首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The majority of the world's mangrove forests occur on mostly mineral sediments of fluvial origin. Two perspectives exist on the biogeomorphic development of these forests, i.e. that mangroves are opportunistic, with forest development primarily driven by physical processes, or alternatively that biophysical feedbacks strongly influence sedimentation and resulting geomorphology. On the Firth of Thames coast, New Zealand, we evaluate these two possible scenarios for sediment accumulation and forest development using high‐resolution sedimentary records and a detailed chronology of mangrove‐forest (Avicennia marina) development since the 1950s. Cores were collected along a shore‐normal transect of known elevation relative to mean sea level (MSL). Activities for lead‐210 (210Pb), caesium‐137 (137Cs) and beryllium‐7 (7Be), and sediment properties were analysed, with 210Pb sediment accumulation rates (SARs), compensated for deep subsidence (~8 mm yr?1) used as a proxy for elevation gain. At least four phases of forest development since the 1950s are recognized. An old‐growth forest developed by the late‐1970s with more recent seaward forest expansion thereafter. Excess 210Pb profiles from the old‐growth forest exhibit relatively low SARs near the top (7–12 mm yr?1) and bottom (10–22 mm yr?1) of cores, separated by an interval of higher SARs (33–100 mm yr?1). A general trend of increasing SAR over time characterizes the recent forest. Biogeomorphic evolution of the system is more complex than simple mudflat accretion/progradation and mangrove‐forest expansion. Surface‐elevation gain in the old‐growth forest displays an asymptotic trajectory, with a secondary depocentre developing on the seaward mudflat from the mid‐1970s. Two‐ to ten‐fold increases in 210Pb SARs are unambiguously large and occurred years to decades before seedling recruitment, demonstrating that mangroves do not measurably enhance sedimentation over annual to decadal timescales. This suggests that mangrove‐forest development is largely dependent on physical processes, with forests occupying mudflats once they reach a suitable elevation in the intertidal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A nitrate sensor has been set up to measure every 10 min the nitrate signal in a stream draining a small agricultural catchment dominated by fertilized crops during a 2‐year study period (2006–2008) in the south‐west of France. An in situ sampling protocol using automatic sampler to monitor flood events have been used to assume a point‐to‐point calibration of the sensor values. The nitrate concentration exhibits nonsystematic concentration and dilution effects during flood events. We demonstrate that the calibrated nitrate sensor signal gathered from the outlet is considered to be a continuous signal using the Nyquist–Shannon sampling theorem. The objectives of this study are to quantify the errors generated by a typical infrequent sampling protocol and to design appropriate sampling strategy according to the sampling objectives. Nitrate concentration signal and flow data are numerically sampled to simulate common sampling frequencies. The total fluxes calculated from the simulated samples are compared with the reference value computed on the continuous signal. Uncertainties are increasing as sampling intervals increase; the method that is not using continuous discharge to compute nitrate fluxes bring larger uncertainty. The dispersion and bias computed for each sampling interval are used to evaluate the uncertainty during each hydrological period. High underestimation is made during flood periods when high‐concentration period is overlooked. On the contrary, high sampling frequencies (from 3 h to 1 day) lead to a systematic overestimation (bias around 3%): highest concentrations are overweighted by the interpolation of the concentration in such case. The in situ sampling protocol generates less than 1% of load estimation error and sample highest concentration peaks. We consider useful such newly emerging field technologies to assess short‐term variations of water quality parameters, to minimize the number of samples to be analysed and to assess the quality state of the stream at any time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Fluvial flood events have substantial impacts on humans, both socially and economically, as well as on ecosystems (e.g., hydroecology and pollutant transport). Concurrent with climate change, the seasonality of flooding in cold environments is expected to shift from a snowmelt‐dominated to a rainfall‐dominated flow regime. This would have profound impacts on water management strategies, that is, flood risk mitigation, drinking water supply, and hydro power. In addition, cold climate hydrological systems exhibit complex interactions with catchment properties and large‐scale climate fluctuations making the manifestation of changes difficult to detect and predict. Understanding a possible change in flood seasonality and defining related key drivers therefore is essential to mitigate risk and to keep management strategies viable under a changing climate. This study explores changes in flood seasonality across near‐natural catchments in Scandinavia using circular statistics and trend tests. Results indicate strong seasonality in flooding for snowmelt‐dominated catchments with a single peak occurring in spring and early summer (March through June), whereas flood peaks are more equally distributed throughout the year for catchments located close to the Atlantic coast and in the south of the study area. Flood seasonality has changed over the past century seen as decreasing trends in summer maximum daily flows and increasing winter and spring maximum daily flows with 5–35% of the catchments showing significant changes at the 5% significance level. Seasonal mean daily flows corroborate those findings with higher percentages (5–60%) of the catchments showing statistically significant changes. Alterations in annual flood occurrence also point towards a shift in flow regime from snowmelt‐dominated to rainfall‐dominated with consistent changes towards earlier timing of the flood peak (significant for 25% of the catchments). Regionally consistent patterns suggest a first‐order climate control as well as a local second‐order catchment control, which causes inter‐seasonal variability in the streamflow response.  相似文献   

