首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various extraction procedures were employed for measuring extractable concentrations of potential toxic elements in soil. The extractability of Cd, Cu, Pb and Zn in four contaminated and four non-contaminated soils of Japan, was compared by single extraction (CaCl2, DTPA, NH4Cl, 0.1 M HCl and 1 M HCl ) and sequential extraction procedures [(six operationally defined chemical phases, viz. water soluble (Fl), exchangeable (F2), carbonate (F3), oxide (F4), organic (F5) and residual (F6) fractions)]. Extractability of metals from soils samples varied depending on metals and/or extradants used. Among the extradants, 1 M HCl extracted the largest proportion of Cd (79 to 96% of total), Cu (61 to 83%), Pb (51 to 99%) and Zn (23 to 52%) from soils followed by 0.1 M HCl, NH4Cl, DTPA and CaCl2. In all the extradants, the proportion of extractability of metals was higher in the contaminated soils than the non-contaminated soils. Regardless of soils and extradants, relative extractability was higher for Cd as compared to other three metals. The use of 1 M HCl may be recommended for first-level screening of soil contamination with heavy metals. The other four weak extradants are believed to provide a better assessment of bioavailable/mobile metals content in soils than 1 M HCl extradant. However, 0.1 M HCl mobilized all four metals irrespective of soil types, therefore, might be the best choice if only one extradant is to be used. The sequential extraction procedures showed 22 to 64% of total Cd was in the mobile fraction (sum of Fl to F3), while the corresponding values for Cu, Pb and Zn in this fractions were 2 to 23% suggesting higher mobility of Cd than other three metals. The single extraction procedures are simple and easy to perform and obtained results are comparable with sequential extraction procedure.  相似文献   

2.
Immobilization of Cd,Zn and Pb in sewage sludge using red mud   总被引:1,自引:1,他引:1  
Sewage sludge is an inevitable end by-product of sewage treatment. Land application provides a cost-effective alternative for sewage sludge disposal. However, sewage sludge contains heavy metals that may limit its application. In this work, red mud was employed for the immobilization of heavy metals in sewage sludge. The effect of red mud amendment on heavy metal immobilization was evaluated using Toxicity Characteristic Leaching Procedure (TCLP) method. The TCLP results showed that the immobilization efficiency of Cd, Zn and Pb was 100, 92, and 82%, respectively, when sewage sludge was mixed with 10% red mud. Tests carried out in leaching columns demonstrated that heavy metal concentrations in the leachate of 10% red mud amended sludge were lower than those of the unamended sludge. Moreover, red mud decreased plant available heavy metal (Cd, Zn and Pb) content from 18.1, 17.2 and 14.6% to 6.9, 11.4 and 7.6%, respectively. Sequential chemical extraction experiments showed that after sludge was amended with 10% red mud, exchangeable fraction was reduced and iron and manganese oxides fraction was increased. Red mud amendment can effectively immobilize Cd, Zn and Pb in sewage sludge before land application.  相似文献   

3.
《Applied Geochemistry》2001,16(11-12):1405-1411
Contamination of soils by potentially toxic elements (PTEs) (e.g. Zn, Cu, Ni, Cr, Pb, Cd) from amendments of sewage sludge is subject to strict controls within the European Community in relation to total permissible metal concentrations, soil properties and intended use. This paper highlights the need for ecotoxicological data for the assessment of PTE impacts in addition to geochemical data alone. The soil microflora plays an essential role in determining levels of soil fertility, being intimately associated with the biogeochemical cycling of essential plant nutrients and the turnover of organic carbon. The measurement of soil microbiological parameters can provide insight into the impact of PTEs upon soil fertility, where geochemical analysis alone can often be inadequate to assess contaminant effects on essential components of the soil ecosystem. Microbial investigations were conducted on soils sampled from a well-controlled field experiment previously amended with specific types and rates of sewage sludge. Key microbiological parameters measured included the activity of the dehydrogenase enzyme and the presence and number of effective nitrogen fixing cells of Rhizobium leguminosarum biovar trifolii capable of nodulating the host plant, white clover (Trifolium repens). Results were evaluated with respect to maximum permissible concentrations of PTEs in sludge amended soils, as stipulated under UK limit values and the European Directive 86/278/EEC. Important effects on the size of the Rhizobium population and dehydrogenase activity were apparent in soils samples in relation to the soil pH, sludge type, addition rates and the concentrations of PTE present.  相似文献   

