首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 143 毫秒
1.
Shaking tables are suitable facilities to assess and validate the behavior of structures and nonstructural components under actual seismic actions. Because of the size and weight limitations of the tables, some approaches, like testing reduced‐scale models or testing only the main structural components, are deemed necessary. In these cases, to comply with modeling requirements, large amount of extra‐mass should be added to the specimen. Therefore, to avoid the risk of lateral instability of models, to maintain the weight of test specimens within table payload, while maintaining the amount of mass needed, an external device for transmitting the inertia forces to the models using an improved sliding system is proposed. Although friction devices for similar purposes have been developed using sliding bearings (Teflon pads or rollers), the measured coefficient of dynamic friction and the energy dissipated by friction have been very high. In order to drastically diminish the damping added to the specimen response when a friction device is used, the improved device employs a linear motion guide system (LMGS) with very low friction. Shaking table tests to collapse of reinforced concrete walls were used to evaluate the effectiveness of the proposed device. Measured dynamic friction coefficients, spectral accelerations and hysteresis loops show that friction developed in the LMGS did not add any significant amount of damping into the specimen response. Thus, the proposed device is a reliable and suitable mass‐carrying sliding system (MCSS) for dynamic testing using medium‐size shaking tables. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
子结构地震模拟振动台混合试验原理与实现   总被引:2,自引:0,他引:2  
为了解决地震模拟振动台承载能力及台面尺寸对大型结构试验的限制,扩展振动台的功能,本文提出了子结构地震模拟振动台混合试验方法、试验过程及实时数值积分方法,并给出了试验子结构边界条件的两种模拟形式.通过一个简单框架结构的地震模拟振动台试验和子结构混合加载试验验证了该方法的可行性,并指出了该试验方法的主要技术问题.混合试验方法通过子结构技术和振动台试验相结合,解决了目前的地震模拟振动台试验和拟动力试验在设备规模和加载速度上的局限性.  相似文献   

3.
Real‐time substructuring is a method of dynamically testing a structure without experimentally testing a physical model of the entire system. Instead the structure can be split into two linked parts, the region of particular interest, which is tested experimentally, and the remainder which is tested numerically. A transfer system, such as a hydraulic actuator or a shaking table, is used to impose the displacements at the interface between the two parts on the experimental substructure. The corresponding force imposed by the substructure on the transfer system is fed back to the numerical model. Control of the transfer system is critical to the accuracy of the substructuring process. A study of two controllers used in conjunction with the University of Bristol shaking table is presented here. A proof‐of‐concept one degree‐of‐freedom mass–spring–damper system is substructured such that a portion of the mass forms the experimental substructure and the remainder of the mass plus the spring and the damper is modelled numerically. Firstly a linear controller is designed and tested. Following this an adaptive substructuring strategy is considered, based on the minimal control synthesis algorithm. The deleterious effect of oil‐column resonance common to shaking tables is examined and reduced through the use of filters. The controlled response of the experimental specimen is compared for the two control strategies. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Conventional shake tables employ linear controllers such as proportional‐integral‐derivative or loop shaping to regulate the movement. However, it is difficult to tune a linear controller to achieve accurate and robust tracking of different reference signals under payloads. The challenges are mainly due to the nonlinearity in hydraulic actuator dynamics and specimen behavior. Moreover, tracking a high‐frequency reference signal using a linear controller tends to cause actuator saturation and instability. In this paper, a hierarchical control strategy is proposed to develop a high‐performance shake table. A unidirectional shake table is constructed at the University of British Columbia to implement and evaluate the proposed control framework, which consists of a high‐level controller and one or multiple low‐level controller(s). The high‐level controller utilizes the sliding mode control (SMC) technique to provide robustness to compensate for model nonlinearity and uncertainties experienced in experimental tests. The performance of the proposed controller is compared with a state‐of‐the‐art loop‐shaping displacement‐based controller. The experimental results show that the proposed hierarchical shake table control system with SMC can provide superior displacement, velocity and acceleration tracking performance and improved robustness against modeling uncertainty and nonlinearities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Experimental techniques for testing dynamically substructured systems are currently receiving attention in a wide range of structural, aerospace and automotive engineering environments. Dynamic substructuring enables full‐size, critical components to be physically tested within a laboratory (as physical substructures), while the remaining parts are simulated in real‐time (as numerical substructures). High quality control is required to achieve synchronization of variables at the substructuring interfaces and to compensate for additional actuator system(s) dynamics, nonlinearities, uncertainties and time‐varying