4.
Application of Schmidt‐hammer exposure‐age dating (SHD) to landforms has substantially increased in recent years. The original mechanical Schmidt hammer records R‐(rebound) values. Although the newly introduced electronic Schmidt hammer (SilverSchmidt) facilitates greatly improved data processing, it measures surface hardness differently, recording Q‐(velocity) values that are not a priori interconvertible with R‐values. This study is the first to compare the performance of both instruments in the context of field‐based exposure‐age dating with a particular focus on the interconvertibility of R‐values and Q‐values. The study was conducted on glacially polished pyroxene‐granulite gneiss, Jotunheimen, southern Norway. Results indicate that mean Q‐values are consistently 8–10 units higher than mean R‐values over the range of values normally encountered in the application of SHD to glacial and periglacial landforms. A convenient conversion factor of ±10 units may, therefore, be appropriate for all but the softest rock types close to the technical resolution of the instruments. The electronic Schmidt hammer should therefore be regarded as a useful complement and potential replacement for the mechanical Schmidt hammer. Conversion of published R‐values data to Q‐values requires, however, careful control and documentation of instrument calibration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Many numerical landform evolution models assume that soil erosion by flowing water is either purely detachment‐limited (i.e. erosion rate is related to the shear stress, power, or velocity of the flow) or purely transport‐limited (i.e. erosion/deposition rate is related to the divergence of shear stress, power, or velocity). This paper reviews available data on the relative importance of detachment‐limited versus transport‐limited erosion by flowing water on soil‐mantled hillslopes and low‐order valleys. Field measurements indicate that fluvial and slope‐wash modification of soil‐mantled landscapes is best represented by a combination of transport‐limited and detachment‐limited conditions with the relative importance of each approximately equal to the ratio of sand and rock fragments to silt and clay in the eroding soil. Available data also indicate that detachment/entrainment thresholds are highly variable in space and time in many landscapes, with local threshold values dependent on vegetation cover, rock‐fragment armoring, surface roughness, soil texture and cohesion. This heterogeneity is significant for determining the form of the fluvial/slope‐wash erosion or transport law because spatial and/or temporal variations in detachment/entrainment thresholds can effectively increase the nonlinearity of the relationship between sediment transport and stream power. Results from landform evolution modeling also suggest that, aside from the presence of distributary channel networks and autogenic cut‐and‐fill cycles in non‐steady‐state transport‐limited landscapes, it is difficult to infer the relative importance of transport‐limited versus detachment‐limited conditions using topography alone. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Time nonlocal transport models such as the time fractional advection‐dispersion equation (t‐fADE) were proposed to capture well‐documented non‐Fickian dynamics for conservative solutes transport in heterogeneous media, with the underlying assumption that the time nonlocality (which means that the current concentration change is affected by previous concentration load) embedded in the physical models can release the effective dispersion coefficient from scale dependency. This assumption, however, has never been systematically examined using real data. This study fills this historical knowledge gap by capturing non‐Fickian transport (likely due to solute retention) documented in the literature (Huang et al. 1995) and observed in our laboratory from small to intermediate spatial scale using the promising, tempered t‐fADE model. Fitting exercises show that the effective dispersion coefficient in the t‐fADE, although differing subtly from the dispersion coefficient in the standard advection‐dispersion equation, increases nonlinearly with the travel distance (varying from 0.5 to 12 m) for both heterogeneous and macroscopically homogeneous sand columns. Further analysis reveals that, while solute retention in relatively immobile zones can be efficiently captured by the time nonlocal parameters in the t‐fADE, the motion‐independent solute movement in the mobile zone is affected by the spatial evolution of local velocities in the host medium, resulting in a scale‐dependent dispersion coefficient. The same result may be found for the other standard time nonlocal transport models that separate solute retention and jumps (i.e., displacement). Therefore, the t‐fADE with a constant dispersion coefficient cannot capture scale‐dependent dispersion in saturated porous media, challenging the application for stochastic hydrogeology methods in quantifying real‐world, preasymptotic transport. Hence improvements on time nonlocal models using, for example, the novel subordination approach are necessary to incorporate the spatial evolution of local velocities without adding cumbersome parameters.  相似文献   