4.
The chemical associations of Cd, Cu, Pb, and Zn in four mine soil samples from the Amizour-Bejaia Pb/Zn mine (Algeria) have been investigated by a five-step sequential extraction procedure. Although Cd preferentially binds to carbonates, Cu, Pb, and Zn are mainly associated with the organic and reducible fractions. Batch adsorption experiments with either mono- or multi-metallic solutions are described with the Freundlich isotherm model. Whatever the nature of the soil sample, the sorption behavior for each given metal except Pb is very similar, indicating that the binding sites at the soil surface are progressively occupied by the metal from the solution. On each soil sample, the decreasing order of sorption can be established as Pb >> Cu > Cd > Zn. When the four metals are simultaneously applied to each soil sample, their specific behavior is strongly affected by their interactions and/or competition for the available surface sites: we generally observed isotherm curves with a slight maximum before the plateau at higher solution concentration. Although Cu is only slightly affected by the other metals, in the case of Pb, Cd, and Zn, the sorbed amounts strongly decreased.  相似文献   

5.
Sewage sludge usually contains significant amount of Zinc (Zn) and is widely used in agricultural lands. A laboratory experiment was performed to determine Zn desorption characteristics in unamended and amended soils with sewage sludge. Ten calcareous soils were amended with 1 % (w/w) sewage sludge. Amended and unamended soils were incubated at field capacity at 25 ± 1 °C for 1 month. After incubation, the kinetics of Zn desorption in amended and unamended soils were determined by successive extraction with DTPA-TEA (diethylenetriaminepentaacetic acid-triethanolamine) in a period of 1–504 h at 25 ± 1 °C. The results of kinetics study showed that extracted Zn and desorption rate constants in the amended soils were significantly (p < 0.01) higher than in the unamended soils. The results showed that Zn desorption increased from 201 to 343 % in amended soil with respect to unamended soils. The amounts of desorbed Zn in the unamended soils ranged from 3.73 to 8.79 mg kg?1, while the amounts of desorbed Zn in amended soils ranged from 11.47 to 17.66 mg kg?1. Desorption kinetics of Zn in two soils conformed fairly well to first-order, parabolic diffusion and power function equations. The results of stepwise regression analysis indicated that calcium carbonate equivalent and clay could be used to estimate Zn desorption characteristics in DTPA-TEA solution in the amended and unamended calcareous soils. It can be concluded that sewage sludge applied to calcareous soils may enhance the source of Zn for the plants.  相似文献   

6.
To remediate Pb contaminated soils it is proposed that phosphorus can be amended to the soils to transform the Pb into poorly soluble Pb-phosphate mineral phases. However, remediation strategies must account for variable Pb speciation and site-specific factors. In this study soil mineralogy and Pb speciation in soils from P-amended field trials at sites within the Coeur d’Alene River Basin in Idaho, USA were investigated. The soils are contaminated from mining activities and are enriched with Fe and Mn. Selective extraction of the soils indicated that the Fe oxides are poorly crystalline. XRD of the soil clay size fractions identified quartz, muscovite, kaolinite, siderite, lepidocrocite, and chlorite minerals. Amendment with P fertilizer dissolved the siderite. No Pb–phosphate minerals were detected by XRD. Electron microprobe analysis showed direct correlations between Pb, Fe, and Mn in the unamended soils, and negative correlations between Pb and Si. Lead and Mn were strongly correlated. In the amended soils Fe and P were strongly correlated. Results indicate that the Pb is associated with poorly crystalline Fe and Mn oxides, and that added P is primarily associated with Fe oxide phases. Comparisons of pore water Pb concentrations with chloropyromorphite and plumbogummite solubility suggest that in the phosphate-amended soils the pore waters are undersaturated in these phases, whereas several of the control soil pore waters were oversaturated, indicating the added phosphate suppressed the Pb solubility. Results from this research provide insight into the geochemistry occurring in the P-remediated soils that will help in making management and remediation decisions.  相似文献   

