首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用压电陶瓷的压电效应,研发出一种基于半主动控制的新型压电摩擦阻尼器,介绍其构造和工作原理。建立新型压电摩擦阻尼器的ABAQUS有限元模型,得出阻尼器在不同工况下的滞回曲线,并进行其滞回性能试验,用试验值验证阻尼器有限元模型的相似性,两者得到的阻尼器摩擦力变化趋势相近;采用ANSYS建立安装有新型压电摩擦阻尼器的输变电塔模型,利用MATLAB计算输变电塔模型各层的加速度响应,验证新型压电摩擦阻尼器在实际结构中的摩擦耗能性能,为其工程应用提供理论依据。  相似文献   

2.
This paper investigates the seismic response control of a 20-story nonlinear benchmark building with a new recentering variable friction device (RVFD). The RVFD combines energy dissipation capabilities of a variable friction damper (VFD) with the recentering ability of shape memory alloy (SMA) wires. The VFD that is the first subcomponent of the hybrid device consists of a friction generation unit and piezoelectric actuators. The clamping force of the VFD can be adjusted according to the current level of ground motion by adjusting the voltage level of piezoelectric actuators. SMA wires that exhibit a unique hysteretic behavior and full shape recovery after experiencing large strains is the second subcomponent of the hybrid device. Numerical simulations of a seismically excited 20-story benchmark building are conducted to evaluate the performance of the hybrid device. A continuous hysteretic model is used to capture frictional behavior of the VFD and a neuro-fuzzy model is employed to describe highly nonlinear behavior of the SMA components of the hybrid device. A fuzzy logic controller is developed to adjust the voltage level of VFDs for favorable performance in an RVFD hybrid application. Results show that the RVFD modulated with a fuzzy logic control strategy can effectively reduce interstory drifts and permanent deformations without increasing acceleration response of the benchmark building for most cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper a predictive control method especially suitable for the control of semi‐active friction dampers is proposed. By keeping the adjustable slip force of a semi‐active friction damper slightly lower than the critical friction force, the method allows the damper to remain in its slip state throughout an earthquake of arbitrary intensity, so the energy dissipation capacity of the damper can be improved. The proposed method is formulated in a discrete‐time domain and cast in the form of direct output feedback for easy control implementation. The control algorithm is able to produce a continuous and smooth slip force for a friction damper and thus avoid exerting the high‐frequency structural response that usually exists in structures with conventional friction dampers. Using a numerical study, the control performance of a multiple degrees of freedom (DOF) structural system equipped with passive friction dampers and semi‐active dampers controlled by the proposed method are compared. The numerical case shows that by merely using a single semi‐active friction damper and a few sensors, the proposed method is able to achieve better acceleration reduction than the case using multiple passive dampers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
压电材料是一种新型智能材料。本文将压电材料和被动摩擦阻尼器相结合设计出一种新型智能摩擦阻尼器,并采用基于经典最优控制理论的半主动控制策略对高耸钢塔结构风振反应的控制进行了研究,对国内即将兴建的第一高钢电视塔──合肥翡翠电视塔进行了算例分析。为满足摩擦阻尼器对高耸钢塔结构风振控制的特殊需要、文中还建立了房耸钢塔结构的空间桁架有限元模型和串联多自由度体系模型,并在形成广义控制力作用位置矩阵和计算摩擦阻尼器两端的相对位移的过程中综合地运用了这两种力学模型。本文研究表明,压电材料智能摩擦阻尼器可以有效地抑制高耸钢塔结构的风振反应。  相似文献   

5.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
A semi‐active hydraulic damper (SHD) for a semi‐active damper system, which is useful for practical structural control especially for large earthquakes, has been developed. Its maximum damping force is set to 1 or 2 MN, and it is controlled by only 70 W of electric power. An SHD with a maximum damping force of 1 MN was applied to an actual building in 1998. This paper first presents the results of a dynamic loading test to confirm the control performance of the SHD. Next, an analytical model of SHDs (SHD model) is constructed with the same concept for two kinds of SHDs based on the test results. Through simulation analyses of the test results using the proposed SHD model, the dynamic characteristics of the SHD can be well represented within practical conditions. Simulation analyses are also carried out using a simple structure model with the SHD model. It is shown that this SHD model can be used to precisely evaluate the control effect of the semi‐active damper system and is useful in practical SHD design under the applied conditions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
压电-T型变摩擦阻尼器及其性能试验与分析   总被引:9,自引:0,他引:9  
本文结合压电驱动器和T型摩擦阻尼器的特点,提出了压电-T型变摩擦阻尼器,并建立了阻尼器输入电压主动调节或按位移和速度相关调节的阻尼力模型。其次,设计制作了最大阻尼力450N、阻尼力可调倍数2.5~3倍的小比例模型压电-T型变摩擦阻尼器,进行了可调阻尼力性能试验,得到了输入电压主动调节和分别按位移和速度相关调节的阻尼力滞回曲线,试验结果与阻尼力模型分析结果吻合较好。此外,探讨了压电-T型变摩擦阻尼器的规格化设计,分别设计了最大阻尼力20kN和200kN、阻尼力可调倍数2的压电-T型变摩擦阻尼器参数。压电-T型变摩擦阻尼器构造简单、阻尼力调节方便、响应迅速,是一种性能优燎能阻尼器.  相似文献   

