首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The upper Kaimur Group (UKG) of the Vindhyan Supergroup in central India, primarily consists of three rock types-Dhandraul sandstone, Scarp sandstone and Bijaigarh shale. The present study aims to reconstruct the parent rock assemblages, their tectonic provenance, mineralogy, weathering intensity, hydraulic sorting and depositional tectonic setting. Samples from the UKG rocks representing the Dhandraul sandstone, Scarp sandstone and Bijaigarh shale were studied using a combination of petrographic, mineralogical, and geochemical techniques. Texturally, medium to coarse grained UKG sandstones are mature and moderate to well sorted. Deficiency of feldspars in these sandstones indicates that the rocks are extensively recycled from distant sources. Their average modal composition for Scarp (avg. Qt99 F0.2L0.8) and Dhandraul (avg. Qt99 F0.1L0.8) sandstones, classifies them as quartz arenite to sub-litharenite types, which is consistent with geochemical study. Major element concentrations revealed that sandstones have high SiO2, K2O < Na2O, and low Fe2O3, which are supported by the modal data. On the other hand, sandstone samples are enriched in most trace elements such as Ce, Sr, V, Sc and Zr and depleted in U and Th. The CIA values (43.17–76.48) of the UKG rocks indicate low to moderate weathering, either of the original source or during transport before deposition, which may have related to low-relief and humid climatic conditions in the source area. Further, petrographic and geochemical interpretations indicate that they are derived from craton interior to quartzose recycled sedimentary rocks and deposited in a passive continental margin. Therefore, granitic and low grade metamorphic rocks of Mahakoshal Group and Chotanagpur granite-gneiss, situated on the southern and south-eastern side of the Vindhyan basin are suggested as possible provenance for the UKG rocks.  相似文献   

2.
Petrography and bulk rock geochemistry of the Middle Miocene sandstones of the lower and upper members of Gebel El Rusas Formation along the Egyptian Red Sea Coastal plain, have been investigated to determine the provenance, tectonic setting, and weathering condition of this formation. The Lower Member is formed mainly of sandstones and conglomerates with clay interbeds. The Upper Member is more calcareous and formed mainly of sandstones and limestones with marls and clays intercalations. Petrographically, the Lower Member sandstones are mostly immature and classified as arkoses with an average framework composition of \(\hbox {Q}_{66}\hbox {F}_{29}\hbox {R}_{5}\), and the Upper Member sandstones are partly submature (more quartzose, less feldspathic) and classified as subarkoses with an average framework composition of \(\hbox {Q}_{80}\hbox {F}_{17}\hbox {R}_{3}\). The Gebel El Rusas sandstones are enriched in Sr, Ba, Zr and Rb and depleted in Co and U, as compared to UCC. The chemical index of alteration (CIA) values suggest moderate weathering conditions. The geochemistry results revealed that the Gebel El Rusas sandstones were derived from felsic-granitic source rocks and deposited in a passive margin of a synrift basin. The inferred tectonic setting for Middle Miocene Gebel El Rusas sandstones in the study area is consistent with the regional geology of the Eastern Desert of Egypt during Middle Miocene.  相似文献   

3.
Mosasauroid squamates were abundant and had a worldwide distribution during the Late Cretaceous, but records from Sub-Saharan Africa are comparatively scanty and based mainly on fragmentary and isolated material. Here new mosasaur remains from the Maastrichtian (Upper Cretaceous) of Dakhla Oasis in the South-Western Desert of Egypt are recorded, including: a small, fragmentary right dentary of an indeterminate mosasaurine with a single tooth preserved in situ and an isolated tooth crown of the genus Globidens. This material stems from fossiliferous, calcareous sandstones with intercalated shales that form the lower portion of the Dakhla Formation, known to be an intertidal to subtidal deposit. Previously recorded mosasaur remains from the Eastern Desert in Egypt included Globidens phosphaticus, Platecarpus sp., and Igdamanosaurus aegyptiacus. In Africa, mosasaurs of the Maastrichtian age have been recorded from Morocco, Nigeria, Angola, the Democratic Republic of Congo, and Niger. The newly collected material from Dakhla Oasis currently constitutes the youngest record of mosasaurs in Egypt.  相似文献   

