatial variability in wave forcing. Here, we analyse sandbar behaviour along the ~3000 m man‐made curved coastline of the Sand Engine, Netherlands, and determine the wave conditions governing this behaviour. 2D and 3D behaviour was quantified within a box north and west of the Sand Engine's tip, respectively, using a 2.4‐year dataset of daily low‐tide video images and a sparser bathymetric dataset. The northern and western sides behaved similarly in terms of 2D behaviour, with seasonal onshore and offshore migration, resulting in a stable position on inter‐annual timescales. However, both sandbar geometry and 3D behaviour differed substantially between both sides. The geometric differences (bar shape, bar crest depth and wavelength of 3D patterns) are consistent with computed alongshore differences in breaker height due to refraction. The differences in the timing in growth, decay and morphological coupling of 3D patterns in the sandbar and shoreline are likely related to differences in the local wave angle, imposed by the curved coast. Similar dependency of bar behaviour on local wave height and angle may be expected elsewhere along curved coasts, e.g. shoreline sandwaves, cuspate forelands or embayed beaches. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Digital elevation models and topographic pro?les of a beach with intertidal bar and trough (ridge‐and‐runnel) morphology in Merlimont, northern France, were analysed in order to assess patterns of cross‐shore and longshore intertidal bar mobility. The beach exhibited a pronounced dual bar–trough system that showed cross‐shore stationarity. The bars and troughs were, however, characterized by signi?cant longshore advection of sand under the in?uence of suspension by waves and transport by strong tide‐ and wind‐driven longshore currents. Pro?le changes were due in part to the longshore migration of medium‐sized bedforms. The potential for cross‐shore bar migration appears to be mitigated by the large size of the two bars relative to incident wave energy, which is modulated by high vertical tidal excursion rates on this beach due to the large tidal range (mean spring tidal range = 8·3 m). Cross‐shore bar migration is also probably hindered by the well‐entrenched troughs which are maintained by channelled high‐energy intertidal ?ows generated by swash bores and by tidal discharge and drainage. The longshore migration of intertidal bars affecting Merlimont beach is embedded in a regional coastal sand transport pathway involving tidal and wind‐forced northward residual ?ows affecting the rectilinear northern French coast in the eastern English Channel. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Holocene rockwall retreat rates quantify integral values of rock slope erosion and talus cone evolution. Here we investigate Holocene rockwall retreat of exposed arctic sandstone cliffs in Longyeardalen, central Svalbard and apply laboratory‐calibrated electrical resistivity tomography (ERT) to determine talus sediment thickness. Temperature–resistivity functions of two sandstone samples are measured in the laboratory and compared with borehole temperatures from the talus slope. The resistivity of the higher and lower‐porosity sandstone at relevant borehole permafrost temperatures defines a threshold range that accounts for the lithological variability of the dominant bedrock and debris material. This helps to estimate the depth of the transition from higher resistivities of ice‐rich debris to lower resistivities of frozen bedrock in the six ERT transects. The depth of the debris–bedrock transition in ERT profiles is confirmed by a pronounced apparent resistivity gradient in the raw data plotted versus depth of investigation. High‐resolution LiDAR‐scanning and ERT subsurface information were collated in a GIS to interpolate the bedrock surface and to calculate the sediment volume of the talus cones. The resulting volumes were referenced to source areas to calculate rockwall retreat rates. The rock mass strength was estimated for the source areas. The integral rockwall retreat rates range from 0.33 to 1.96 mm yr–1, and are among the highest rockwall retreat rates measured in arctic environments, presumably modulated by harsh environmental forcing on a porous sandstone rock cliff with a comparatively low rock mass strength. Here, we show the potential of laboratory‐calibrated ERT to provide accurate estimates of rockwall retreat rates even in ice‐rich permafrost talus slopes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Climate warming in the Arctic directly causes two opposite changes in Arctic coastal systems: increased melt‐water discharge through rivers induces extra influx of sediments and extended open water season increases wave impact which reworks and erodes the shores. A shoreline change analysis along the southern coast of Disko Island in western Greenland was conducted with aerial photographs and satellite images from 1964, 1985, and 2012. The decadal morphologic evolution of this 85 km section showed that large parts of the coast had undergone very limited changes. However, two deltas were highly dynamic and popped up as hotspots. The Tuapaat delta and Skansen delta showed large progradation rates (1.5 and 7 m/yr) and migration of the adjacent barriers and spits. The dynamic behavior at the delta mouths was mainly caused by classic delta channel lobe switching at one delta (Tuapaat), and by a breach of the fringing spit at the other delta (Skansen). The longshore and cross‐shore transports are responsible for reworking the sediment with a result of migrating delta mouths and adjacent subaqueous mouth bars. Seaward progradation of the deltas is limited due to the steep nature of the bathymetry in Disko Bay. Finally, a schematic conceptual overview of processes and associated morphological responses for deltas in Arctic environments is presented, including the climate drivers affecting delta evolution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Spatial patterns of multidecadal shoreline changes in two microtidal, low-energetic embayments of southern Zealand, Denmark, were investigated by using the directional distribution of wave energy fluxes. The sites include a barrier island system attached to moraine bluffs, and a recurved spit adjacent to a cliff coast. The barrier island system is characterized by cross-shore translation and by an alignment of the barrier alongshore alternating directions of barrier-spit progradation in a bidirectional wave field. The recurved spit adjacent to the cliff coast experienced shoreline rotation through proximal erosion and distal lateral accretion in a unidirectional wave climate. The multidecadal shoreline changes were coupled to a slope-based morphological coastal classification. All erosive shores occurred within a narrow range of onshore and offshore coastal slopes. The alongshore variability of directional distributions of wave energy fluxes furthermore outlined potential sediment sources and sinks for the evolution of the barrier island system and for the evolution of the recurved spit.  相似文献   