7.
The seasonally‐dry climate of Northern California imposes significant water stress on ecosystems and water resources during the dry summer months. Frequently during summer, the only water inputs occur as non‐rainfall water, in the form of fog and dew. However, due to spatially heterogeneous fog interaction within a watershed, estimating fog water fluxes to understand watershed‐scale hydrologic effects remains challenging. In this study, we characterized the role of coastal fog, a dominant feature of Northern Californian coastal ecosystems, in a San Francisco Peninsula watershed. To monitor fog occurrence, intensity, and spatial extent, we focused on the mechanisms through which fog can affect the water balance: throughfall following canopy interception of fog, soil moisture, streamflow, and meteorological variables. A stratified sampling design was used to capture the watershed's spatial heterogeneities in relation to fog events. We developed a novel spatial averaging scheme to upscale local observations of throughfall inputs and evapotranspiration suppression and make watershed‐scale estimates of fog water fluxes. Inputs from fog water throughfall (10–30 mm/year) and fog suppression of evapotranspiration (125 mm/year) reduced dry‐season water deficits by 25% at watershed scales. Evapotranspiration suppression was much more important for this reduction in water deficit than were direct inputs of fog water. The new upscaling scheme was analyzed to explore the sensitivity of its results to the methodology (data type and interpolation method) employed. This evaluation suggests that our combination of sensors and remote sensing allows an improved incorporation of spatially‐averaged fog fluxes into the water balance than traditional interpolation approaches.  相似文献   

8.
Plastic debris is a worldwide threat to marine environments and Portugal is not immune to it. Though never quantified, items of all sizes can be found in the Portuguese coastline; therefore the objective of this work is the identification of main size classes in stranded plastic debris. Beaches sediment was sampled and in the laboratory plastic items were sorted in 11 classes from <1 to >10 mm, counted and weighted. Plastic size ranged from 50 μm to 20 cm and microplastics (<5 mm) were the majority (72%). Most plastic fits in the smaller size classes, due to expected high residence time in the sea enhancing degradation processes, which increase surface exposure and potentially persistent organic pollutants (POP) adsorption. These results point out the important contribution of microplastics to marine debris pollution, its risks, and the need to set a higher focus on this size class.  相似文献   

9.
Formic acid is the major contributor to acid rain in some regions but its sources are not fully understood. We investigated the aqueous‐phase reactions of HCHO (aq) and OH . radicals at enlarged rainwater pH values (2.49–5.89) in Guiyang, China from May 2006 to April 2007. Our results show that there were no significant correlation between the [HCOOH]t/[HCHO] (aq) and the rainwater pH. The ratio did not appear to vary consistently as a function of rainwater pH as predicted by theoretical model. In addition, we saw no clear evidence that oxidation of HCHO (aq) would produce significant HCOOH (aq) which indicates this reaction may be only a minor contribution to the budget of HCOOH (g) in atmosphere. Further investigation is strongly suggested to be carried out in field cloud water, fog water, or rainwater because the ratios would be diverged from equilibrium value as a result of other chemical or physical processes.  相似文献   

