首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erosion in a watershed exhibits spatial and temporal variability, and its determination is fundamental to determining sediment yield which is a key to proper watershed management. In this study, we propose a relationship between the curve number (SCS 1956) and Sediment Yield Index (SYI) using cubic splines. The method is illustrated with a case study of one watershed of Narmada Basin located in Mandla district of Madhya Pradesh, India. Cubic splines are found to perform satisfactorily with Nash efficiency of 63.64%, absolute prediction error of 2.64%, integral square error of 1.22%, coefficient of correlation of 93.78% and degree of agreement of 0.99%. The relation between observed and computed SYI values is correlated with a coefficient of determination (R 2) of 0.87. Such a relationship can be used to determine SYI from the available CN value, which may be quite useful in field applications.  相似文献   

2.
Fine scale profiles of the sedimentary formation factor, F, were obtained from measurements of resistivity at millimetre intervals in marine sediments. These profiles demonstrated that rapid decreases in diffusivity occurred in the upper few centimeters of both compact intertidal sands and fine silty muds. In the compact sands, a 70% decrease in the formation factor was observed within 2 cm of the interface. Close correlations were found between the formation factor and sediment porosity for both sediment types. Profiles of 1F predicted from these correlations and porosity profiles were very similar to those obtained from measurements of resistivity. These correlations also suggested that φ?3 is a better approximation of the formation factor in fine muds than the Archie relation φ?2. In both sediments, the interfacial value of the diffusion coefficient was estimated to be between ~74 and ~87% of its value in free solution, a value much higher than is normally assumed.  相似文献   

3.
Assessment of soil loss through Sediment Yield Index (SYI) is important for watershed planning, prioritization, and development. In the absence of measured sediment data, SYI expressing the relative sediment yield from different basins work as a basis for grading another basin to adopt erosion control measures. An attempt was made to evaluate SYI in wider scale by using cost-effective tools like remote sensing and geographical information system (GIS). SYI was calculated for Madia subwatershed, which consists of 29 microwatersheds and located in Sagar District, Madhya Pradesh (M.P.) The IRS LISS III data and Shuttle Radar Topography Mission (SRTM) digital elevation models (DEM) of 90-m resolution were used to identify land use characteristics and geomorphometric analysis. Major land use was observed as agricultural land (24.7 %), water bodies (16.7 %), forest area (10.2 %), and settlement (21.3 %). In categorization, similar overall accuracy was observed for dense forest, barren land, settlement, and water bodies. The highest SYI with a value more than 20 was observed in microwatershed Mw6, Mw7, and Mw24, which comprises 33 % of the total watershed area. It gives the information about the watershed area that requires very high priority.  相似文献   

4.
Riverine sediment load, a reflection of basin erosion and sediment yield, is influenced by both climatic and human factors. Complex interaction between various factors within a basin dampens and counteracts the forces that drive sediment variations. The gross human impact index and the index estimation method have both been proposed to reflect the impacts of human activities on soil erosion and sediment yield. Sediment load and daily rainfall data from 1955 to 2010 in the upper Yangtze basin, and in the Wu, Jialing, Min and Jinsha subbasins, were collected to assess the human versus climatic impacts on sediment yield. From 1955 to 2010, the average annual runoff in the study area was 428.2 billion m3, and the average annual suspended sediment load was approximately 0.43 billion t. There was a critical point in 1984, 1985, 1991, 1993 and 1999 when the sediment load decreased in the Wu, Jialing, upper Yangtze, Min and Jinsha river, respectively. The annual regional rainfall erosivities in the upper Yangtze basin in most years ranged between 2,500 and 3,500 MJ mm hm?2 h?1 year?1 and fluctuated around 3,000 MJ mm hm?2 h?1 year?1 with a small coefficient of variation of 0.11. In the Jinsha subbasin, the index indicated that increasing rainfall erosivity could not account for the reduction in riverine sediment load and that anthropogenic erosion-control measures played a key role. The index values for the Min, Jialing and Wu subbasins ranged from 76 to 97 % and for the upper Yangtze basin is 95 %, demonstrating the joint effects of precipitation and human activities in all basins, with erosion-controlling measures playing a major role in sediment load reduction.  相似文献   

