首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic behaviour of bridge piers under seismic load is studied here in the context of random vibration. The earthquake excitation is modelled as white noise filtered by the Clough–Penzien filter in cascade with modulation accounting for intensity non-stationarity. The bridge pier modelled as an elastically supported cantilever beam witha lumped mass at the top. An analytical solution is presented for the response statistics, which may be used to develop probabilistic seismic response spectra for design. It is found that the first two modes of the pier approach to rigid-body motion when the stiffness of the elastic support decreases. Seismic responses increase with the top mass, resultingin significantly high displacement and shear but negligible moment at the top, and higher shear and moment at thebase. Lower stiffness of the elastic support increases the pier top displacement and moment responses, but may increase or reduce shear responses. The probabilistic spectrum of the relative displacement between the bridge superstructure and the pier top may depend on the two systems’ relative modal properties. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
This paper investigates the potential tensile loads and buckling effects on rubber-steel laminated bearings on bridges. These isolation bearings are typically used to support the deck on the piers and the abutments and reduce the effects of seismic loads and thermal effects on bridges. When positive means of fixing of the bearings to the deck and substructures are provided using bolts, the isolators are exposed to the possibility of tensile loads that may not meet the code limits. The uplift potential is increased when the bearings are placed eccentrically with respect to the pier axis such as in multi-span simply supported bridge decks. This particular isolator configuration may also result in excessive compressive loads, leading to bearing buckling or in the attainment of other unfavourable limit states for the bearings. In this paper, an extended computer-aided study is conducted on typical isolated bridge systems with multi-span simply-supported deck spans, showing that elastomeric bearings might undergo tensile stresses or exhibit buckling effects under certain design situations. It is shown that these unfavourable conditions can be avoided with the rational design of the bearing properties and in particular of the shape factor, which is the geometrical parameter controlling the axial bearing stiffness and capacity for a given shear stiffness. Alternatively, the unfavourable conditions could be reduced by reducing the flexural stiffness of the continuity slab.  相似文献   

3.
4.
Pseudo‐dynamic tests on a large‐scale model of an existing six‐pier bridge were performed at the ELSA laboratory using the substructuring technique. Two physical pier models were constructed and tested in the laboratory, while the deck, the abutments and the remaining four piers were numerically modeled on‐line. These tests on a large‐scale model of an existing bridge are the first to have been performed considering non‐linear behavior for the modeled substructure. Asynchronous input motion, generated for the specific bridge site, was used for the abutments and the pier bases. Three earthquake tests with increasing intensities were carried out, aimed at the assessment of the seismic vulnerability of a typical European motorway bridge designed prior to the modern generation of seismic codes. The experimental results confirm the poor seismic behavior of the bridge, evidenced by irregular distribution of damage, limited deformation capacity, tension shift effects and undesirable failure locations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Displacement limits and performance displacement profiles (PDPs) for the direct displacement‐based assessment of existing bridges are proposed. The PDPs are defined as the bridge inelastic deformed shapes associated with the attainment of selected damage states in some critical elements of the bridge. In the paper, displacement limits are provided for piers, abutments, joints, bearing devices and shear keys. Moreover, different approaches for the definition of the PDP are examined, including adaptive pushover analysis, effective modal analysis, and rational analysis of simplified bridge models. In the paper, the key aspects and modeling assumptions of the proposed direct displacement‐based assessment procedure are presented first. This is followed by some examples of application to typical Italian highway bridge configurations, differing in pier layout, deck type, and pier‐deck connections. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Xia  Xiushen  Wu  Suiwen  Shi  Jun  Jia  Junfeng  Chen  Xingchong  Ma  Huajun 《地震工程与工程振动(英文版)》2020,19(4):1005-1015

In this study, sacrificial components were incorporated into self-centering railway bridge piers to improve the lateral stiffness. The seismic response of this new detail was investigated. First, the method to compute the initial uplift moment of the self-centering pier is given. In addition, shaking table tests were conducted on a free-rocking pier without sacrificial components, which was used to validate a two-spring numerical model. Good agreement was obtained between the numerical results and experimental data. Furthermore, the validated model was employed to investigate the influence of sacrificial components on the seismic response of rocking piers. For this purpose, two models were developed, with and without sacrificial components. Nonlinear response history analysis was then performed on both models under three historical motions. The results showed that compared to the one without sacrificial components, the rocking pier with sacrificial components has comparable displacement at the top of the pier, and maximum uplift moment at high amplitude motion. Therefore, incorporating sacrificial components into the rocking pier can increase the lateral stiffness at service load and low amplitude frequent earthquakes but can produce comparable response at high seismic excitation. These results provide support for performance-based seismic design of self-centering rocking piers.