7.
Electrodialytic removal of heavy metals from different harbour sediments was investigated. Electrodialytic remediation experiments in laboratory scale were made with calcareous and non-calcareous harbour sediments. Two different experimental set-ups were used for the study, one with stirring of the sediment slurry, the other without stirring. The removal of heavy metals was highest in the non-calcareous sediment, where 94% Cd, 91% Zn and 73% Cu were removed after 24 days. The highest removal obtained for the calcareous sediment was 81% Cd, 76% Zn, 75% Pb and 53% Cu after 21 days, with stirred sediment slurry. Electrodialytic experiments without stirring of calcareous sediment gave high removals (84% Zn, 58% Pb and 48% Cu), but there were problems with precipitations in the sediment, which limited the removal. The stirred experiments gave the highest removals of heavy metals and the voltage was the most stable in these experiments, and thus, the stirred set-up is the best choice for experimental set-up. The order in which the heavy metals were removed from the harbour sediments was Cd>Zn>Pb>Cu.  相似文献   

8.
Treated sewage sludge contains significant amount of phosphorus and is widely used in agriculture. Kinetics of P release in soils is a subject of importance in soil and environmental sciences. There are few studies about P release kinetics in treated sewage sludge amended soils. For this purpose, sludge was mixed with ten soils at a rate equivalent to 100 Mg sludge ha−1, and P desorption was determined by successive extraction using 0.01 M CaCl2 over a period of 65 days at 25 ± 1°C. Phosphorus release rate was rapid at first (until about first 360 h) and then became slower until equilibrium was approached. Average of P released within 360 h for the unamended and amended soils was about 65 and 73% of the total desorbed P, respectively. Zero-order, first-order, second-order, power function, simplified Elovich and parabolic diffusion law kinetics models were used to describe P release. First-order, Elovich, power function and parabolic diffusion models could well describe P release in the unamended and amended soils. Correlation coefficients between P release rate parameters and selected soil properties showed that in the control soils, calcium carbonate equivalent and Olsen-extractable P; and in the amended soils, calcium carbonate equivalent, cation exchange capacity, organic matter and Olsen-extractable P were significantly correlated with P release parameters. The results of this study showed that application of sewage sludge can change P release characteristics of soils and increase P in runoff.  相似文献   

9.
Simultaneous competitive adsorption behavior of Cd, Cu, Pb and Zn onto nine soils with a wide physical–chemical characteristics from Eastern China was measured in batch experiments to assess the mobility and retention of these metals in soils. In the competitive adsorption system, adsorption isotherms for these metals on the soils exhibited significant differences in shape and in the amount adsorbed. As the applied concentration increased, Cu and Pb adsorption increased, while Cd and Zn adsorption decreased. Competition among heavy metals is very strong in acid soils with lower capacity to adsorb metal cations. Distribution coefficients (K dmedium) for each metal and soil were calculated. The highest K dmedium value was found for Pb and followed by Cu. However, low K dmedium values were shown for Zn and Cd. On the basis of the K dmedium values, the selectivity sequence of the metal adsorption is Pb > Cu > Zn > Cd and Pb > Cu > Cd > Zn. The adsorption sequence of nine soils was deduced from the joint distribution coefficients (K dΣmedium). This indicated that acid soils with low pH value had lower adsorption capacity for heavy metals, resulting in much higher risk of heavy metal pollution. The sum of adsorbed heavy metals on the soils could well described using the Langmuir equation. The maximum adsorption capacity (Q m) of soils ranged from 32.57 to 90.09 mmol kg−1. Highly significant positive correlations were found between the K dΣmedium and Q m of the metals and pH value and cation exchange capacity (CEC) of soil, suggesting that soil pH and CEC were key factors controlling the solubility and mobility of the metals in soils.  相似文献   