5.
Much interest has been generated in assessing the possible risks of contamination for humans and marine life resulting from the dumping of nuclear waste in Arctic Seas by the former Soviet Union. Models are being used to predict the transport of radionuclides released from the dumping grounds. A key parameter in these models is the partition coefficient representing the uptake potential of marine sediments and seawater for radioactive contaminants. Partition coefficients are dependent upon the independent variables of sediment concentration and the sediment/water radionuclide distribution coefficients. Modelers must use estimated average values for the independent variables because data for these variables are lacking for the Arctic environment. In this note, we illustrate the differences between assuming that partition coefficients can be computed solely from the average values of the independent variables vs. exact probability distributions, and illustrate the technique for one of the radioactive contaminants,137Cs. In general, errors in the sediment partition coefficient can be as high as 67% using average values; for137Cs. the error is about 37%.  相似文献   

6.
This study was undertaken to evaluate land use change impact and management scenarios on annual average surface runoff (SR) and sediment yield (SY) using the GeoWEPP tool in the Lighvanchai watershed (located in northwestern Iran). Following a sensitivity analysis, the WEPP model was calibrated (2005–2007) and validated (2008–2010) against monthly observed SY and SR. The coefficient of determination (R 2), Nash–Sutcliffe efficiency (NSE), mean bias error (MBE), and root-mean-square error (RMSE) were applied to quantitatively evaluate the WEPP model. The results indicate a satisfactory model performance with R 2 > 0.80 and NSE > 0.60. Therefore, the model for current land use (scenario 1) was run for a 30-year time period (1982–2011). The annual average of SR and sediment load were predicted as 93,584 m3/year and 4340 ton/year, respectively. To reduce the annual average surface runoff and sediment yield at the watershed scale, the second scenario (alfalfa cultivation with suitable tillage) and the third scenario (grassland development) as two management scenarios of land use changes were defined by identifying the critical hillslopes. The rate of SR and sediment load in the second scenario were 42,096 m3/year and 429 ton/year, respectively. For the third scenario, the model predictions were 30,239 m3/year and 226 ton/year, respectively. Compared to the first scenario, the reduction rates in annual average of sediment load were about 90 and 94%, respectively. Moreover, for the second and third management scenarios, the reduction rates in annual average of SR were about 55 and 67%, respectively.  相似文献   

7.
Based on data from two runoff plots and ten stations in hilly loess region Dalihe drainage basin ranging in area from 0.0006 to 3983 km2 on the Loess Plateau, the relationship between mean annual specific sediment yield (Y s) and drainage area (A) is studied, which is different from those for many other drainage areas of the world, neither at the scale of whole basin nor at local scale on the Loess Plateau. With increasing drainage area, the mean annual specific sediment yield experiences two peak values: the first peak value appears at 0.00408 km2 in area corresponding to the whole slope surface, and the second peak value appears at 96.1 km2 in area. The non-linear variation in the Y sA can be explained as follows: the first peak value can be explained by the abrupt increase in slope gradient and flow shear stress resulting in highly increased sediment concentration and specific sediment yield. And the second peak value can be explained by the combined influence of flow shear stress and drainage density, represented by dimensionless variable Ω.  相似文献   