10.
An investigation has been conducted to identify the key parameters that are likely to scale laboratory sediment deposits to the field scale. Two types of bed formation were examined: one where sediment is manually placed and screeded and the second where sediment is fed into a running flume. This later technique created deposits through sequential cycles of sediment transport and deposition. Detailed bed surface topography measurements have been made over a screeded bed and three fed beds. In addition, bulk subsurface porosity and hydraulic conductivity have been measured. By comparing the four beds, results revealed that certain physical properties of the screeded bed were clearly different from those of the fed beds. The screeded bed had a random organization of grains on both the surface and within the subsurface. The fed beds exhibited greater surface and subsurface organization and complexity, and had a number of properties that closely resembled those found for water‐worked gravel beds. The surfaces were water‐worked and armoured and there was preferential particle orientation and direction of imbrication in the subsurface. This suggested that fed beds are able to simulate, in a simplified manner, both the surface and subsurface properties of established gravel‐bed river deposits. The near‐bed flow properties were also compared. It revealed that the use of a screeded bed will typically cause an underestimation in the degree of temporal variability in the flow. Furthermore, time‐averaged streamwise velocities were found to be randomly organized over the screeded bed but were organized into long streamwise flow structures over the fed beds. It clearly showed that caution should be taken when comparing velocity measurements over screeded beds with water‐worked beds, and that the formation of fed beds offers an improved way of investigating intragravel flow and sediment–water interface exchange processes in gravel‐bed rivers at a laboratory scale. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The assertion that the application of the USLE to predicting soil losses within a catchment or watershed is not sound because the USLE provides an estimate of erosion that would be measured if the entire area were divided up into 22·1 m long plots, and the output from them all added together, is incorrect. The slope length factor was derived from data obtained using a wide range of plot lengths and included the 22·1 m length simply to force it to take on a value of 1·0 when the slope length is 22·1 m. The 22·1 m length has no physical significance but the USLE slope length factor has a physical basis when applied to planar and convex hillslopes. The use of sediment delivery ratios when the USLE is applied to concave areas attempts to correct for applying the USLE beyond its design criteria. It fails because, in using the sediment delivery ratios in the prediction sediment delivery, it is incorrectly assumed that sediment delivery ratios de not vary with the amount of sediment entering a zone of deposition.  相似文献   

12.
The performance of hydrological models is affected by uncertainty related to observed climatological and discharge data. Although the latter has been widely investigated, the effects on hydrological models from different starting times of the day have received little interest. In this study, observational data from one tropical basin were used to investigate the effects on a typical bucket-type hydrological model, the HBV, when the definitions of the climatological and discharge days are changed. An optimization procedure based on a genetic algorithm was used to assess the effects on model performance. Nash-Sutcliffe efficiencies varied considerably between day definitions, with the largest dependence on the climatological-day definition. The variation was likely caused by how storm water was assigned to one or two daily rainfall values depending on the definition of the climatological day. Hydrological models are unlikely to predict high flows accurately if rainfall intensities are reduced because of the day definition.  相似文献   

13.
Paul H. Whitfield 《水文研究》2013,27(18):2691-2698
The centre of volume (COV), or the hydrograph centroid, is a measure of streamflow timing that is a widely used indicator of the effects of warmer temperatures on the hydrology of snowmelt streams. The COV was originally developed as a measure of land‐use effects, and its response is affected by several factors other than temperature, particularly total run‐off. A ‘toy’ model is used to demonstrate some of these effects, and these effects are also shown for streamflow data from Canada's Reference Hydrologic Basin Network. These deficiencies indicate that COV is neither specific nor robust as an indicator. Although these effects might be overcome by streamflow decomposition, the use of COV as an indicator of snowmelt timing should be avoided. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Full‐waveform inversion is an appealing technique for time‐lapse imaging, especially when prior model information is included into the inversion workflow. Once the baseline reconstruction is achieved, several strategies can be used to assess the physical parameter changes, such as parallel difference (two separate inversions of baseline and monitor data sets), sequential difference (inversion of the monitor data set starting from the recovered baseline model) and double‐difference (inversion of the difference data starting from the recovered baseline model) strategies. Using synthetic Marmousi data sets, we investigate which strategy should be adopted to obtain more robust and more accurate time‐lapse velocity changes in noise‐free and noisy environments. This synthetic application demonstrates that the double‐difference strategy provides the more robust time‐lapse result. In addition, we propose a target‐oriented time‐lapse imaging using regularized full‐waveform inversion including a prior model and model weighting, if the prior information exists on the location of expected variations. This scheme applies strong prior model constraints outside of the expected areas of time‐lapse changes and relatively less prior constraints in the time‐lapse target zones. In application of this process to the Marmousi model data set, the local resolution analysis performed with spike tests shows that the target‐oriented inversion prevents the occurrence of artefacts outside the target areas, which could contaminate and compromise the reconstruction of the effective time‐lapse changes, especially when using the sequential difference strategy. In a strongly noisy case, the target‐oriented prior model weighting ensures the same behaviour for both time‐lapse strategies, the double‐difference and the sequential difference strategies and leads to a more robust reconstruction of the weak time‐lapse changes. The double‐difference strategy can deliver more accurate time‐lapse variation since it can focus to invert the difference data. However, the double‐difference strategy requires a preprocessing step on data sets such as time‐lapse binning to have a similar source/receiver location between two surveys, while the sequential difference needs less this requirement. If we have prior information about the area of changes, the target‐oriented sequential difference strategy can be an alternative and can provide the same robust result as the double‐difference strategy.  相似文献   

