首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study of a seismically isolated and a comparable non-isolated bridge is presented. The bridge model featured flexible piers, weighed 158kN and was tested on a shake table with an array of real and simulated seismic motions with peak acceleration in the range 0⋅1–1⋅1g. When isolated, the bridge deck was supported by four spherically shaped sliding bearings (known as Friction Pendulum System or FPS bearings) with friction coefficient under dynamic conditions in the range 0⋅07–0⋅12. The experimental results demonstrated a substantial improvement in the ability of the isolated bridge to sustain all levels of seismic excitation under elastic conditions.  相似文献   

2.
It is well known that real‐time hybrid simulation (RTHS) is an effective and viable dynamic testing method. Numerous studies have been conducted for RTHS during the last 2 decades; however, the application of RTHS toward practical civil infrastructure is fairly limited. One of the major technical barriers preventing RTHS from being widely accepted in the testing community is the difficulty of accurate displacement control for axially stiff members. For such structures, a servo‐hydraulic actuator can generate a large force error due to the stiff oil column in the actuator even if there is a small axial displacement error. This difficulty significantly restricts the implementation of RTHS for structures such as columns, walls, bridge piers, and base isolators. Recently, a flexible loading frame system was developed, enabling a large‐capacity real‐time axial force application to axially stiff members. With the aid of the flexible loading frame system, this paper demonstrates an RTHS for a bridge structure with an experimental reinforced concrete pier, which is subjected to both horizontal and vertical ground motions. This type of RTHS has been a challenging task due to the lack of knowledge for satisfying the time‐varying axial force boundary condition, but the newly developed technology for real‐time force control and its incorporation into RTHS enabled a successful implementation of the RTHS for the reinforced concrete pier of this study.  相似文献   

3.
Damage investigation of small to medium-span highway bridges in Wenchuan earthquake revealed that typical damage of these bridges included: sliding between laminated-rubber bearings and bridge girders, concrete shear keys failure, excessive girder displacements and even span collapse. However, the bearing sliding could actually act as a seismic isolation for piers, and hence, damage to piers for these bridges was minor during the earthquake. Based on this concept, an innovative solation system for highway bridges with laminated-rubber bearings is developed. The system is comprised of typical laminated-rubber bearings and steel dampers. Bearing sliding is allowed during an earthquake to limit the seismic forces transmitting to piers, and steel dampers are applied to restrict the bearing displacements through hysteretic energy dissipation. As a major part of this research, a quarter-scale, two-span bridge model was constructed and tested on the shake tables to evaluate the performance of this isolation system. The bridge model was subjected to a Northridge and an artificial ground motion in transverse direction. Moreover, numerical analyses were conducted to investigate the seismic performance of the bridge model. Besides the test bridge model, a benchmark model with the superstructure fixed to the substructure in transverse direction was also included in the numerical analyses. Both the experimental and the numerical results showed high effectiveness of this proposed isolation system in the bridge model. The system was found to effectively control the pier-girder relative displacements, and simultaneously, protect the piers from severe damage. Numerical analyses also validated that the existing finite element methods are adequate to estimate the seismic response of bridges with this isolation system.  相似文献   

4.
活动支座摩擦力对简支梁桥地震反应的影响   总被引:3,自引:0,他引:3  
本文介绍在地震作用下活动支座摩擦力简支梁桥桥墩内力和活动支座外墩,梁相对位 影响,以及水平地震系数,摩擦系数变化对固定支座水平地震荷载的影响。文中建议了考察活动以座摩擦力的简支梁桥整体分析模型。  相似文献   

5.
宋帅  王帅  吴刚 《震灾防御技术》2019,14(4):781-789
从板式橡胶支座及混凝土挡块抗震设计角度,以一座典型的3跨预应力混凝土连续梁桥为例,结合概率地震需求分析及桥墩、支座等抗震关键构件极限破坏状态,建立不同支座及挡块分析模型的中小跨径梁桥地震易损性曲线,研究考虑支座滑移效应及挡块破坏的中小跨径梁桥的易损性特征。研究结果表明:不考虑橡胶支座的滑移效应及混凝土挡块破坏,桥墩地震破坏概率明显增大,且会低估支座破坏概率;桥梁系统易损性受支座破坏状态的影响显著,需设置合理的限位装置;在中小跨径梁桥地震易损性分析中,考虑支座的滑移效应及混凝土挡块的破坏十分必要。  相似文献   