8.
This study uses a semi‐active viscous damper with three different control laws to reshape the structural hysteresis loop and mitigate structural response, referred to as 1–4, 1–3 and 2–4 devices, respectively. The 1–4 control law provides damping in all four quadrants of the force‐displacement graph (it behaves like a standard viscous damper), the 1–3 control law provides resisting forces only in the first and third quadrants, and the 2–4 control law provides damping in the second and fourth quadrants. This paper first outlines the linear single degree of freedom structural performance when the three types of semi‐active viscous dampers are applied. The results show that simultaneous reduction in both displacement and base‐shear demand is only available with the semi‐active 2–4 device. To enable guidelines for adding a 2–4 device into the design procedure, damping reduction factors (RFξs) are developed, as they play an important role and provide a means of linking devices to design procedures. Three methods are presented to obtain RFξ and equivalent viscous damping of a structure with a 2–4 semi‐active viscous damper. In the first method, the relationship between RFξ and the damping of a semi‐active structure can be obtained by calculating the area under the force‐deformation diagram. The second and third method modified the Eurocode8 formula of RFξ and smoothed results from analysis, respectively. Finally, a simple method is proposed to incorporate the design or retrofit of structures with simple, robust and reliable 2–4 semi‐active viscous dampers using standard design approaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A magneto‐rheological (MR) damper is a semi‐active device where the damper force capacity is controlled by varying the input current into the damper. In this paper, the dynamics of MR dampers associated with variable current input is studied. Electromagnetic theory is used to model the dynamics of an MR damper including the eddy current effect and the nonlinear hysteretic behavior of damper material magnetization. A nonlinear differential equation that relates the input current to the damper with a constant equivalent current is proposed. The nonlinear differential equation is combined with the Maxwell Nonlinear Slider (MNS) model to create the variable current MNS model to predict the damper force under variable input current and random damper displacement loading. The model is evaluated by comparing the predicted response of a large‐scale MR damper to the measured damper response from experiments. The experiments include a real‐time hybrid simulation of a 3‐story building structure with a large‐scale MR damper subjected to the design earthquake. The exceptional agreement observed between the predicted and experimental results illustrate the robustness and the accuracy of the variable current MNS model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A semi‐active fuzzy control strategy for seismic response reduction using a magnetorheological (MR) damper is presented. When a control method based on fuzzy set theory for a structure with a MR damper is used for vibration reduction of a structure, it has an inherent robustness, and easiness to treat the uncertainties of input data from the ground motion and structural vibration sensors, and the ability to handle the non‐linear behavior of the structure because there is no longer the need for an exact mathematical model of the structure. For a clipped‐optimal control algorithm, the command voltage of a MR damper is set at either zero or the maximum level. However, a semi‐active fuzzy control system has benefit to produce the required voltage to be input to the damper so that a desirable damper force can be produced and thus decrease the control force to reduce the structural response. Moreover, the proposed control strategy is fail‐safe in that the bounded‐input, bounded‐output stability of the controlled structure is guaranteed. The results of the numerical simulations show that the proposed semi‐active control system consisting of a fuzzy controller and a MR damper can be beneficial in reducing seismic responses of structures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
智能型压电-摩擦耗能器   总被引:21,自引:1,他引:20  
本文利用压电陶瓷驱动器的电致形变特征和摩擦耗能器的紧固力决定摩擦力大小的特性,提出了智能型压电-摩擦复合耗能器。文中首先提出了叠层压电陶瓷驱动器与Pall摩擦耗能器复合的基本结构;其次,提出了压电-摩擦耗能器可调紧固力的计算方法,分析了耗能器形状参数的影响;最后,具体设计了可调摩擦耗能型和拟粘滞型两种压电-摩擦耗能器。  相似文献   