15.
The effect of vertical turbulent mixing on the dynamics of persistent organic pollutants has long been overlooked and its role is still hardly understood. Here we present the first comprehensive analysis of the role of turbulent diffusion on the distribution of those contaminants and its interplay with sinking fluxes. To this end, a 1D dynamic coupled hydrodynamic-contaminant model has been developed and applied to a Mediterranean continental shelf environment. The hydrodynamic sub-model is adapted from COHERENS, the contaminant sub-model is an improvement from the BIODEP model and considers the contaminant in 3 phases: dissolved-colloidal-particulate. The simulation highlights the role of turbulence in determining the POP distribution and variability in the water column. In short, turbulent flux of contaminants strengthens the upward diffusion of sediment entrained contaminants and determines the extent to which inputs from the atmosphere mix into the water column. It acts in parallel with degradation and sinking fluxes, the combined effect yielding a surface enriched - depth depleted - benthic layer enriched region distribution, which presents similarities to reported experimental measures.  相似文献   

16.
Biogeomorphological processes are an important component of dynamic intertidal systems. On rocky shores, the direct contribution of microorganisms, plants and animals to weathering and erosion is well known. There is also increasing evidence that organisms can alter rock breakdown indirectly, by moderating temperature and moisture regimes at the rock–air interface. These influences have been purported to represent mechanisms of bioprotection, by buffering microclimatic fluctuations associated with weathering processes such as wetting and drying and salt crystallization. However, virtually nothing has been done to test whether microclimatic buffering translates to differences in actual rock breakdown rates. Here we report a preliminary laboratory experiment to assess how an artificial canopy (chosen to represent seaweed) affects mechanical rock breakdown. Using a simplified and accelerated thermal regime based on field data from a rocky shore platform in southern England, UK, we find that breakdown (mineral debris release) of mudstone covered with a canopy is reduced by as much as 79% relative to bare rock after around 100 thermal cycles. Reduction in rock surface hardness (measured using an Equotip device) was also greater for bare rock (17%) compared to covered rock (10%) over this period. Measurements of salt crystal formation indicate that the mechanism driving these differences was a reduction in the frequency of crystallization events, via moisture retention and shading of the rock surface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Gullies are conceptualized in the literature as essentially fluvial forms with dimensional boundaries arbitrarily defined between rills and river channels. This notion is incompatible with the existing variability of form and process, as mass movements frequently exert a fundamental control on gully initiation and expansion, to the point of features outgrowing their original contributing area. The inability of a conceptual framework to incorporate existing observations inevitably constrains methodologies and research results. In this commentary, several examples of published results are contrasted with the prevailing assumption of an essentially fluvial nature, with the purpose of encouraging discussion on the need for a revised conceptual framework in gully erosion research. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract In northern Kazakhstan the WNW striking Kokchetav megamélange includes different crustal sequences with high‐pressure/ultrahigh‐pressure (HP/UHP) remnants of their 540–520 Ma subduction metamorphism. Two domains separated by the north‐east trending Chaglinka fault are distinguished. The western domain exhibits NE–SW structures within a single Kumdy–Kol megaunit of diamond‐bearing UHP metasediments and high‐temperature (HT) eclogites. The eastern domain consists of the composite Kulet megaunit with the Kulet UHP unit (coesite‐bearing metasediments, whiteschists and eclogites), the Enbek–Berlyk medium‐pressure (MP) unit (kyanite‐bearing, high‐alumina rocks with interleaved coronitic metagabbro), and ortho‐ and paragneisses with