8.
Erosion potential method (EPM) and Modified Pacific Southwest Interagency Committee (MPSIAC) are two empirical models for estimating soil erosion and sediment delivery. These models use a relatively simple formulation, but they are still applied in various areas with different environmental conditions. However, evaluation of their efficiency is challenging. Accordingly, the main purpose of this study is investigating the performance of EPM and MPSIAC in estimating soil erosion and sediment yield using sediment rating curve (SRC) methods. Talar watershed in Iran was selected as the study area and suspended sediment load (SSL) of two Shirgah–Talar and Valikbon stations were used to assess the output of the models. Remote sensing and geographic information system were utilized in implementing the models. The estimated sediment yield values by the models were evaluated using the results of least square error regression and quantile regression (QR) SRC methods. Then, sediment yield values were obtained from 20-year discharge data (1992–2011). Despite the high uncertainty of QR results, the annual sediment delivery values of the models were achieved in an acceptable range. The most likely (with a probability of 0.5) average annual SSL values were between 713?×?103 and 840?×?103 ton for Shirgah–Talar station. Those values for Valikbon station were between 3142?×?101 and 3702?×?101. Moreover, the estimated average sediment yield in Shirgah–Talar station using MPSIAC and EPM were 591392 and 514054 ton/year, respectively. Those values for Valikbon station were 51881 and 27449 ton/year. Then, the results proved the better performance of MPSIAC in estimating SSL in the study area compared with EPM.  相似文献   

9.
A 6.500-meter reach of western Chesapeake Bay shoreline (lower Mayo Peninsula) lost about 1.1×106 cubic meters of sediment (equivalent to 170 cubic meters lost per meter of shoreline) between 1846 and 1932, when the first aerial photographs show the shoreline already substantially protected by a system of groins and intermittent bulkheading. These structures have eliminated the fastland as a source of erodable material, and have starved the supply of sand for littoral drift, thus limiting the extent of the beaches to the remaining groin fields. Volumes of sediment involved in these impacts are small in the overall sediment budget. Bulkheads produce no deficit in the budget since scouring of the beaches on their seaward sides makes up for the decreased erosion of protected fastland. Groins trap little of the potential littoral drift (computed to be about 104 cubic meters per meter of shoreline per year). The sand supply in the remaining beaches is nearly equivalent to the annual loss of sediment from the entire shoreline system due to the long-term rate of erosion of the shoreline and nearshore between 1846 and 1932.  相似文献   

10.
In the present work on-going research is discussed whose primary goal is to test some statistical methods to estimate the average yearly area-specific sediment yield (SSY). Using geomorphological and climatic parameters various multiple regression formulae have been set up based on SSY observed data from 16 catchments of Sicily. Three distinct techniques were adopted to select the parameters to be used in the equations: simple correlation, stepwise regression analysis and a supervised geomorphological–statistical correlation. The comparison of the results showed the effectiveness of the stepwise analysis, which led to a regression equation with a coefficient of determination (r 2) of 0.87. Nevertheless, even this methodology showed some elements of uncertainty that have caused, in some cases, appreciable differences between observed and predicted values (mean percentage error equal to 26%). These differences are likely either due to the hydraulic regime of most of Sicilian watercourses (typical of semi-arid regions) or to hidden factors (e.g., topography, human impact and concentrated erosion), which can greatly affect the processes of sediment production and transport. The study has pointed out the need to take into account a larger number of observations and to perform the analysis of relations between suitable variables and SSY at a more detailed time resolution.  相似文献   

11.
In this paper, analytical methods, artificial neural network (ANN) and multivariate adaptive regression splines (MARS) techniques were utilised to estimate the discharge capacity of compound open channels (COC). To this end, related datasets were collected from literature. The results showed that the divided channel method with a coefficient of determination (R 2) value of 0.76 and root mean square error (RMSE) value of 0.162 has the best performance, among the various analytical methods tested. The performance of applied soft computing models with R 2=0.97 and RMSE = 0.03 was found to be more accurate than analytical approaches. Comparison of MARS with the ANN model, in terms of developed discrepancy ratio (DDR) index, showed that the accuracy of MARS model was better than that of MLP model. Reviewing the structure of the derived MARS model showed that the longitudinal slope of the channel (S), relative flow depth (H r ) and relative area (A r ) have a high impact on modelling and forecasting the discharge capacity of COCs.  相似文献   