12.
This paper proposes a hybrid control strategy combining passive and semi‐active control systems for seismic protection of cable‐stayed bridges. The efficacy of this control strategy is verified by examining the ASCE first‐generation benchmark problem for a seismically excited cable‐stayed bridge, which employs a three‐dimensional linearized evaluation bridge model as a testbed structure. Herein, conventional lead–rubber bearings are introduced as base isolation devices, and semi‐active dampers (e.g., variable orifice damper, controllable fluid damper, etc.) are considered as supplemental damping devices. For the semi‐active dampers, a clipped‐optimal control algorithm, shown to perform well in previous studies involving controllable dampers, is considered. Because the semi‐active damper is a controllable energy‐dissipation device that cannot add mechanical energy to the structural system, the proposed hybrid control strategy is fail‐safe in that the bounded‐input, bounded‐output stability of the controlled structure is guaranteed. Numerical simulation results show that the performance of the proposed hybrid control strategy is quite effective in protecting seismically excited cable‐stayed bridges. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents an experimental study on the performance of a shear-sliding stud-type damper composed of multiple friction units with high-tension bolts and disc springs. A numerical evaluation of the response reduction effects achieved by the stud-type damper is also presented. In dynamic loading tests, the behavior of stud-type multiunit friction damper specimens was investigated. Three different full-scale damper specimens, which were composed of five, six, or seven friction units with two or four sliding surfaces, were incorporated into loading devices for testing. The stud-type friction dampers demonstrated stable rigid-plastic hysteresis loops without any remarkable decrease in the sliding force even when subjected to repetitive loading, in addition to showing no unstable behavior such as lateral buckling. The damper produced a total sliding force approximately proportional to the number of sliding surfaces and friction units. The total sliding force of the stud-type damper can thus be estimated by summing the contributions of each friction unit. In an earthquake response simulation, the control effects achieved by stud-type dampers incorporated into an analytical high-rise building model under various input waves, including long-period, long-duration and pulse-like ground motions, were evaluated. A satisfactory response reduction was obtained by installing the developed stud-type dampers into the main frame without negatively impacting usability and convenience in terms of building planning.  相似文献   

14.
Because of many advantages over other control systems, semi‐active control devices have received considerable attention for applications to civil infrastructures. A variety of different semi‐active control devices have been studied for applications to buildings and bridges subject to strong winds and earthquakes. Recently, a new semi‐active control device, referred to as the resetable semi‐active stiffness damper (RSASD), has been proposed and studied at the University of California, Irvine (UCI). It has been demonstrated by simulation results that such a RSASD is quite effective in protecting civil engineering structures against earthquakes, including detrimental near‐field earthquakes. In this paper, full‐scale hardware for RSASD is designed and manufactured using pressurized gas. Experimental tests on full‐scale RSASDs have been conducted to verify the hysteretic behaviours (energy dissipation characteristics) and the relation between the damper stiffness and the gas pressure. The correlation between the experimental results of the hysteresis loops of RASADs and that of the theoretical ones has been assessed qualitatively. Experimental results further show the linear relation between the gas pressure and the stiffness of the RSASD as theoretically predicted. Finally, shake table tests have also been conducted using an almost full‐scale 3‐storey steel frame model equipped with full‐scale RSASDs at the National Center for Research on Earthquake Engineering (NCREE), Taipei, Taiwan, and the results are presented. Experimental results demonstrate the performance of RSASDs in reducing the responses of the large‐scale building model subject to several near‐field earthquakes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A control strategy for semi-active friction devices leading to efficient hysteretic dissipaters is proposed. The control algorithm makes the contact force between the sliding surfaces of the damper proportional to the absolute value of the prior local peak of the damper deformation. This control logic leads to a non-linear force–deformation relation that satisfies homogeneity of degree one; this means that, like in a linear viscoelastic damping model, when the deformation is scaled by a constant, the force results are scaled by the same constant. The closed-loop system shows rectangular hysteresis loops which enclose an area proportional to the square of the deformation of the damper. Some characteristics of the dynamic response of structures incorporating this type of semi-active damper are investigated. It is demonstrated that in the case of single-degree-of-freedom models, the period of vibration and decay ratio are independent of the amplitude of vibration. In the case of multi-degree-of-freedom models with this type of nonlinearity, the free-vibration response can exhibit natural modes of vibration. A linearization method is proposed and modelling tools for the delay associated with actuator dynamics and for the flexibility of the brace connecting the damper to the structure are presented. © 1997 by John Wiley & Sons, Ltd.  相似文献   