10.
In Korea, soils adjacent to abandoned mines are commonly contaminated by heavy metals present in mine tailings. Further, the disposal of oyster shell waste by oyster farm industries has been associated with serious environmental problems. In this study, we attempted to remediate cadmium (Cd)- and lead (Pb)-contaminated soils typical of those commonly found adjacent to abandoned mines using oyster shell waste as a soil stabilizer. Natural oyster shell powder (NOSP) and calcined oyster shell powder (COSP) were applied as soil amendments to immobilize Cd and Pb. The primary components of NOSP and COSP are calcium carbonate (CaCO3) and calcium oxide (CaO), respectively. X-ray diffraction, X-ray fluorescence and scanning electron microscope analyses conducted in this study revealed that the calcination of NOSP at 770°C converted the less reactive CaCO3 to the more reactive CaO. The calcination process also decreased the sodium content in COSP, indicating that it was advantageous to use COSP as a liming material in agricultural soil. After 30 days of incubation, we found that the 0.1 N HCl-extractable Cd and Pb contents in soil decreased significantly as a result of an increase in the soil pH and the formation of metal hydroxides. COSP was more effective in immobilizing Cd and Pb in the contaminated soil than NOSP. Overall, the results of this study suggest that oyster shell waste can be recycled into an effective soil ameliorant.  相似文献   

11.
The exchange kinetics of Cd, Cu, Pb, and Zn in seven mining and smelting-contaminated soils and the other two anthropogenically contaminated soils was investigated by using multi-elementary stable isotopic exchange kinetic (SIEK) method, and the experimental results were successfully interpreted by modelling using a sum of pseudo first order kinetics equations. SIEK results show that in the studied soils the isotopic exchange of Cd is a relatively fast process, and the exchange almost reaches an apparent plateau after 3-d equilibration; whereas for Cu, Pb, and Zn, the exchange is more sluggish, suggesting that it is important to understand the time-dependent metal mobility for risk assessment and management of contaminated soils. In most of the soils, the total isotopically exchangeable pool is divided, for all the metals, into two distinct pools: a fast exchangeable pool (E1) with a kinetic rate constant k1 having values around 1 min−1 and a much slower exchangeable pool (E2) with k2 ranging from 0.0001 min−1 to 0.001 min−1. The distribution of the two exchangeable pools varies significantly among metals. The amount of isotopically exchangeable Cd related to the fast pool is dominant, accounting for on average 60% of total isotopically exchangeable pool in the soils; whereas this pool is smaller for Cu, Zn, and Pb. The sequence of average k1 values is Cd > Pb ≈ Zn > Cu, consistent with the reported sequence of stability constants of metal-humic substances (HS) complexes while the average k2 values follow the order: Cd > Pb > Cu > Zn, probably controlled by the slow desorption of metal ions associated with soil organic matter (SOM) fraction. Our results imply that further study on the exchange kinetics of metals on each individual sorption surface in soils, especially SOM, is critical to help understanding the overall exchange kinetics of heavy metals in whole soils.  相似文献   