6.
防震减灾科普教育是提升公民防震减灾科学素质的重要途经。日本和美国是在防震减灾科普教育方面走在世界前列的国家。本文通过研究日本和美国关于公民防震减灾科学素质建设文献资料,分类归纳日本和美国公民防震减灾科学素质建设的历史背景、发展特点及主要路径,由此对我国公民防震减灾科学素质建设提出思考和建议。  相似文献   

7.
The Sutong Bridge in China opened to traffic in 2008, and is an arterial connection between the cities of Nantong and Suzhou. It is a cable-stayed bridge with a main span of 1,088 m. Due to a tight construction schedule and lack of suitable seismic devices at the time, fixed supports were installed between the piers and the girder in the transverse direction. As a result, significant transverse seismic forces could occur in the piers and foundations, especially during a return period of a 2500-year earthquake. Therefore, the piers, foundations and fixed bearings had to be designed extraordinarily strong. However, when larger earthquakes occur, the bearings, piers and foundations are still vulnerable. The recent rapid developments in seismic technology and the performance-based design approach offer a better opportunity to optimize the transverse seismic design for the Sutong Bridge piers. The optimized design can be applied to the Sutong Bridge(as a retrofit), as well as other bridges. Seismic design alternatives utilizing viscous fluid dampers(VFD), or friction pendulum sliding bearings(FPSB), or transverse yielding metallic dampers(TYMD) are thoroughly studied in this work, and the results are compared with those from the current condition with fixed transverse supports and a hypothetical condition in which only sliding bearings are provided on top of the piers(the girder can move "freely" in the transverse direction during the earthquake, except for frictional forces of the sliding bearings). Parametric analyses were performed to optimize the design of these proposed seismic devices. From the comparison of the peak bridge responses in these configurations, it was found that both VFD and TYMD are very effective in the reduction of transverse seismic forces in piers, while at the same time keeping the relative transverse displacements between piers and the box girder within acceptable limits. However, compared to VFD, TYMD do not interact with the longitudinal displacements of the girder, and have simpler details and lower initial and maintenance costs. Although the use of FPSB can also reduce seismic forces, it generally causes the transverse relative displacements to be higher than acceptable limits.  相似文献   

8.
The seismic performance of the Bolu Viaduct in the Duzce, Turkey, earthquake of November 1999 was studied via a non‐linear, time‐history analysis of a multi‐degree of freedom model. The viaduct had a seismic isolation system consisting of yielding‐steel energy dissipation units and sliding pot bearings. The Duzce earthquake caused a surface rupture across the viaduct, which resulted in excessive superstructure movement and widespread failure of the seismic isolation system. The effect of the rupture was modeled by a static, differential ground displacement in the fault‐parallel direction across the rupture. The ground motions used in the analysis contain common near‐fault features including a directivity pulse in the fault‐normal direction and a fling step in the fault‐parallel direction. The analysis used a finite element package capable of modeling the mechanical behavior of the seismic isolation system and focused on the structural response of a 10‐span module of the viaduct. This analysis showed that the displacement of the superstructure relative to the piers exceeded the capacity of the bearings at an early stage of the earthquake, causing damage to the bearings as well as to the energy dissipation units. The analysis also indicated that shear keys, both longitudinal and transverse, played a critical role in preventing collapse of the deck spans. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

9.
This paper deals with the assessment of the seismic response of a portal frame pier belonging to an old reinforced concrete viaduct. A series of tests, consisting of cyclically imposed displacements, were carried out on three 1:4 scale mock‐ups. The objective of the experimental campaign is twofold: (1) identification and evaluation of the local failure mechanisms and (2) calibration of a numerical model including all observed nonlinear phenomena. The experimental results show that the shear strength of the transverse beam and of the beam–column joints characterizes the post‐elastic behavior of the piers. Other phenomena, like bond‐slip and buckling of the longitudinal bars of the columns, typical of old reinforced concrete structures have also been observed. Finally, a numerical model, built in OpenSEES, was calibrated to reproduce in a satisfactory way the experimental results and to provide a reliable tool for the evaluation of the seismic response of the pier. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
基于动力学基本原理,建立非规则桥梁的多自由度动力简化模型,根据拉格朗日方程推导简化模型的动力方程,结合龙格—库塔方法,采用自编程序研究行波激励下非规则桥梁综合考虑支座摩擦滑移、结构碰撞等非线性因素作用时的抗震性能。结果表明,行波效应和碰撞效应的共同作用可使矮墩的弯矩需求增大;行波激励可使板式橡胶支座位移增大,地震波最后到达的桥墩其上方支座位移峰值增加最为明显;相比高墩,地震作用下矮墩上部的板式橡胶支座易发生滑动。因此非规则桥梁进行防碰撞设计时应考虑行波激励及支座摩擦,找出相邻结构的最大碰撞力,以指导设计。  相似文献   