16.
Passive and semi‐active tuned mass damper (PTMD and SATMD) building systems are proposed to mitigate structural response due to seismic loads. The structure's upper portion self plays a role either as a tuned mass passive damper or a semi‐active resetable device is adopted as a control feature for the PTMD, creating a SATMD system. Two‐degree‐of‐freedom analytical studies are employed to design the prototype structural system, specify its element characteristics and effectiveness for seismic responses, including defining the resetable device dynamics. The optimal parameters are derived for the large mass ratio by numerical analysis. For the SATMD building system the stiffness of the resetable device design is combined with rubber bearing stiffness. From parametric studies, effective practical control schemes can be derived for the SATMD system. To verify the principal efficacy of the conceptual system, the controlled system response is compared with the response spectrum of the earthquake suites used. The control ability of the SATMD scheme is compared with that of an uncontrolled (No TMD) and an ideal PTMD building systems for multi‐level seismic intensity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
基于加速度反馈的结构地震反应半主动MR阻尼控制试验   总被引:11,自引:1,他引:11  
本文针对安装有半主动磁流变阻尼器(MR damper)的一座二层模型结构进行了抗震振动台试验研究,通过采用基于加速度反馈控制策略的两种半主动控制算法进行了在各种地震动作用下模型结构的半主动控制的抗震试验研究,并进行了Passive-on和Passive-off两种被动控制的试验研究。试验结果表明,MR阻尼器作为一种半主动控制装置可以有效地控制结构的峰值位移和均方差反应,且半主动控制对结构顶层的峰值位移和均方差的控制效果均优于两种被动控制方法。因此,本文提出的两种半主动控制算法都是有效的,并宜于实现。  相似文献   

18.
一种SMA复合摩擦阻尼器的设计与性能研究   总被引:1,自引:0,他引:1  
利用形状记忆合金(SMA)的超弹性特性,将SMA丝与摩擦阻尼器复合,提出了一种SMA复合摩擦阻尼器,给出了SMA复合摩擦阻尼器的工作机理和设计方法,建立了其理论模型,确定了SMA复合摩擦阻尼器的力-位移滞回曲线,并对一SMA复合摩擦阻尼器控震单自由度体系在地震作用下的动力响应进行了数值模拟。结果表明,提出的SMA复合摩擦阻尼器具有优良的耗能减振性能。  相似文献   

19.
Properly fabricated triangular‐plate added damping and stiffness (TADAS) devices can sustain a large number of yield reversals without strength degradation, thereby dissipating a significant amount of earthquake‐induced energy. A pronounced isotropic‐hardening effect is recognized in the force‐deformation relationships of the TADAS devices made from two grades of low yield strength steel. The proposed plasticity‐fibre model employing two surfaces (a yield surface and a bounding surface) in plasticity theory accurately predicts the experimental responses of the TADAS devices. This model is also implemented into a computer program DRAIN2D+ to investigate a frame response with the TADAS devices. Substructure pseudo‐dynamic tests and analytical studies of a two‐storey steel frame constructed with the low yield strength steel, LYP‐100 or LYP‐235 grade, TADAS devices confirm that the dynamic structural response can only be predicted if the proposed plasticity‐fibre model is used for LYP‐100 steel TADAS device. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Vibration mitigation using smart, reliable and cost‐effective mechanisms that requires small activation power is the primary objective of this paper. A semi‐active controller‐based neural network for base‐isolation structure equipped with a magnetorheological (MR) damper is presented and evaluated. An inverse neural network model (INV‐MR) is constructed to replicate the inverse dynamics of the MR damper. Next, linear quadratic Gaussian (LQG) controller is designed to produce the optimal control force. Thereafter, the LQG controller and the INV‐MR models are linked to control the structure. The coupled LQG and INV‐MR system was used to train a semi‐active neuro‐controller, designated as SA‐NC, which produces the necessary control voltage that actuates the MR damper. To evaluate the proposed method, the SA‐NC is compared to passive lead–rubber bearing isolation systems (LRBs). Results revealed that the SA‐NC was quite effective in seismic response reduction for wide range of motions from moderate to severe seismic events compared to the passive systems. In addition, the semi‐active MR damper enjoys many desirable features, such as its inherent stability, practicality and small power requirements. The effectiveness of the SA‐NC is illustrated and verified using simulated response of a six‐degree‐of‐freedom model of a base‐isolated building excited by several historical earthquake records. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号