  相似文献   

8.
Shear keys are used in the bridge abutments and piers to provide transverse restraints for bridge superstructures. Owing to the relatively small dimensions compared to the main bridge components (girders, piers, abutments, piles), shear keys are normally regarded as secondary component of a bridge structure, and their influences on bridge seismic responses are normally neglected. In reality, shear keys are designed to restrain the lateral displacements of bridge girders, which will affect the transverse response of the bridge deck, thus influence the overall structural responses. To study the influences of shear keys on bridge responses to seismic ground excitations, this paper performs numerical simulations of the seismic responses of a two-span simply-supported bridge model without or with shear keys in the abutments and the central pier. A detailed 3D finite element (FE) model is developed by using the explicit FE code LS-DYNA. The bridge components including bridge girders, piers, abutments, bearings, shear keys and reinforcement bars are included in the model. The non-linear material behaviour including the strain rate effects of concrete and steel rebar are considered. The seismic responses of bridge structures without and with shear keys subjected to bi-axial spatially varying horizontal ground motions are calculated and compared. The failure mode and damage mechanism of shear keys are discussed in detail. Numerical results show that shear keys restrain transverse movements of bridge decks, which influence the torsional–lateral responses of the decks under bi-axial spatially varying ground excitations; neglecting shear keys in bridge response analysis may lead to inaccurate predictions of seismic responses of bridge structures.  相似文献   

9.
This paper examines the eigenvalues of multi‐span seismically isolated bridges in which the transverse displacement of the deck at the end abutments is restricted. With this constraint the deck is fully isolated along the longitudinal direction, whereas along the transverse direction the deck is a simple‐supported beam at the end abutments which enjoys concentrated restoring forces from the isolation bearings at the center piers. For moderate long bridges, the first natural period of the bridge is the first longitudinal period, while the first transverse period is the second period, given that the flexural rigidity of the deck along the transverse direction shortens the isolation period offered by the bearings in that direction. This paper shows that for isolated bridges longer than a certain critical length, the first transverse period becomes longer than the first longitudinal period despite the presence of the flexural rigidity of the deck. This critical length depends on whether the bridge is isolated on elastomeric bearings or on spherical sliding bearings. This result is also predicted with established commercially available numerical codes only when several additional nodes are added along the beam elements which are modeling the deck in‐between the bridge piers. On the other hand, this result cannot be captured with the limiting idealization of a beam on continuous distributed springs (beam on Wrinkler foundation)—a finding that has practical significance in design and system identification studies. Finally, the paper shows that the normalized transverse eigenperiods of any finite‐span deck are self‐similar solutions that can be represented by a single master curve and are independent of the longitudinal isolation period or on whether the deck is supported on elastomeric or spherical sliding bearings. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The seismic response of rocking frames that consist of a rigid beam freely supported on rigid freestanding rectangular piers has received recent attention in the literature. Past studies have investigated the special case where, upon planar rocking motion, the beam maintains contact with the piers at their extreme edges. However, in many real scenarios, the beam‐to‐pier contact lies closer to the center of the pier, affecting the overall stability of the system. This paper investigates the seismic response of rocking frames under the more general case which allows the contact edge to reside anywhere in‐between the center of the pier and its extreme edge. The study introduces a rocking block model that is dynamically equivalent to a rocking frame with vertically symmetric piers of any geometry. The impact of top eccentricity (ie, the distance of the contact edge from the pier's vertical axis of symmetry) on the seismic response of rocking frames is investigated under pulse excitations and earthquake records. It is concluded that the stability of a top‐heavy rocking frame is highly influenced by the top eccentricity. For instance, a rocking frame with contacts at the extreme edges of the piers can be more seismically stable than a solitary block that is identical to one of the frame's piers, while a rocking frame with contacts closer to the centers of the piers can be less stable. The concept of critical eccentricity is introduced, beyond which the coefficient of restitution contributes to a greater reduction in the response of a frame than of a solitary pier.  相似文献   

