共查询到20条相似文献,搜索用时 0 毫秒
1.
A new concept to determine state of the damage in concrete gravity dams is introduced. The Pine Flat concrete gravity dam has been selected for the purpose of the analysis and its structural capacity, assuming no sliding plane and rigid foundation, has been estimated using the two well‐known methods: nonlinear static pushover (SPO) and incremental dynamic analysis (IDA). With the use of these two methods, performance and various limit states of the dam have been determined, and three damage indexes have been proposed on the basis of the comparison of seismic demands and the dam's capacity. It is concluded that the SPO and IDA can be effectively used to develop indexes for seismic performance evaluation and damage assessment of concrete gravity dams. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
2.
A finite element model of incremental displacement constraint equations (IDCE), based on an existing node‐to‐surface concept, is implemented to deal with dynamic contact surfaces in the seismic behaviour analysis of cracked concrete gravity dams. After verification for sliding, rocking and impact, the IDCE model is applied to study the seismic responses of concrete gravity dams with different profiles and crack locations for a variety of parameters, such as coefficient of friction, water level and type of earthquake, as well as impact damping based on the concept of coefficient of restitution. It is revealed that cracked concrete gravity dams can experience not only sliding and rocking modes, but also the drifting mode in some cases of crack either at the base or at a height. Downstream sliding is normally accompanied by rocking, especially for the cases of crack at a height. Due to rocking and drifting, a cracked dam may still acquire a certain amount of residual sliding even if the effective coefficient of friction is relatively high. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
3.
The growth in computer processing power has made it possible to use time-consuming analysis methods such as incremental dynamic analysis(IDA) with higher accuracy in less time.In an IDA study,a series of earthquake records are applied to a structure at successively increasing intensity levels,which causes the structure to shift from the elastic state into the inelastic state and finally into collapse.In this way,the limit-states and capacity of a structure can be determined.In the present research,the IDA of a concrete gravity dam considering a nonlinear concrete behavior,and sliding planes within the dam body and at the dam-foundation interface,is performed.The influence of the friction angle and lift joint slope on the response parameters are investigated and the various limit-states of the dam are recognized.It is observed that by introducing a lift joint,the tensile damage can be avoided for the dam structure.The lift joint sliding is essentially independent of the base joint friction angle and the upper ligament over the inclined lift joint slides into the upstream direction in strong earthquakes. 相似文献
4.
Incremental dynamic analysis (IDA) is presented as a powerful tool to evaluate the variability in the seismic demand and capacity of non‐deterministic structural models, building upon existing methodologies of Monte Carlo simulation and approximate moment‐estimation. A nine‐story steel moment‐resisting frame is used as a testbed, employing parameterized moment‐rotation relationships with non‐deterministic quadrilinear backbones for the beam plastic‐hinges. The uncertain properties of the backbones include the yield moment, the post‐yield hardening ratio, the end‐of‐hardening rotation, the slope of the descending branch, the residual moment capacity and the ultimate rotation reached. IDA is employed to accurately assess the seismic performance of the model for any combination of the parameters by performing multiple nonlinear timehistory analyses for a suite of ground motion records. Sensitivity analyses on both the IDA and the static pushover level reveal the yield moment and the two rotational‐ductility parameters to be the most influential for the frame behavior. To propagate the parametric uncertainty to the actual seismic performance we employ (a) Monte Carlo simulation with latin hypercube sampling, (b) point‐estimate and (c) first‐order second‐moment techniques, thus offering competing methods that represent different compromises between speed and accuracy. The final results provide firm ground for challenging current assumptions in seismic guidelines on using a median‐parameter model to estimate the median seismic performance and employing the well‐known square‐root‐sum‐of‐squares rule to combine aleatory randomness and epistemic uncertainty. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
Investigation of the relationship of seismic intensity measures and the accumulation of damage on concrete gravity dams using incremental dynamic analysis 下载免费PDF全文
Nonlinear analysis tools are gaining prominence for the design and evaluation of concrete gravity dams. The performance limits of concrete gravity dams within the framework of performance based design are challenging to determine in comparison to those used for the assessments based on linear elastic analyses. The uncertainty in quantifying the behavior of these systems and the strong dependence of the behavior on the ground motion play an important role. The purpose of the study is to quantify the damage levels on a representative monolith using incremental dynamic analysis (IDA). For this purpose, the constitutive model utilized was calibrated first to the existing experimental results to verify the ability of the utilized cracking model to simulate the crack propagation process. Next, the relation between the damage levels on the monolith and the ground motion characteristics was investigated. The results of the conducted IDA showed that the engineering demand parameters (EDP) such as the crest displacement and acceleration showed weak correlation with the damage states. The spectral velocity and the peak ground acceleration were determined to be better predictors for the damage on the monolith. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
6.