11.
Cyclic tests on two large‐scale models of existing bridge piers with rectangular hollow cross‐section were performed in the ELSA laboratory. The prototype structure is an existing reinforced concrete highway bridge constructed in Austria in 1975. The piers presented several seismic deficiencies and consequently they showed poor hysteretic behaviour and limited deformation capacity as well as undesirable failure modes that do not comply with the requirements of modern codes for seismic‐resistant structures. Experimental data are compared to numerical and empirical predictions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
A finite element model is constructed for a sliding friction bearing in a seismically isolated bridge under vertical excitation with contact/friction elements. The effects of vertical excitation on the seismic performance of a seismically isolated bridge with sliding friction bearings and different bearing friction coefficients and different stiffness levels (pier diameter) are discussed using example calculations, and the effects of excitation direction for vertical excitation on the analysis results are explored. The analysis results shows that vertical excitation has a relatively large impact on seismic performance for a seismically isolated bridge with sliding friction bearings, which should be considered when designing a seismically isolated bridge with sliding friction bearings where vertical excitation dominates.  相似文献   

13.
A novel low-cost friction sliding system for bidirectional excitation is developed to improve the seismic performance of reinforced concrete (RC) bridge piers. The sliding system is a spherical prototype developed by combining a central flat surface with an inclined spherical segment, characterized by stable oscillation and a large reduction in response accelerations on the flat surface. The inclined part provides a restoring force that limits the residual displacements of the system. Conventional steel and concrete are employed to construct a flat-inclined spherical surface atop an RC pier. The seismic forces are dissipated through the frictions generated during the sliding movements; hence, the seismic resilience of bridges can be ensured with a low-cost design solution. The proposed system is fabricated utilizing a mold created by a three-dimensional printer, which facilitates the use of conventional concrete to construct spherical shapes. The concrete surface is lubricated with a resin material to prevent abrasion from multiple input ground motions. To demonstrate the effectiveness of the system, bidirectional shaking table tests are conducted in the longitudinal and transverse directions of a scaled bridge model. The effect of the inclination angle and the flat surface size is investigated. The results demonstrate a large decrease in response acceleration when the system exhibits circular sliding displacement. Furthermore, the inclination angle that generates the smallest residual displacement is identified experimentally.  相似文献   

14.
汶川大地震曲线梁桥震害及破坏机理分析   总被引:4,自引:0,他引:4  
以汶川大地震中严重破坏的回澜立交桥为例,基于数值模拟手段并结合现场震害调查,分析了回澜立交桥的地震破坏机理。数值分析表明,地震时设有支座的最矮的1号桥墩支座发生滑移破坏,以致刚度较大(次矮)的2号刚构桥墩承受很大的地震惯性力,2号墩首先发生弯曲屈服,此后随延性发展因抗剪能力不足最终发生剪切破坏直至倒塌损毁,呈现典型的弯剪破坏特征。现场震害调查发现,回澜立交桥震害集中于抗弯刚度较大的刚构墩上,而其余桥墩震害相对较轻,主要表现为混凝土保护层的脱落、混凝土开裂以及墩顶支座的滑移破坏等。数值分析结果与震害调查呈现出较好的一致性。  相似文献   

15.
大跨铁路钢桁连续梁桥减隔震方案比较研究   总被引:5,自引:2,他引:3       下载免费PDF全文
为研究适用于大跨铁路钢桁连续梁桥的减隔震方案及合理优化参数,以一座全长504 m的三跨铁路钢桁连续梁特大桥为工程背景,使用非线性结构分析软件SAP2000建立有限元模型,采用快速非线性分析方法分析对比摩擦摆、阻尼器、速度锁定器等减隔震方案在各种装置参数下的减震效率。研究表明:由于大跨铁路钢桁连续梁桥墩身自振导致的地震力较大,摩擦摆方案内力减震效率一般,同时墩底内力对滑动面半径变化并不敏感,在选取滑动半径时应更多地考虑行车平顺性和梁端位移值的限制。速度锁定器会极大地增加此类桥梁地震输入能量,不适用于此类桥型。阻尼器方案对活动墩内力减震效果明显,但不能有效降低固定墩内力。摩擦摆支座附加阻尼器组合减震方案能有效控制此类桥梁的内力和位移响应。研究结论可为大跨度钢桁连续梁桥减隔震设计提供参考。  相似文献   