12.
The competitive adsorption of trace elements is a key issue in assessing the mobility of trace elements in calcareous soils and can be affected by disposal of sewage sludge, municipal waste, and poultry manure. The effect of municipal sewage sludge, poultry manure, and municipal waste compost on the sorption of cadmium (Cd), copper (Cu), zinc (Zn), and nickel (Ni) in surface samples of three calcareous soils was studied. As the applied concentrations increased, Cu and Cd adsorption increased, while Zn and Ni adsorption decreased in all treatments. Based on the distribution coefficient (K d) values and proportion of increase or decrease in metal adsorption, the selectivity sequence in control and amended soils found was Cu ≫ Cd ≫ Ni > Zn and Cu ≫ Cd ≫ Zn > Ni, respectively. In general, among control and amended soils, control soils showed the highest K d for Cd, Cu, and Ni, while sludge, poultry manure, and composted waste-amended soils had lowest K d for Cd, Cu, and Ni, respectively. In the case of Zn, composted waste-amended and control soils had highest and lowest K d, respectively. The present experimental results indicated that the addition of organic amendments to these calcareous soils reduced the sorption of Cd, Cu, and Ni. Thus, the effects of preferential adsorption and organic matter should be considered in assessing the risk associated with applying sewage sludge, poultry manure, and composted material to calcareous soils.  相似文献   

13.
An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40–80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.  相似文献   

14.
We studied the effects of poultry manure and pistachio compost with and without phosphorus fertilizer on the kinetics of phosphorus desorption in two calcareous soils of Kerman and Koohbanan farms in the southeastern of Iran. For this purpose mono potassium phosphate, at rates of 0, and 100 parts per million of phosphorus, and air-dried manure, at rates of 0 and 4% were mixed with the soils. The soils were incubated at 24–25°C and near field capacity for 90 days in the greenhouse. Afterwards, the desorption of P was studied by the successive extraction with 0.5 M NaHCO3. The results of this research indicated that application of OM and fertilizer P combined increased P recovery in each of the extraction time, adding poultry manure and 100 mg phosphorus together to the soils, increased P desorption more than pistachio compost in the soils. The phosphorus desorption rate was initially rapid and then became slower until equilibrium was approached. Kinetic data were best described by power function and simple Elovich equations. Subsequent to these equations, parabolic diffusion equation was also well fitted the time-dependent P desorption data.  相似文献   

15.
Oil fields present a potential ecological risk to nearby farmland soil. Here we present a new method designed to evaluate the ability of winter wheat (Triticum aestivum) to contribute to the dissipation of polycyclic aromatic hydrocarbons (PAHs), which are priority pollutants in soils contaminated by oily sludge. The influence of different doses of oily sludge on the dissipation of PAHs was studied along with individual PAH profiles in soils after different periods of plant growth. Five soil samples were artificially contaminated with different percentages of oily sludge (0 %, 5 %, 10 %, 15 % and 20 %). Winter wheat grew in the oily sludge–amended soils for 265 days. PAH content in the soils was monitored over the course of the study. The rate of PAH dissipation is related to the properties of different PAHs, period of winter wheat growth, and oily sludge application dose. Analysis for treated soils indicates that the dissipation of PAHs increased significantly over the first 212 days, followed by minimal changes over the final 53 days of treatment. In contrast, PAH dissipation slowed with increasing oily sludge application. For each PAH, the experimental results showed a significant compound-dependent trend. Winter wheat in the present study significantly enhanced the dissipation of PAHs in oily sludge–contaminated soil.  相似文献   