17.
Our understanding of sea-cliff erosion processes and their response to recent and/or projected environmental changes such as sea-level rise, climate change and anthropogenic development hinges on our ability to quantify sea-cliff retreat rates and their variability through time. Here, we focus on Israel's Mediterranean ‘Sharon’ sea-cliff as a case study for examining the significance of recent short-term (i.e. annual to decadal) cliff-top retreat rates that appear to exceed longer-term rates of ‘background’ (i.e. centennial to millennial) retreat by 1–2 orders of magnitude. We demonstrate that an inherent sampling bias in rate estimates inferred from observation intervals shorter than process episodicity can also explain such a pattern. This potential ambiguity leads to a striking paradox where despite highly accurate and robust documentation of recent cliff-top retreat, such as that obtained from aerial photographs and/or instrumental surveys, the short-term retreat rates of episodically retreating sea cliffs remain poorly constrained. To address this key data gap along the Sharon sea cliff we employed a sediment budget approach that focuses on quantifying the continuous wave scouring of cliff-collapsed material from the shore platform as a rate-limiting process for episodic retreat of the cliff above. We used four high-resolution (0.5 m/pixel) airborne LiDAR data sets acquired between 2006 and 2015 to determine short-term maximum retreat rates of up to ~0.08 m/yr during this nine-year period. These modern retreat rates compare to the cliff's background retreat rate of 0.03 to 0.09 m/yr since the mid-Holocene, as determined herein from multiple geologic and archeological observations. Our results demonstrate that previously reported twentieth century cliff-top retreat rates for this sea cliff, which range up to values of several meters per year, are biased and that sea-cliff erosion rates have not yet been significantly impacted by recent environmental changes in the eastern Mediterranean basin, such as the restriction of sediment supply following emplacement of the Nile's Aswan dam system. © 2018 John Wiley & Sons, Ltd.  相似文献   

18.
The AD 1634 North Sea storm is one of the most catastrophic storms along the Wadden Sea coast of Denmark. In this study we show how pre‐1634 storm morphology exerted a strong control on the resulting post‐storm coastal morphology. Erosional responses associated with the storm were barrier breaching, dune scarping and shoreface erosion and accretionary responses were washover deposition, shoreface healing and barrier‐island formation. Local sediment sources appeared to have a particularly strong influence on post‐storm coastal evolution and allowed a very rapid formation of a barrier shoal which resulted in several kilometres of coastal progradation. Sediment budgets suggest that formation of the barrier shoal was possible, but the sediment transport rates in the decades after the 1634 storm, must have been two to three times higher than present‐day rates. The study demonstrates that catastrophic storms are capable of moving large amounts of sediments over relatively short time‐periods and can create barrier shoals, whereas moderate storms mostly rework the shoal or barrier and create more local erosion and/or landward migration. Catastrophic storms substantially influence long‐term and large‐scale coastal evolution, and storms may positively contribute to the sediment budget and promote coastal progradation in coastal areas with longshore sediment convergence. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Within the context of a warming climate, there are wide and increasing concerns about the way beaches respond to different wave energy environments. However, behavioural differences in changes in beach elevation contours (including shorelines) in different wave energy environments remain unknown. Thus, it is unilateral to evaluate the changes in beaches based on a single elevation contour (e.g. shoreline) in coastal engineering and management applications. In this study, based on the collected shoreline and wave energy data of two international beaches, as well as the measured beach elevation contour data from Yintan Beach and the corresponding wave energy data simulated by Xbeach, our results show that frequency distributions of beach elevation contour changes exhibit distinct features under different wave energy environments. Under high wave energy environments, the frequency distributions of beach elevation contour changes show a Gaussian distribution. However, frequency distributions of beach elevation contour changes present a power law, intermediate between the logarithmic and Gaussian distributions under low and moderate wave energy environments, respectively. Furthermore, the conceptual model of beach elevation contour changes constructed by this study indicates that the relative importance of the wave energy and sediment resistance determines this phenomenon. © 2020 John Wiley & Sons Ltd  相似文献   

20.
A sample ord, a low section of beach characteristic of the Holderness coast, is examined as it moved southwards between 1977 and 1983 and its significant role in coast erosion is demonstrated. The reduction in beach level at the cliff foot by up to 3.9 m enabled most HWN tides to reach it, as compared with only some HWS tides along the inter-ord beach, and the volume of till eroded from the cliffs increased by eight times to an annual mean of 72m3m?1. The Holderness tills are shown to be composed of 31 per cent sand and coarser sediment which is the sediment range of the beaches. Where an ord is sited the massive injection of beach sediment goes to form the ord's most prominent constructional feature, the lower beach ridge which extends southwards from the centre of the ord. Analysis of 12 months' observer wave data collected at Withernsea in 1969/70 indicates that a net southward sand movement of 144 000 m3 occurred. Comparison of this rate with beach sediment input rates along the whole coast backed by till cliffs suggests a sediment deficit at the northern end and a surplus towards the southern end. This conclusion is supported by an overall increase in beach sediment volume southwards from Barmston. Within this longshore sediment transport system, the ords migrate southwards from their point of origin in the Barmston-Skipsea area, without losing their identity until reaching the tip of Spurn Head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号