基于IDA法与Pushover法的混凝土核心筒抗震性能对比分析 总被引:1,自引:0,他引:1
足够数量地震输入的增量动力分析方法(IDA方法)是目前最为真实和先进的模拟结构抗震性能手段,而静力推覆分析方法(Pushover Analysis方法)操作简单,更为实用,可以较好揭示结构从弹性到屈服直至倒塌过程中构件的工作状态。采用2种方法对钢筋混凝土核心筒算例进行评估,并作对比分析。结果表明,采用IDA方法得到的4个性能水平与Pushover方法得到的指标限值有一定误差,但均在一定范围之内,采用IDA方法得到顶点位移角限值偏大;采用单一侧力模式的Pushover方法无法完全体现高阶振型及地震动等因素的影响,造成Pushover方法分析结果与结构实际弹塑性地震响应有一定差异。 相似文献
7.
Rockfill buttressing resting on the downstream face of masonry or concrete gravity dam is often considered as a strengthening method to improve the stability of existing dam for hydrostatic and seismic loads. Simplified methods for seismic stability analysis of composite concrete-rockfill dams are discussed. Numerical analyses are performed using a nonlinear rockfill model and nonlinear dam-rockfill interface behavior to investigate the effects of backfill on dynamic response of composite dams. A typical 35 m concrete gravity dam, strengthened by rockfill buttressing is considered. The results of analyses confirm that backfill can improve the seismic stability of gravity dams by exerting pressure on the dam in opposition to hydrostatic loads. According to numerical analyses results, the backfill pressures vary during earthquake base excitations and the inertia forces of the backfill are the main source for those variations. It is also shown that significant passive (or active) pressure cannot develop in composite dams with a finite backfill width. A simplified model is also proposed for dynamic analysis of composite dam by replacing the backfill with by a series of vertical cantilever shear beams connected to each other and to the dam by flexible links. 相似文献
8.
Abstract The water-centric community has continuously made efforts to identify, assess and implement rigorous uncertainty analyses for routine hydrological measurements. This paper reviews some of the most relevant efforts and subsequently demonstrates that the Guide to the expression of uncertainty in measurement (GUM) is a good candidate for estimation of uncertainty intervals for hydrometry. The demonstration is made by implementing the GUM to typical hydrometric applications and comparing the analysis results with those obtained using the Monte Carlo method. The results show that hydrological measurements would benefit from the adoption of the GUM as the working standard, because of its soundness, the availability of software for practical implementation and potential for extending the GUM to hydrological/hydraulic numerical simulations. Editor D. Koutsoyiannis Citation Muste, M., Lee, K. and Bertrand-Krajewski, J.-L., 2012. Standardized uncertainty analysis for hydrometry: a review of relevant approaches and implementation examples. Hydrological Sciences Journal, 57 (4), 643–667. 相似文献
9.
性态抗震设计已成为结构抗震设计的发展趋势,本文以约束混凝土砌块结构为对象,在提出约束混凝土砌块墙承载力计算公式的基础上,建立了砌块墙片的恢复力模型。对3座不同层数的典型约束混凝土砌块结构,在代表不同场地类别、不同地震动强度的输入下分别进行了动力非线性时程分析和静力非线性分析。通过计算结果的对比,讨论了2种分析方法中场地类别、地震动强度、静力非线性分析中侧力分布模式等影响,所得结论可以为用静力非线性分析估计砌块结构的抗震性能提供有益的参考依据。 相似文献
10.
Many concrete gravity dams have been in service for over 50 years, and over this period important advances in the methodologies for evaluation of natural phenomena hazards have caused the design‐basis events for these dams to be revised upwards. Older existing dams may fail to meet revised safety criteria and structural rehabilitation to meet such criteria may be costly and difficult. Fragility assessment provides a tool for rational safety evaluation of existing facilities and decision‐making by using a probabilistic framework to model sources of uncertainty that may impact dam performance. This paper presents a methodology for developing fragilities of concrete gravity dams to assess their performance against seismic hazards. The methodology is illustrated using the Bluestone Dam on the New River in West Virginia, which was designed in the late 1930s. The seismic fragility assessment indicated that sliding along the dam–foundation interface is likely if the dam were to be subjected to an earthquake with a magnitude of the maximum credible earthquake (MCE) specified by the U.S. Army Corps of Engineers. Moreover, there will likely be tensile cracking at the neck of the dam at this level of seismic excitation. However, loss of control of the reservoir is unlikely. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
11.