eclogites and amphibolites included. All eclogites in the eastern domain are of the relatively low temperature (LT) type. Sillimanite is common and appears after kyanite in the sheared MP unit. A regional and moderately ESE plunging linear fabric coincides with the fold‐axis of the foliation poles from the eastern domain. Whether this also reflects a regional top to the WNW transport, as inferred from the dextral strike‐slip on steeply to SSW dipping foliation, needs further study. Top to the WNW shear is shown by weakly inclined low pressure (LP) cordierite rocks that flank the eastern domain in the south. Some new 39Ar/40Ar mica cooling ages (519, 521 Ma) from the Kulet UHP micaschists reflect the same early stage evolutionary event as was previously shown for the Kumdy–Kol UHP rocks (515, 517 Ma) in the west. Similar 39Ar/40Ar ages (500, 517 Ma) are recorded by micas and amphibole that outline a top to NNW shear fabric in the non‐subducted Proterozoic basement, north of the megamélange. A 447 Ma overprint of the MP sequences is considered to reflect the strike‐slip deformation with sillimanite and the reworking of an early kyanite‐bearing tectonite. Biotites from the LP cordierite rocks yielded approximately 400 Ma 39Ar/40Ar ages. In case they reflect the WNW shear deformation, the latter is considered to be associated with a regional granite magmatism (420–460 Ma) extending south of the eastern domain. In their present different structural domains the Kulet and Kumdy–Kol UHP units display a similar early stage event. Subsequent LP deformation, which is likely to be associated with regional granite magmatism (420–460 Ma), is assumed to have obliterated any common or uniform early exhumation structure for the whole megamélange. The north‐east structured Kumdy–Kol domain is assumed to have preserved the most information about the early stage exhumation. This domain is at an angle to the regional WNW strike of the megamélange.  相似文献   

19.
The variations of the Earth’s geometry (ETP) pre-dominate climate changes such as monsoon on the Earth[1], serving as its external forcing. The loess/ paleosol sequence in Central China provides a good record of terrestrial deposition to study the evolution of the east Asian monsoon[2―4]. However, the deep sea deposition, due to its high resolution dating and abun-dant climate proxies, should be able to provide more climatic information in the geological time, such as the forcing mechanis…  相似文献   

20.
In temporary ponds, reestablishment of zooplankton communities depends on recruitment from the egg bank, the arrival of dispersers from within the region, and on successful establishment of newly arrived species following interaction with local abiotic and biotic factors. When the ponds dry up, zooplankton species may survive as dormant eggs, and since not all eggs hatch in the next season, eggs will accumulate in the sediment over time, representing an archive of the pond's historical biodiversity.To study the effect of “restoration age” (the time since a water body was restored), we studied groups of ponds that were restored in different years (1998, 2003 and 2007). The restoration process involved extensive dredging of sediments which were used to bury the ponds in the 1960s. Our expectation was that the oldest ponds would have the richest zooplankton community, as they have been accumulating biodiversity over a longer time period. We took weekly quantitative samples of zooplankton during four consecutive weeks after flooding to compare taxon richness and zooplankton community composition between ponds of different restoration age during an early stage of zooplankton community re-establishment.Taxon richness was high and similar to regional levels in all the ponds under investigation, suggesting restoration success and unlimited dispersal. Although cumulative richness at the end of the period was not significantly different between ponds, we observed temporal changes within the study period and certain age-related trends in relation to differences in zooplankton composition. These results suggest a difference in the succession of zooplankton communities depending on restoration age (which could be due to historical or local factors) and that this effect becomes evident from the beginning of the pond hydroperiod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号