11.
In the context of developing a real‐time seismic damage assessment technique, this paper proposes a simplified model that accounts for abutment stoppers, focusing on the transverse direction. Detailed 3D finite element models of 4 bridges of the Attiki Odos motorway are developed and used as benchmarks to assess its efficiency. The selected bridges vary in length, pier typologies, clearances, and pier‐deck connections. The simplified model entails a SDOF system of a pier, with assemblies of gap elements, lateral and rotational springs, and dashpots (top and bottom), representing the deck, the bearings, the abutment stoppers, and the foundation. The effect of stoppers is initially studied, focusing on the response of the abutment‐embankment system. To shed more light on the role of abutment stoppers, a parametric study is conducted, considering a wide range of clearances. Subsequently, the effect of variabilities in span length and pier height is examined. The simplified method is extended to nonideally symmetric systems and verified against the 3D benchmarks. Finally, the model is modified to account for multicolumn piers. The extended simplified model offers a reasonable prediction of the seismic damage state, reducing significantly the computational cost, and allowing detailed parametric studies. The latter are used to develop nonlinear regression model equations correlating a selected damage index with statistically significant intensity measures. Such equations offer a viable alternative for network‐wide seismic damage assessment as part of a real‐time emergency response framework. A pilot implementation is presented, illustrating the applicability of the proposed methodology.  相似文献   

12.
以美国西部地区某斜交公路连续刚构桥为研究对象,研究其不等高墩易损性差异以及斜交角的改变对桥墩地震易损性的影响。考虑桥梁结构参数和地震动的不确定性,选取100条地震动,沿纵桥向输入,生成"结构-地震动"样本库,以地震动峰值加速度(PGA)为强度指标(IM),利用OpenSees软件对结构进行非线性时程分析得到桥墩动力响应,而后以桥墩曲率延性比衡量桥梁破坏状态,在确定桥墩损伤指标的基础上,采用可靠度理论得到各桥墩的地震易损性曲线,判断桥墩的损伤模式、损伤特点。在此基础上,改变桥梁斜交角度进行易损性分析,得到斜交角变化对桥墩地震易损性的影响。研究表明:该桥最矮墩发生损伤的概率大于其他桥墩,桥墩最先进入塑性的是墩顶和墩底区域;不同斜交角对桥墩的地震响应影响显著,各墩损伤破坏排序与斜交桥结构构造特点有关,同一排架墩的两侧墩柱易损性呈现与角度变化趋势相反的排列,损伤越严重,趋势越明显;对于此不等高的斜交刚构桥,最矮墩为其抗震薄弱环节,斜交角越大,越应该关注钝角处矮墩的损伤情况,并提高其设计标准,在进行斜交刚构桥抗震设计中应予以重视。  相似文献   

13.
Seismic pounding between adjacent frames in multiple-frame bridges and girder ends in multi-span simply supported bridges has been commonly observed in several recent earthquakes. The consequences of pounding include damage to piers, abutments, shear keys, bearings and restrainers, and possible collapse of deck spans. This paper investigates pounding in bridges from an analytical perspective. A simplified nonlinear model of a multiple-frame bridge is developed including the effects of inelastic frame action and nonlinear hinge behavior, to study the seismic response to longitudinal ground motion. Pounding is implemented using the contact force-based Kelvin model, as well as the momentum-based stereomechanical approach, Parameter studies are conducted to determine the effects of frame period ratio, column hysteretic behavior, energy dissipation during impact and near source ground motions on the pounding response of the bridge. The results indicate that pounding is most critical for highly out-of-phase frames and is not significant for frame period ratios greater than 0.7. Impact models without energy dissipation overestimate the displacement and acceleration amplifications due to impact, especially for elastic behavior of the frames. Representation of stiffness degradation in bridge columns is essential in capturing the accurate response of pounding frames subjected to far field ground motion. Finally, it is shown that strength degradation and pounding can result in significant damage to the stiffer frames of the bridge when subjected to large acceleration pulses from near field ground motion records.  相似文献   