16.
钢管混凝土桥墩抗震性能试验研究   总被引:1,自引:0,他引:1  
臧华  刘钊  李红英  涂永明 《地震学刊》2010,(4):442-446,451
为研究钢管混凝土桥墩的抗震性能,对钢管混凝土桥墩和钢筋混凝土桥墩进行了拟静力对比试验研究。根据试件的破坏发展过程以及各试件的滞回曲线和骨架曲线,分析了其滞回性能、耗能能力、延性、强度退化及刚度退化等抗震性能。试验结果表明,钢管混凝土桥墩的抗震性能明显好于钢筋混凝土桥墩。在含钢率和轴力相同的情况下,钢管混凝土桥墩的滞回曲线比钢筋混凝土桥墩丰满得多,前者的耗能能力约为后者的4.46倍,钢管混凝土桥墩的延性大于钢筋混凝土桥墩;随着轴压比的增大,钢管混凝土桥墩延性有所下降,强度退化加快,但对其刚度退化的影响不大。  相似文献   

17.
针对非规则人字形桥梁在地震作用下灾变严重的问题,以一座非规则人字形桥梁为研究对象,建立其空间分析模型,研究综合考虑支座摩擦滑移、结构碰撞对非规则人字形桥梁地震响应的影响。结果表明:邻梁间的碰撞作用可使得桥梁墩顶位移及内力相比不考虑时有所减小,但同时也使梁体产生了较大的加速度脉冲效应;当考虑支座摩擦滑移和结构碰撞时,固定墩墩顶位移和邻梁相对位移峰值有一定程度增大,然而对梁体加速度脉冲效应结果影响并无统一规律;纵向地震波作用下,非规则人字形桥梁不仅存在顺桥向的碰撞,横桥向的碰撞响应也不容忽视。非规则人字形桥梁进行抗震设计计算时应选取符合实际情况的计算模型,考虑支座摩擦滑移及结构间的碰撞。  相似文献   

18.
The dynamic analysis of sliding structures is complicated due to the presence of friction. Synchronization of the kinematics of all the isolation bearings is often granted to simplify the task. This, however, may lead to inaccurate prediction of the structural responses under certain circumstances. Stepped structures or continuous bridges with seismic isolation are notable examples where unsynchronized bearing motions are expected. In this paper, a logically simple and numerically efficient procedure is proposed to solve the dynamic problem of sliding systems with unsynchronized support motions. The motion equations for the sliding and non‐sliding modes of the isolated structure are unified into a single equation that is represented as a difference equation in a discrete‐time state‐space form and the base shear forces between the sliding interfaces can be determined through simple matrix algebraic analysis. The responses of the sliding structure can be obtained recursively from the discrete‐time version of the motion equation with constant integration time step even during the transitions between the non‐sliding and sliding phases. Therefore, both accuracy and efficiency in the dynamic analysis of the highly non‐linear system can be enhanced to a large extent. Rigorous assessment of seismic structures with unsynchronized support motions has been carried out for both a stepped structure and a continuous bridge. Effectiveness of friction pendulum bearings for earthquake protection of such structures has been verified. Moreover, evident unsynchronized sliding motions of the friction bearings have been observed, confirming the necessity to deal with each of the bearings independently in the analytical model. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
The seismic behavior of steel bridge piers partially filled with concrete under actual earthquake conditions was investigated by using 20 square section specimens subjected to static cyclic loading tests and single‐directional and bidirectional hybrid loading tests. Acceleration records of two horizontal NS and EW directional components for hard (GT1), medium (GT2), and soft grounds (GT3), obtained during the 1995 Kobe earthquake, were adopted in dynamic tests. Experimental results clearly showed that maximum and residual displacements under actual earthquake conditions cannot be accurately estimated by conventional single‐directional loading tests, especially for GT2 and GT3. A modified admissible displacement was proposed on the basis of bidirectional loading test results. The concrete fill can effectively improve the seismic resistance performance if the concrete inside the steel bridge piers is sufficiently high in quantity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
为评估隔震和非隔震支座对桥梁地震易损性的影响,以一座3跨连续混凝土箱梁桥为分析对象,首先建立采用铅芯橡胶隔震支座与非隔震型盆式橡胶支座下桥梁的数值模型,求得不同程度地震作用下墩顶与支座的最大位移响应;再定义转角延性比损伤指标,结合支座剪应变,分析桥墩和支座的地震易损性情况;最后通过宽界限法建立全桥地震易损性曲线。研究结果表明,支座是较容易发生损坏的构件,而桥梁系统比桥墩或支座更易发生破坏,同时铅芯橡胶支座的破坏概率明显低于非隔震型盆式支座,可见采用隔震支座能有效减小桥墩墩顶在地震作用下的最大位移,此时桥墩地震易损性优于采用非隔震支座的情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号