parameters within the physical substructures. This paper presents the substructuring approach and associated controller designs for performance testing of an aseismic, base‐isolation system, which is comprised of roller‐pendulum isolators and controllable, nonlinear magnetorheological dampers. Roller‐pendulum isolators are typically mounted between the protected structure and its foundation and have a fundamental period of oscillation far‐removed from the predominant periods of any earthquake. Such semi‐active damper systems can ensure safety and performance requirements, whereas the implementation of purely active systems can be problematic in this respect. A linear inverse dynamics compensation and an adaptive controller are tailored for the resulting nonlinear synchronization problem. Implementation results favourably compare the effectiveness of the adaptive substructuring method against a conventional shaking‐table technique. A 1.32% error resulted compared with the shaking‐table response. Ultimately, the accuracy of the substructuring method compared with the response of the shaking‐table is dependent upon the fidelity of the numerical substructure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Real‐time hybrid testing is a promising technique for experimental structural dynamics, in which the structure under consideration is split into a physical test of key components and a numerical model of the remainder. The physical test and numerical analysis proceed in parallel, in real time, enabling testing of critical elements at large scale and at the correct loading rate. To date most real‐time hybrid tests have been restricted to simple configurations and have used approximate delay compensation schemes. This paper describes a real‐time hybrid testing approach in which non‐linearity is permitted in both the physical and numerical models, and in which multiple interfaces between physical and numerical substructures can be accommodated, even when this results in very stiff coupling between actuators. This is achieved using a Newmark explicit numerical solver, an advanced adaptive controller known as MCSmd and a multi‐tasking strategy. The approach is evaluated through a series of experiments on discrete mass–spring systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Shake tables provide a direct means by which to evaluate structural performance under earthquake excitation. Because the entire structure is mounted on the base plate and subjected to the ground motion in real time, dynamic effects and rate‐dependent behavior can be accurately represented. Shake table control is not straightforward as the desired signal is an acceleration record, while most actuators operate in displacement feedback for stability. At the same time, the payload is typically large relative to the capacity of the actuator, leading to pronounced control‐structure interaction. Through this interaction, the dynamics of the specimen influence the dynamics of the shake table, which can be problematic when specimens change behavior because of damage or other nonlinearities. Moreover, shake tables are themselves inherently nonlinear, making it difficult to accurately recreate a desired acceleration record over a broad range of amplitudes and frequencies. A model‐based multi‐metric shake table control strategy is proposed to improve tracking of the desired acceleration of a uniaxial shake table, remaining robust to nonlinearities including changes in specimen condition. The proposed strategy is verified for the shake table testing of both linear and nonlinear structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In an attempt to quantify the conductor cable effect on substation electrical equipment, real‐time hybrid simulation (RTHS) is conducted on interconnected equipment using two shaking tables. For this purpose, the existing RTHS system with advanced control capabilities at the Pacific Earthquake Engineering Research Center structural laboratory is enhanced to accommodate the simultaneous use of two shaking tables. An experimental parametric study is conducted to investigate the conductor cable effect using this system with a two‐table RTHS setup. Post insulators of disconnect switches, important components of substations that are usually tested with conventional methods for evaluating their seismic performance, are utilized as experimental substructures for realistic representation of the electrical equipment. Various global and local response parameters, including accelerations, forces, displacements, and strains, are considered to evaluate the effect of the tested conductor cable configuration for a wide range of support structure configurations, which are modeled in the computer as analytical substructures. The experimental parametric study results indicate that the conductor cable has a significant effect on the response of the interconnected equipment over the whole range of investigated support structures and needs to be explicitly considered for seismic testing of electrical equipment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents the development and validation of a real‐time hybrid simulation (RTHS) system for efficient dynamic testing of high voltage electrical vertical‐break disconnect switches. The RTHS system consists of the computational model of the support structure, the physical model of the insulator post, a small shaking table, a state‐of‐the‐art controller, a data acquisition system and a digital signal processor. Explicit Newmark method