14.
Seismic pounding between adjacent frames in multiple-frame bridges and girder ends in multi-span simply supported bridges has been commonly observed in several recent earthquakes. The consequences of pounding include damage to piers, abutments, shear keys, bearings and restrainers, and possible collapse of deck spans. This paper investigates pounding in bridges from an analytical perspective. A simplified nonlinear model of a multiple-frame bridge is developed including the effects of inelastic frame action and nonlinear hinge behavior, to study the seismic response to longitudinal ground motion. Pounding is implemented using the contact force-based Kelvin model, as well as the momentum-based stereomechanical approach. Parameter studies are conducted to determine the effects of frame period ratio, column hysteretic behavior, energy dissipation during impact and near source ground motions on the pounding response of the bridge. The results indicate that pounding is most critical for highly out-of-phase frames and is not significant for frame period ratios greater than 0.7. Impact models without energy dissipation overestimate the displacement and acceleration amplifications due to impact, especially for elastic behavior of the frames. Representation of stiffness degradation in bridge columns is cssential in capturing the accurate response of pounding frames subjected to far field ground motion. Finally, it is shown that strength degradation and pounding can result in significant damage to the stiffer frames of the bridge when subjected to large acceleration pulses from near field ground motion records.  相似文献   

15.
汶川大地震曲线梁桥震害及破坏机理分析   总被引:4,自引:0,他引:4  
以汶川大地震中严重破坏的回澜立交桥为例,基于数值模拟手段并结合现场震害调查,分析了回澜立交桥的地震破坏机理。数值分析表明,地震时设有支座的最矮的1号桥墩支座发生滑移破坏,以致刚度较大(次矮)的2号刚构桥墩承受很大的地震惯性力,2号墩首先发生弯曲屈服,此后随延性发展因抗剪能力不足最终发生剪切破坏直至倒塌损毁,呈现典型的弯剪破坏特征。现场震害调查发现,回澜立交桥震害集中于抗弯刚度较大的刚构墩上,而其余桥墩震害相对较轻,主要表现为混凝土保护层的脱落、混凝土开裂以及墩顶支座的滑移破坏等。数值分析结果与震害调查呈现出较好的一致性。  相似文献   

16.
The biaxial response of two bridge piers is experimentally investigated. A post‐tensioned precast bridge pier with external replaceable mild‐steel dissipaters is tested under biaxial loading. The performance of the post‐tensioned bridge pier is compared with a conventionally reinforced monolithic bridge pier. The experimental biaxial response is then compared with previous uniaxial experimental testing of identical bridge piers to understand the influence of biaxial loading, specifically concerning post‐tensioned rocking sections. A 3‐dimensional moment–curvature and moment–rotation analysis program is created to generate the monotonic section response of a conventional and post‐tensioned bridge pier. After comparing the accuracy of the section analysis program to the experimental testing of the monolithic pier, the program is validated against the experimental testing of the post‐tensioned bridge pier. This section analysis program is then used in the calibration of a macro‐model to capture the entire cyclic response of the post‐tensioned bridge pier. The macro‐model adopts multiple linear‐elastic compression‐only springs at the rocking interface, combined with non‐linear inelastic springs for each of the mild‐steel dissipaters and returns encouraging results at both local and global levels. The paper concludes with a number of biaxial moment‐interaction design charts for monolithic and post‐tensioned bridge piers as a function of mechanical and geometric section properties. The design charts define the biaxial yield surface at nominal yield and at the design section capacity defined by one of three material limit states. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
针对铁路少筋混凝土重力式桥墩的延性不足和抗震耗能能力较差的问题,本文提出了一种兼顾改善桥墩延性与强度的抗震措施,即在墩身底部设置局部纵向无粘结钢筋,其余墩身部分的纵向钢筋保持不变。共设计了4个桥墩模型,通过拟静力试验研究了配筋率和粘结方式对少筋混凝土重力式桥墩抗震性能的影响。结果表明:无粘结模型桥墩的破坏形式为弯曲破坏。与完全粘结的模型桥墩相比,未粘结模型桥墩的滞回曲线更加饱满,桥墩的延性性能和耗能能力均得到了显著提高,且采用无粘结方式对于低配筋率模型桥墩的延性及累积耗能的提高更加明显。配筋率对模型桥墩的刚度退化速率影响较大,且高配筋率的无粘结模型桥墩的刚度退化比低配筋率明显。  相似文献   