12.
The sedimentation rates and diffusive sediment mixing coefficients at several Lake Ontario locations have been derived from measurements of unsupported210Pb profiles in sediment cores. The values of mixing coefficients obtained in the present study are significantly lower than those obtained previously through an analysis of porosity profiles. The present estimates, however, are consistent with the rather well-preserved pollutant profiles at some of these locations. It is observed that the more realistic value of the mixing coefficient, obtained by inclusion of the sedimentation rate parameter, follows the sign opposite to that for the constant obtained by regression analysis of the porosity data. Further work is required to delineate this apparent relationship between two important physical characteristics of deposited sediments.Analysis of available suspended sediment data shows that Niagara River supplies about 1.8 million tonnes of sediment annually to Lake Ontario. This value is significantly lower than that (4.6 mt/yr) used previously in constructing sediment and pollutant budgets for Lake Ontario. From the presently derived sedimentation rate and suspended solid discharge estimates, an average value of 441 km2 (range 220-938 km2) is obtained for the minimum area of Lake Ontario over which the Niagara River-supplied fine sediment is deposited.  相似文献   

13.
Understanding the sediment source is very significant for erosion control in small watersheds. On the Loess Plateau of China, over 110 thousands of check dams were constructed in the past 60 years, which played an important role in controlling soil loss and also kept much information of erosion and sediment yield in the past. The objective of this investigation is to identify the sediment source by the 137Cs tracing method in a small watershed in the Loess Hilly Region of China. Fifty-five sampling sites were selected from the watershed (44 from the inter-gully area, 7 from the gully sides and 4 from the reference sites), and a total of 114 soil samples were collected from three sediment profile cores at the Sidizui watershed check dam constructed in 1959. Based on the erosion rate from the inter-gully area by the 137Cs models, and the total erosion amount deposited in the check dam since 1963, the relative contributions of sediment from the inter-gully area and gully area were estimated during 1963–2013. By comparing the difference of 137Cs activities of surface soils from the check dam (deposited in the 2011–2013 flood events), the inter-gully and gully areas, the relative contributions of sediment derived from the two source areas to the flood sediment during recent years (2011–2013) were estimated by a simple mixing model. Results showed that the erosion rate from the inter-gully area was about 3054 t/km2 a during 1963–2013, and the relative contributions of sediment from the inter-gully area and gully area were estimated to be 27 and 73%, respectively. The sediment from the inter-gully area was about 20% of the total sediment yield amount to the 2011–2013 floods, and from the gully area it was about 80%. The relative contribution of sediment from the inter-gully or gully area was not a fixed value in the watershed. Both of the inter-gully erosion and gully erosion should be simultaneously controlled, and more erosion control measures on the gully area should be taken in the subsequent watershed management in order to reduce the erosion amount in this region.  相似文献   

14.
The objective of this study was to assess the lake sediment budget of land use changes using the Universal Soil Loss Equation (USLE), sediment delivery ratio (SDR), and trap efficiency (TE). The geographic information system was combined with the USLE to estimate the soil erosion of the Lake Asan watershed. Spatial data for each of the USLE factors were obtained from the land use, soil, and 1/25,000 scale digital contour maps. Landsat-5 TM images were selected for analyzing soil erosion changes due to land use changes. The sediment yield to Lake Asan was estimated using the SDR and TE. The estimated sediment budget was compared with observed data from the Lake Asan watershed between 1974 and 2003. The total estimated annual mean sediment budgets from Lake Asan in 1986, 1992, and 2000 were 0.267, 0.301, and 0.339 × 106 ton, respectively, with an average of 0.302 × 106 ton. The average measured sediment budget was 3.15 × 106 ton year?1. The average estimated value shows reasonable agreement with the observed sediment balance. The average estimated and measured sediment budgets contain uncertainties due to both the methods and the approach used by the observers. The simulated results indicated that soil erosion in the Lake Asan watershed increased at a rate of approximately 2 % per year from 1986 to 2000 due to land use change. This study may be useful for managers to identify reservoir rehabilitation management methods for stable irrigation water supply.  相似文献   