12.
Ambient vibration tests were conducted on a 56 metre high concrete gravity dam to measure its modal properties for validating a finite element model of the dam–reservoir–foundation system. Excitation was provided by wind, by reservoir water cascading down the spillweir, and by the force of water released through outlet-pipes. Vibrations of the dam were measured using accelerometers, and 3-hour data records were acquired from each location. Data were processed by testing for stationarity and rejecting non-stationary portions before Fourier analysis. Power spectra with low variance were generated from which natural frequencies of the dam were identified clearly and modal damping factors estimated. Modal analysis of the frequency response spectra yielded mode shapes for the six lowest lateral modes of vibration of the dam. The finite element model for the dam was analysed using EACD-3D, and the computed mode shapes and natural frequencies compared well with the measured results. The study demonstrates that ambient vibration testing can offer a viable alternative to forced vibration testing when only the modal properties of a dam are required. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
13.
The piecewise linear (‘multilinear’) approximation of realistic force‐deformation capacity curves is investigated for structural systems incorporating generalized plastic, hardening, and negative stiffness behaviors. This fitting process factually links capacity and demand and lies at the core of nonlinear static assessment procedures. Despite codification, the various fitting rules used can produce highly heterogeneous results for the same capacity curve, especially for the highly‐curved backbones resulting from the gradual plasticization or the progressive failures of structural elements. To achieve an improved fit, the error introduced by the approximation is quantified by studying it at the single‐degree‐of‐freedom level, thus avoiding any issues related to multi‐degree‐of‐freedom versus single‐degree‐of‐freedom realizations. Incremental dynamic analysis is employed to enable a direct comparison of the actual backbones versus their candidate piecewise linear approximations in terms of the spectral acceleration capacity for a continuum of limit‐states. In all cases, current code‐based procedures are found to be highly biased wherever widespread significant stiffness changes occur, generally leading to very conservative estimates of performance. The practical rules determined allow, instead, the definition of standardized low‐bias bilinear, trilinear, or quadrilinear approximations, regardless of the details of the capacity curve shape. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
A finite element method for the dynamic analysis of concrete gravity dams is presented. Displacement based formulation is used for both fluid and structural domains. During severe ground motion, the impounding fluid in the reservoir may separate from the dam and cause forming of micro bubbles. As a result, the compressibility of water is reduced. This nonlinear phenomenon of the reservoir is termed cavitation. When the direction of the ground motion is changed, the micro bubble's region of fluid collapses, and an impact will occur. By using different damping ratios in the fluid and solid domains the spurious oscillations which were caused by the impact are removed. The cavitation is confined to the upper part of the reservoir, where it has an effect of paramount importance on the tensile stresses. To illustrate the cavitation effect, the response of the non-overflow monolith of the Pine Flat dam subjected to the first 6.5 s of the May 1940 El-Centro, California earthquake, is considered. In order that the cavitation phenomenon take place more widely, maximum acceleration was scaled to give an amplitude of 1 g. 相似文献
15.
Inspired from the simplified single degree of freedom modeling approach used in the preliminary design of concrete gravity dams, a pseudo‐dynamic testing method was devised for the seismic testing of a concrete gravity dam section. The test specimen was a 1/75 scaled section of the 120‐m‐high monolith of the Melen Dam, one of the highest concrete gravity dams to be built in Turkey. The single degree of freedom idealization of the dam section was validated in the first stage of the study using numerical simulations including the dam–reservoir interaction. Afterwards, pseudo‐dynamic testing was conducted on the specimen using three ground motions corresponding to different hazard levels. Lateral displacement and base shear demands were measured. The crack propagation at the base of the dam was monitored with the measurement of the crack widths and the base sliding displacements. After the pseudo‐dynamic loading, a static pushover test was conducted to determine the reserve capacity of the test specimen. Despite major cracking at the base of the monolith, neither significant sliding nor a stability problem that might jeopardize the stability of the dam was observed. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
16.
型钢混凝土框架结构基于增量动力分析的抗震性能评估 总被引:1,自引:0,他引:1
增量动力分析(IDA)是进行结构抗震性能评估的一种有效方法。根据IDA方法的原理和特点,提出用其评估型钢混凝土(SRC)结构在不同强度地震作用下变形和延性能力的具体步骤,并将结构不同性能水平极限状态和IDA曲线的斜率联系起来,结合现有试验确定各性能水准对应的曲线斜率下降幅值。在所提混凝土和钢材本构模型的基础上,采用IDA方法对一规则SRC框架结构进行分析,研究结构在各性能水平的层间位移角和延性分布情况,单条和多条地震记录的IDA曲线表明,SRC框架在多条地震记录下均具有良好的抗震性能。 相似文献
17.