is adopted for the numerical integration of the governing equations of motion of the hybrid structure, which consists of an insulator post (experimental substructure) and a spring‐mass‐dashpot system representing the support structure (analytical substructure). Two of the unique features of the developed RTHS system are the application of an efficient feed‐forward error compensation scheme and the ability to use integration time steps as small as 1 ms. After the development stage, proper implementation of the algorithm and robustness of the measurements used in the calculations are verified. The developed RTHS system is further validated by comparing the RTHS test results with those from a conventional shaking table test. A companion paper presents and discusses a parametric study for a variety of geometrical and material configurations of these switches using the developed RTHS system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The pseudodynamic test method provides a means of inexpensive seismic performance testing for laboratories that do not have a shaking table. However, most pseudodynamic tests to date have used planar portions of structures subjected to a single lateral component of base excitation, mimicking the type of testing that would occur on a shaking table. There has been little work on the extension of the pseudodynamic test method to three-dimensional testing of structures under multiple components of base excitation. In this paper a three-dimensional specimen is tested under a multicomponent fixed base excitation and the response is compared to shaking table tests. The paper presents an overview of the pseudodynamic test method, including non-planar extensions, and highlights many physical problems that occurred during the testing process. Many of these problems apply to any pseudodynamic test, not just non-planar tests, but the results show that very accurate non-planar tests can be achieved with careful error control.  相似文献   

11.
An analytical model is developed to evaluate performance characteristics of unidirectional seismic simulators (shaking tables). The validity of the model is verified with experimental measurements of the frequency response of the shaking table at the Catholic University of Peru. Interaction effects between shaking table and structure are first studied by analysing the response of a two DOF (degree of freedom) oscillator with mechanical properties representative of the actuator-table-structure system. A single DOF viscoelastic oscillator representing the structural test specimen is then included in the analytical model of the seismic simulator, and the behaviour of the combined system is evaluated, in the frequency domain, in terms of response stability and accuracy of reproduction of the command signal. Numerical simulations of system response under different load conditions are subsequently performed in order to study the influence of shaking table and test structure characteristics on the interaction phenomenon. The results obtained explain some of the performance degradation observed in seismic simulation tests involving very heavy structures and provide guidelines for the design of more reliable shaking table systems.  相似文献   

12.
The time delay resulting from the servo hydraulic systems can potentially destabilize the real‐time dynamic hybrid testing (RTDHT) systems. In this paper, the discrete‐time root locus technique is adopted to investigate the delay‐dependent stability performance of MDOF RTDHT systems. Stability analysis of an idealized two‐story shear frame with two DOFs is first performed to illustrate the proposed method. The delay‐dependent stability condition is presented for various structural properties, time delay, and integration time steps. Effects of delay compensation methods on stability are also investigated. Then, the proposed method is applied to analyze the delay‐dependent stability of a single shaking table RTDHT system with an 18‐DOF finite element numerical substructure, and corresponding RTDHTs are carried out to verify the theoretical results. Furthermore, the stability behavior of a finite element RTDHT system with two physical substructures, loaded by twin shaking tables, is theoretically and experimentally investigated. All experimental results convincingly demonstrate that the delay‐dependent stability analysis on the basis of the discrete‐time root locus technique is feasible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper focuses on the development of a linear analytical model (even though servo‐hydraulic actuation systems are inherently non‐linear, especially for large amplitude simulations — near the performance capacity of the system — linearized models proved experimentally to be quite effective overall in capturing the salient features of shaking table dynamics) of a uni‐axial, servo‐hydraulic, stroke controlled shaking table system by using jointly structural dynamics and linear control theory. This model incorporates the proportional, integral, derivative, feed‐forward, and differential pressure gains of the control system. Furthermore, it accounts for the following physical characteristics of the system: time delay in the servovalve response, compressibility of the actuator fluid, oil leakage through the actuator seals and the dynamic properties of both the actuator reaction mass and test structure or payload. The proposed model, in the form of the total shaking table transfer function (i.e. between commanded and actual table motions), is developed to account for the specific characteristics of the Rice University shaking table. An in‐depth sensitivity study is then performed to determine the effects of the table control parameters, payload characteristics, and servovalve time delay upon the total shaking table transfer function. The sensitivity results reveal: (a) a potential strong dynamic interaction between the oil column in the actuator and the payload, and (b) the very important effect of the servovalve time delay upon the total shaking table transfer function. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Multi‐storey buildings made of cross‐laminated timber panels (X‐lam) are becoming a stronger and economically valid alternative in Europe compared with traditional masonry or concrete buildings. During the design process of these multi‐storey buildings, also their earthquake behaviour has to be addressed, especially in seismic‐prone areas such as Italy. However, limited knowledge on the seismic performance is available for this innovative massive timber product. On the basis of extensive testing series comprising monotonic and reversed cyclic tests on X‐lam panels, a pseudodynamic test on a one‐storey X‐lam specimen and 1D shaking table tests on a full‐scale three‐storey specimen, a full‐scale seven‐storey building was designed according to the European seismic standard Eurocode 8 and subjected to earthquake loading on a 3D shaking table. The building was designed with a preliminary action reduction factor of three that had been derived from the experimental results on the three‐storey building. The outcomes of this comprehensive research project called ‘SOFIE – Sistema Costruttivo Fiemme’ proved the suitability of multi‐storey X‐lam structures for earthquake‐prone regions. The buildings demonstrated self‐centring capabilities and high stiffness combined with sufficient ductility to avoid brittle failures. The tests provided useful information for the seismic design with force‐based methods as defined in Eurocode 8, that is, a preliminary experimentally based action reduction factor of three was confirmed. Valid, ductile joint assemblies were developed, and their importance for the energy dissipation in buildings with rigid X‐lam panels became evident. The seven‐storey building showed relatively high accelerations in the upper storeys, which could lead to secondary damage and which have to be addressed in future research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents the results of an experimental work in order to evaluate the performance of a novel proposed retrofitting technique on a typical dome‐roof adobe building by shaking table tests. For this purpose, two specimens, scaled 2:3, were subjected to a total of nine shaking table tests. The unretrofitted specimen, constructed by common practice, is designed to evaluate seismic performance and vulnerability of dome‐roof adobe houses. The retrofitted specimen, exactly duplicating the first specimen, is retrofitted based on the results obtained from unretrofitted specimen tests, and the improvement in seismic behavior of the structure is investigated. Zarand earthquake (2005) Chatrood Station is selected as the input ground motion that was applied consecutively at 25, 100, 125, 150 and 175% of the design‐level excitation. At 125% excitation level, the roof of the unretofitted specimen collapsed due to the walls' out‐of‐plane action and imbalanced forces. The retrofitting elements consist of eight horizontal steel rods drilled into the walls, passed through the specimen and bolted on the opposite wall surfaces. To improve walls in‐plane seismic performance, welded steel mesh without using mortar, covered less than half area of walls on the external face of the walls, is used. In addition to strain gauges for recording steel rod responses, several instrumentations including acceleration and displacement transducers are implemented to capture response time histories of different parts of the specimens. The corresponding full‐scaled retrofitted prototype tolerated peak acceleration of 0.62 g almost without any serious damage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents an experimental study, while a companion paper addresses an analytical study, to explore the possibility of using a hybrid platform to mitigate vibration of a batch of high‐tech equipment installed in a building subject to nearby traffic‐induced ground motion. A three‐storey building model and a hybrid platform model are designed and manufactured. The hybrid platform is mounted on the building floor through passive mounts composed of leaf springs and oil dampers and controlled actively by an electromagnetic actuator with velocity feedback control strategy. The passive mounts are designed in such a way that the stiffness and damping ratio of the platform can be changed. A series of shaking table tests are then performed on the building model without the platform, with the passive platform of different parameters, and with the hybrid platform. The experimental results demonstrate that the hybrid platform is very effective in reducing the velocity response of a batch of high‐tech equipment in the building subject to nearby traffic‐induced ground motion if dynamic properties of the platform and control feedback gain are selected appropriately. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The effectiveness of seismic isolation in protecting structural and non‐structural elements from damage has been assessed in an extensive programme of shaking‐table tests, carried out on four identical 1/3.3‐scale, two‐dimensional, reinforced concrete (R/C) frames. Four different isolation systems were considered, namely: (i) rubber‐based, (ii) steel‐based, (iii) shape memory alloy (SMA)‐based and (iv) hybrid, i.e. based on both SMA and steel components, isolation systems. This paper presents a comprehensive overview of the main results of the experimental tests on base‐isolated models, whose structural response is described through: (i) maximum base displacements; (ii) maximum interstorey drifts; (iii) maximum storey accelerations and (iv) maximum storey shear forces. The evolution of the fundamental frequency of vibration of the R/C frame during the tests is also described. The beneficial effects of using base isolation resulted in no or slight damage, under strong earthquakes, to both structural and non‐structural members, as well as to the internal content of the building. The comparison with the experimental results obtained in shaking‐table tests on similar fixed‐base models emphasizes these positive aspects. Finally, advantages and drawbacks related to the use of each isolation system are discussed in the paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Structural vibration control using active or passive control strategy is a viable technology for enhancing structural functionality and safety against natural hazards such as strong earthquakes and high wind gusts. Both the active and passive control systems have their limitations. The passive control system has limited capability to control the structural response whereas the active control system depends on external power. The power requirement for active control of civil engineering structures is usually quite high. Thus, a hybrid control system is a viable solution to alleviate some of the limitations. In this paper a multi‐objective optimal design of a hybrid control system for seismically excited building structures has been proposed. A tuned mass damper (TMD) and an active mass driver (AMD) have been used as the passive and active control components of the hybrid control system, respectively. A fuzzy logic controller (FLC) has been used to drive the AMD as the FLC has inherent robustness and ability to handle the non‐linearities and uncertainties. The genetic algorithm has been used for the optimization of the control system. Peak acceleration and displacement responses non‐dimensionalized with respect to the uncontrolled peak acceleration and displacement responses, respectively, have been used as the two objectives of the multi‐objective optimization problem. The proposed design approach for an optimum hybrid mass damper (HMD) system, driven by FLC has been demonstrated with the help of a numerical example. It is shown that the optimum values of the design parameters of the hybrid control system can be determined without specifying the modes to be controlled. The proposed FLC driven HMD has been found to be very effective for vibration control of seismically excited buildings in comparison with the available results for the same example structure but with a different optimal absorber. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Real‐time hybrid testing is a very effective technique for evaluating the dynamic responses of rate‐dependent structural systems subjected to earthquake excitation. A smart base isolation system has been proposed by others using conventional low‐damping isolators and controllable damping devices such as magnetorheological (MR) dampers to achieve specified control target performance. In this paper, real‐time hybrid tests of a smart base isolation system are conducted. The simulation is for a base‐isolated two‐degrees‐of‐freedom building model where the superstructure and the low‐damping base isolator are numerically simulated, and the MR damper is physically tested. The target displacement obtained from the step‐by‐step integration of the numerical substructure is imposed on the MR damper, which is driven by three different control algorithms in real‐time. To compensate the actuator delay and improve the accuracy of the test, an adaptive phase‐lead compensator is implemented. The accuracy of each test is investigated by using the root mean square error and the tracking indicator. Experimental results demonstrate that the hybrid testing procedure using the proposed actuator compensation techniques is effective for investigating the control performance of the MR damper in a smart base isolation system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A seismic shaking‐table test performed on a one‐storey steel frame with an 8 ton RC floor slab was reproduced on a similar specimen by means of the pseudo‐dynamic (PsD) method. A satisfactory agreement of the results could only be achieved after recalibration of the theoretical mass in the PsD equation and proper inclusion in the PsD test input of the horizontal and pitching accelerations measured on the table. In the shaking‐table test, the spurious pitching motion produced a significant increase in the apparent damping that could be estimated as a function of the pitching dynamic flexibility of the system. Dynamic and PsD snap‐back tests were also performed to provide an additional check of the reliability of the PsD method. The spurious pitching motion of the shaking table should always be measured during the tests and reported as a mean to increase the reliability and usefulness of the results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号