15.
Land use change quantified for the last 50 years within and near a fast growing agricultural land in Neka River Basin, using geographic information systems. Land cover and land use change was projected for the next decade using topography, geology, land use maps and remote sensing data of the study area. The study explored the relationships between agricultural land growth and landscape changes. The land use changes assessed among the different land cover classes. It is important to mention that conducting of the present study a very severe land cover changes taken place as the result of agricultural land development. These changes in land cover led to the forest degradation of the study area. Relationship between land-use changes and agricultural growth offered a more robust prediction of soil erosion in Neka watershed. This study aims to find the relationships between land use pattern, erosion and the sediment yield in the study area. The land use coefficient has applied in the model of erosion potential method to forecast the effect of the land type to reduce the erosion. The results of this study indicated that the total sediment yield of the study area has notably decreased to 89.24 % after an appropriate land use/cover alteration. The estimated special erosion for the southern Neka Basin is about 144465.1 m3/km2 where after management policy is predicted 15542.9 m3/km2/y. Therefore, the total difference for the study area has estimated about 128922.2 m3/km2/y.  相似文献   

16.
The negligence of the cumulative deposit volume over years may lead to uselessness of a pre-established and efficient reservoir management method. In this objective, this paper tries to introduce a simple approach to forecast annually the volume lost from the reservoir capacity. The suggested approach employs the modified universal soil loss equation (MUSLE) and the Dendy and Bolton (J Soil Water Conserv 31:264–266, 1976) methods, in addition to the sediment consolidation process. This process permits to follow the evolution of sediment deposit volume throughout the years. For application, we selected the reservoir of Bin El Ouidane (Morocco), for which we have tried to fit a linear regression between sediment yield and observed settling volumes. The optimization process was assured by the algorithm genetic and the OptQuest methods. The results show a high significant (R2?=?0.9513, RMSE?=?8.5428, and p value?=?0.0009) linear regression between cumulative sediment yield volume and accumulated measured lost volume from the reservoir of Bin El Ouidane. The use of a linear relation is justified by the fact that all nonlinear regressions in long term are composed of multiple linear regressions in short term. Nevertheless, this method can become more efficient, and confirmed for real forecasting applications by performing modifications essentially related to in situ measures of different variables. Finally, and considering its simplicity regarding input data and application, the proposed approach converges to efficient results. Therefore, and after validation in other reservoirs, this method can be used to forecast annual reservoir settling at short term.  相似文献   

17.
Debris flow hazard posts a big threat to the main downstream of Jinsha River where a number of huge power stations are under construction. The characteristics of spatial distribution of debris flows and the effect of their sediment yield on the reservoir areas have been studied. An automatic recognition module was developed to extract the geometry of debris flow channels from remote sensing data. Spatial distribution pattern of debris flows is obtained through combining the inventory database and multi-source remote sensing investigation. The distribution of debris flows has high dependency on the various factors including geology, geomorphology, climate, hydrology and human economic activities. The debris flows distributed in the study area are characterized by group and pair distribution, uncompleted deposition fans, highly controlled by faults and tectonic activities, spatial variation between left bank and right bank, and different subdivisions. The sediment yield caused by debris flow activates is evaluated using multi-year observation data from numerous observation stations. Quantitative studies have been performed on the relationship between the sediment yield and the debris flow area. A relatively fix ratio of 2.6 (×104 t/km2) has been found in different subdivisions of main downstream area which shows that the source of sediment discharged into Jinsha River primarily come from debris flow activities. Another ratio is evaluated to represent the transforming possibility of debris flow materials to bed-sediment load and suspended-sediment load in the river. Based on these findings, the potential effect of sediment yield caused by debris flows on reservoir areas is discussed. The zonation map shows the different effect of debris flow sediment on different dam site area which shows a good agreement with variation of debris flow spatial distribution.  相似文献   