16.
Recent studies demonstrated that Zn-phyllosilicate- and Zn-layered double hydroxide-type (Zn-LDH) precipitates may form in contaminated soils. However, the influence of soil properties and Zn content on the quantity and type of precipitate forming has not been studied in detail so far. In this work, we determined the speciation of Zn in six carbonate-rich surface soils (pH 6.2-7.5) contaminated by aqueous Zn in the runoff from galvanized power line towers (1322-30,090 mg/kg Zn). Based on 12 bulk and 23 micro-focused extended X-ray absorption fine structure (EXAFS) spectra, the number, type and proportion of Zn species were derived using principal component analysis, target testing, and linear combination fitting. Nearly pure Zn-rich phyllosilicate and Zn-LDH were identified at different locations within a single soil horizon, suggesting that the local availabilities of Al and Si controlled the type of precipitate forming. Hydrozincite was identified on the surfaces of limestone particles that were not in direct contact with the soil clay matrix. With increasing Zn loading of the soils, the percentage of precipitated Zn increased from ∼20% to ∼80%, while the precipitate type shifted from Zn-phyllosilicate and/or Zn-LDH at the lowest studied soil Zn contents over predominantly Zn-LDH at intermediate loadings to hydrozincite in extremely contaminated soils. These trends were in agreement with the solubility of Zn in equilibrium with these phases. Sequential extractions showed that large fractions of soil Zn (∼30-80%) as well as of synthetic Zn-kerolite, Zn-LDH, and hydrozincite spiked into uncontaminated soil were readily extracted by 1 M NH4NO3 followed by 1 M NH4-acetate at pH 6.0. Even though the formation of Zn-precipitates allows for the retention of Zn in excess to the adsorption capacity of calcareous soils, the long-term immobilization potential of these precipitates is limited.  相似文献   

17.
The adsorption of Cu, Pb, Zn, and Cd on goethite (αFeOOH) from NaNO3 solutions and from major ion seawater was compared to assess the effect of the major ions of seawater (Na, Mg, Ca, K, Cl, and SO4) on the adsorption behavior of the metals. Magnesium and sulphate are the principal seawater ions which enhance or inhibit adsorption relative to the inert system. Their effect, as determined from the site-binding model of Davis et al. (1978), was a combination of changing the electrostatic conditions at the interface and decreasing the available binding sites.The basic differences between the experimental system of major ion seawater and natural seawater were examined. It was concluded that: 1) although the experimental metal concentrations in major ion seawater were higher than those found in natural seawater, estimates of the binding energy of Cu, Zn, and Cd with αFeOOH for natural seawater concentrations could be made from the data, 2) Cu, Pb, Zn, and Cd showed little or no competition for surface sites on goethite, and 3) the presence of carbonate, phosphate, and silicate had little or no effect on the adsorption of Zn and Cd on goethite.  相似文献   

18.
19.
Terrestrial geochemistry of Cd,Bi, Tl,Pb, Zn and Rb   总被引:1,自引:0,他引:1  
About 2000 common magmatic, metamorphic and sedimentary rocks and rockforming minerals contained in 465 individual samples have been analyzed for 6 trace metals and potassium with high precision, mainly by combined distillation and AAS methods. Estimates of average abundances in the continental crust are: 98 ppb Cd. 82 ppb Bi. 490 ppb Tl, 14.8 ppm Pb, 77 ppm Zn and 98 ppm Rb (K/Rb: 223). These averages are close to the mean concentrations of the 6 elements in sedimentary and in low to medium grade metamorphic rocks. In relation to the upper mantle the earth's crust has very effectively accumulated Rb, Pb, Tl (and Bi). Cd and Zn are equally distributed between the upper and lower crust. Bi, Tl, Rb, Pb and K are accumulated in the upper relative to the lower continental crust by factors between 3.5 and 1.4. This is mainly due to higher concentrations in granites and lower abundances in granulites relative to gneisses and schists. The five metals form large ions with bulk coefficients less than one for the partition between metamorphic rocks and anatectic granitic melts. The major hosts of Rb, Tl, Pb and Bi in rocks are minerals with 8- to 12-coordinated sites such as mica, K-feldspar, plagioclase etc. (except for some preference of Bi for sphene and apatite). As examples of significant correlations those of Pb with Tl, K, Bi and Rb in mafic rocks and of Bi with K, Rb, Tl and Pb in sedimentary rocks can be reported. In granites and gneisses hydroxyl containing Fe2+-Mg-silicates are major host minerals for Zn and Cd. Except in some carbonate rocks Cd has no preference for Ca minerals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号