18.
Horizontal curved bridges are very common at intersections and at the changing angle of bridge alignment. Almost in every previous earthquake report, it can be seen that the columns of a curved segment experience torsional damage, and the curved decks are unseated from the abutment support. The main reason behind that phenomenon is the in‐plane deck rotation which results because of the complex dynamic coupling between two longitudinal directional vibrations. The curved decks are susceptible to deck rotation because in a curved segment, the centre of mass and the centre of stiffness generally lie outside the bridge deck and are not located at the same point. The pounding with the abutment often increases the rotational tendency of the deck. In this paper, a classical mechanics‐based approach is adopted to analytically estimate the deck rotation potential of curved bridge considering the deck‐abutment pounding interaction. The deck‐abutment pounding is modelled using non‐smooth techniques considering the Newton's impact law in the normal and Coulomb's friction in the tangential direction. Within the scope of this paper, a parametric study is performed to get the ideal combination of the column and bent arrangement and the gap distance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
本文以一座三跨总长60 m的整体桥为案例桥,分别试设计了同跨径的半整体桥、延伸桥面板桥和常规连续梁桥。通过Midas/Civil软件建立四种桥型的有限元模型,并对其进行了E1和E2反应谱分析和时程分析,对比了四种桥型的结构反应峰值(墩顶位移、桥墩及桩基剪力与弯矩、台底位移、桥台桩基剪力与弯矩)。计算结果表明:当桥梁存在15°的斜交角,整体桥、半整体桥在地震动沿平行于桥台长边方向及其垂直方向输入时更不利,而延伸桥面板桥和常规连续梁桥在地震动沿顺桥向和横桥向输入时更不利。四种桥型在地震作用下:整体桥抗震性能最优异,但其台底位移、桥台桩基的剪力和弯矩最大;半整体桥台底位移、桥台桩基的剪力和弯矩最小,其墩顶位移、桥墩及桩基的剪力和弯矩仅比整体桥大;延伸桥面板桥和常规连续梁桥的墩-梁相对位移远大于整体桥和半整体桥,不适用于地震基本烈度高的区域。  相似文献   

20.
为了合理计算山区桥梁支座刚度,针对桥墩高度不相同的特点,考虑上部结构对桥墩顶部的转动约束作用,提出在横桥向可将墩顶视为自由约束,而在纵桥向将墩顶视为定向约束。分别按照地震作用下各墩底剪力和弯矩相等的原则,推导桥梁支座纵、横桥向的刚度设计公式,并给出各桥墩支座的设计方法。为验证方法的正确性,以墩底剪力相等的原则为例,利用OpenSees建立一座墩高不等的5跨连续梁桥模型,并依支座刚度取值不同分三种工况:工况一各桥墩支座刚度相同;工况二按墩顶自由计算各支座的纵、横桥向刚度;工况三按墩顶定向约束计算各支座的纵、横桥向刚度。分别对三种工况下的桥梁结构输入三条地震动记录进行时程分析,考察各桥墩的底部剪力。分析结果表明:工况一各桥墩纵、横桥向的底部剪力均不相同;工况二各桥墩横桥向的底部剪力相同而纵桥向的底部剪力不同;工况三各桥墩纵桥向的底部剪力相同而横桥向的底部剪力不同。上述结果表明在桥梁支座设计时,横桥向桥墩的抗推刚度应按墩顶自由计算,而纵桥向桥墩的抗推刚度应按墩顶为定向约束计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号