18.
In Jakarta, climate change has been detected through rising air temperatures, increased intensity of rainfall in the wet season, and sea level rise. The coupling of such changes with local anthropogenic driven modifications in the environmental setting could contribute to an increased probability of flooding, due to increase in both extreme river discharge and sedimentation (as a result of erosion in the watersheds above Jakarta and as indicated by sediment yield in the downstream area). In order to respond to the observed and projected changes in river discharge and sediment yield, and their secondary impacts, adaptation strategies are required. A possible adaptation strategy is through policy making in the field of spatial planning. For example, in Indonesia, presidential regulation number 54 year 2008 (Peraturan Presiden Nomor 54 Tahun 2008—Perpres 54/2008) was issued as a reference for the implementation of water and soil conservation. This paper assesses the impact of climate and land cover change on river discharge and sediment yield, as well as the effects of Perpres 54/2008 on that river discharge and sediment yield. The spatial water balance model Spatial Tools for River Basins and Environmental and Analysis of Management Option was used for the runoff computations, whilst the Spatial Decision Assistance of Watershed Sedimentation model was used to simulate erosion, Sediment Delivery Ratio, and sediment yield. The computation period is from January 1901 to December 2005, at the scale of the following watersheds: Ciujung, Cisadane, Ciliwung, and Citarum. During the twentieth century, computed average discharge in the downstream area (near Jakarta) increased between 2.5 and 35 m3/s/month, and sediment yield increased between 1 × 103 and 42 × 103 tons/year. These changes were caused by changes in both land cover and climate, with the former playing a stronger role. Based on a computation under a theoretical full implementation of the spatial plan proposed by Perpres 54/2008, river discharge would decrease by up to 5 % in the Ciliwung watershed and 26 % in the Cisadane watershed. The implementation of Perpres 54/2008 could also decrease the sediment yield, by up to 61 and 22 % in the Ciliwung and Cisadane watersheds, respectively. These findings show that the implementation of the spatial plan of Perpres 54/2008 could significantly improve watershed response to runoff and erosion. This study may serve as a tool for assessing the reduction in climate change impacts and evaluating the role of spatial planning for adaptation strategies.  相似文献   

19.
20.
Soil erosion due to surface water is a standout among the serious threat land degradation problem and an hazard environmental destruction. The first stage for every kind of soil conservation planning is recognition of soil erosion status. In this research, the usability of two new techniques remote sensing and geographical information system was assessed to estimate the average annual specific sediments production and the intensity erosion map at two sub-basins of DEZ watershed, southwest of Lorestan Province, Iran, namely Absorkh and Keshvar sub-basins with 19,920 ha, using Modified Pacific Southwest Inter-Agency Committee (MPSIAC) soil erosion model. At the stage of imagery data processing of IRS-P6 satellite, the result showed that an overall accuracy and kappa coefficient were 90.3% and 0.901, respectively, which were considered acceptable or good for imagery data. According to our investigation, the study area can be categorized into three level of severity of erosion: moderate, high, and very high erosion zones. The amount of specific sediments and soil erosion predicted by MPSIAC model was 1374.656 and 2396.574 m3 km?2 year?1, respectively. The areas situated at the center and south parts of the watershed were subjected to significant erosion because of the geology formation and ground cover, while the area at the north parts was relatively less eroded due to intensive land cover. Based on effective of nine factors, the driving factors from high to low impact included: Topography > Land use > Upland erosion > Channel erosion > Climate > Ground cover > Soil > Runoff > Surface geology. The measured sediment yield of the watershed in the hydrometric station (Keshvar station) was approximately 2223.178 m3 km?2 year?1 and comparison of the amount of total sediment yield predicted by model with the measured sediment yield indicated that the MPSIAC model 38% underestimated the observed value of the watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号