In this study, a finite element limit analysis method is developed to assess the seismic stability of earth-rock dams. A pseudo-static approach is employed within the limit analysis framework to determine the lower and upper bounds on the critical seismic coefficients of dams. The interlocking force in the soil is considered, and the rockfill material is assumed to follow the Mohr–Coulomb failure criterion and an associated flow rule. Based on the native form of the failure criterion, the lower and upper bound theorems are formulated as second-order cone programming problems. The nonlinear shear strength properties of rockfill materials are also considered. The developed finite element limit analysis is applied to two different types of earth-rock dams. The results indicate that the rigorous lower and upper bounds are very close even for rockfill materials with large internal friction angles. The failure surfaces are easily predicted using the contour of the yield function and the displacement field obtained by the limit analysis method. In addition, the pore water pressures are modelled as external forces in the limit analysis to assess the seismic stability of earth-rock dams in the reservoir filling stage. 相似文献
18.
Approximate methods based on the static pushover are introduced to estimate the seismic performance uncertainty of structures having non‐deterministic modeling parameters. At their basis lies the use of static pushover analysis to approximate Incremental Dynamic Analysis (IDA) and estimate the demand and capacity epistemic uncertainty. As a testbed we use a nine‐storey steel frame having beam hinges with uncertain moment–rotation relationships. Their properties are fully described by six, randomly distributed, parameters. Using Monte Carlo simulation with Latin hypercube sampling, a characteristic ensemble of structures is created. The Static Pushover to IDA (SPO2IDA) software is used to approximate the IDA capacity curve from the appropriately post‐processed results of the static pushover. The approximate IDAs allow the evaluation of the seismic demand and capacity for the full range of limit‐states, even close to global dynamic instability. Moment‐estimating techniques such as Rosenblueth's point estimating method and the first‐order, second‐moment (FOSM) method are adopted as simple alternatives to obtain performance statistics with only a few simulations. The pushover is shown to be a tool that combined with SPO2IDA and moment‐estimating techniques can supply the uncertainty in the seismic performance of first‐mode‐dominated buildings for the full range of limit‐states, thus replacing semi‐empirical or code‐tabulated values (e.g. FEMA‐350), often adopted in performance‐based earthquake engineering. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
19.
钢筋混凝土结构基于改进能力谱法的地震损伤性能设计 总被引:15,自引:8,他引:15
本文基于国内外非线性静力分析方法,阐述了最近由Chopra和Goel提供的改进能力谱法的基本概念和实施步骤;其次,结合文献「18」中提出的钢筋沸凝土结构地震损伤“三水准”性能目标和改进能力谱法,提出了基于能力谱法的结构地震损伤性能简化设计及验算方法;最后,通过设计例题说明了本文方法的可行性,并将计算结果与时程分析进行了比较,显示了此法的有效性。 相似文献
20.
Understanding the time‐varying importance of different uncertainty sources in hydrological modelling using global sensitivity analysis 下载免费PDF全文
Simulations from hydrological models are affected by potentially large uncertainties stemming from various sources, including model parameters and observational uncertainty in the input/output data. Understanding the relative importance of such sources of uncertainty is essential to support model calibration, validation and diagnostic evaluation and to prioritize efforts for uncertainty reduction. It can also support the identification of ‘disinformative data’ whose values are the consequence of measurement errors or inadequate observations. Sensitivity analysis (SA) provides the theoretical framework and the numerical tools to quantify the relative contribution of different sources of uncertainty to the variability of the model outputs. In traditional applications of global SA (GSA), model outputs are aggregations of the full set of a simulated variable. For example, many GSA applications use a performance metric (e.g. the root mean squared error) as model output that aggregates the distances of a simulated time series to available observations. This aggregation of propagated uncertainties prior to GSA may lead to a significant loss of information and may cover up local behaviour that could be of great interest. Time‐varying sensitivity analysis (TVSA), where the aggregation and SA are repeated at different time steps, is a viable option to reduce this loss of information. In this work, we use TVSA to address two questions: (1) Can we distinguish between the relative importance of parameter uncertainty versus data uncertainty in time? (2) Do these influences change in catchments with different characteristics? To our knowledge, the results present one of the first quantitative investigations on the relative importance of parameter and data uncertainty across time. We find that the approach is capable of separating influential periods across data and parameter uncertainties, while also highlighting significant differences between the catchments analysed. Copyright © 2016 The Authors. Hydrological Processes. Published by John Wiley & Sons Ltd. 相似文献