4.
Sedimentation in molasse basins is controlled by tectonics, however, recycling and chemical weathering play a critical role in the compositional evolution of a sedimentary succession. The Cretaceous to Pliocene molasse deposits of Central Otago, New Zealand are excellent examples of tectonically related deposits that were governed by the effects of chemical weathering and recycling. Preserved in fault-controlled basins floored by flysch deposits of the Otago Schist, the clastic successions contain ubiquitous unconformities and lithofacies consistent with alluvial, fluvial and lacustrine depositional settings. Textural analysis of Central Otago sandstones establishes a general quartz enrichment and increased mixing of angular and well-rounded quartz varieties up-section, consistent with a history of sediment recycling. Rare earth element (REE) patterns, which reflect upper crustal compositions, are similar for the flysch-type Otago Schist (Permian–Early Cretaceous), a palaeo-weathering profile, and the overlying molasse deposits. The development of quartz arenites is also consistent with high degrees of chemical weathering, and erosion of the schist basement, which contains numerous quartz veins. Although recycling has occurred, SiO2 and TiO2 do not consistently show a negative correlation over time. This reflects erosion of previously deposited quartz-rich sediment and the Otago weathering profile, which produced an inverse stratigraphy. CIA values range from 52 for lithic-rich, coarse-grained sandstones and polymictic conglomerate matrices, to 93 for coarse-grained to pebble-rich quartz arenites. Individual samples were split into finer- and coarser-grained pairs (<2·5φ and 2·5 to −1φ) and were analysed separately. The results show that finer-grained samples contain higher REE abundances and less SiO2, but the coarser-grained Miocene–Pliocene samples have higher CIA values than their finer-grained counterparts. These coarse-grained deposits are quartz-rich and plot erratically on tectonic discrimination diagrams, implying that using SiO2-poor samples is more reliable for geochemical analysis. Overall, the petrographic and geochemical results indicate that the main factors controlling the composition of the Central Otago molasse deposits were source composition, chemical weathering and recycling. Studies of this nature can be conducted in Archaean tectonically controlled molasse basins that are affected by similar allocyclic factors.  相似文献   

5.
The petrography, heavy mineral analysis, major element geochemical compositions and mineral chemistry of Early Cretaceous to Miocene–Pliocene rocks, and recent sediments of the Tarfaya basin, SW Morocco, have been studied to reveal their depositional tectonic setting, weathering history, and provenance. Bulk sediment compositional and mineral chemical data suggest that these rocks were derived from heterogeneous sources in the Reguibat Shield (West African Craton) including the Mauritanides and the western Anti-Atlas, which likely form the basement in this area. The Early Cretaceous sandstones are subarkosic in composition, while the Miocene–Pliocene sandstones and the recent sediments from Wadis are generally carbonate-rich feldspathic or lithic arenites, which is also reflected in their major element geochemical compositions. The studied samples are characterized by moderate SiO2 contents and variable abundances of Al2O3, K2O, Na2O, and ferromagnesian elements. Binary tectonic discrimination diagrams demonstrate that most samples can be characterized as passive continental marginal deposits. Al2O3/Na2O ratios indicate more intense chemical weathering during the Early Cretaceous and a variable intensity of weathering during the Late Cretaceous, Early Eocene, Oligocene–Early Miocene, Miocene–Pliocene and recent times. Moreover, weathered marls of the Late Cretaceous and Miocene–Pliocene horizons also exhibit relatively low but variable intensity of chemical weathering. Our results indicate that siliciclastics of the Early Cretaceous were primarily derived from the Reguibat Shield and the Mauritanides, in the SW of the basin, whereas those of the Miocene–Pliocene had varying sources that probably included western Anti-Atlas (NE part of the basin) in addition to the Reguibat Shield and the Mauritanides.  相似文献   

6.
Sandstones of Punagarh basin of Trans Aravalli region, NW Indian shield were analyzed for their major and trace element contents in conjunction with petrographic modes. The Punagarh basin comprises four formations (Sojat, Bambolai, Khamal and Sowania), amongst which the Sojat Formation in uncoformable contact with overlying formations, is significantly older and enjoys separate status as rest of the formations constitute Punagarh Group. Petrographic attributes suggest that Sojat sandstones contain distinct modal abundances like high content of quartz and low content of feldspar, mica, matrix, rock fragments and cement. In general there is a decrease in the average modal abundance of quartz and mica with concomitant increase of feldspar, chert and rock fragments from base to top in Punagarh sandstones. Sojat sandstones are also geochemically distinct as they possess high SiO2/Al2O3, Th/U and Cr/Th ratios coupled with lowest Na2O/K2O ratio and Zr content, least fractionated LREE, more fractionated HREE and largest Eu* anomaly compared to Punagarh sandstones. The weathering indices suggest intense chemical weathering for Sojat sandstones and low to moderate for Punagarh sandstones. Compositionally all the sandstones of the Punagarh basin come under the category of quartzarenite. Compared to PAAS and UCC, both suite of sandstones are generally depleted in REE, HFSE (with exception of Zr, Hf and Ta), and enriched in ferromagnesian trace elements particularly Cr and Co. The chemical data indicate that the sediments were derived from the source(s) of mixed felsic - mafic composition, with the former being dominant. The source rocks were granites, TTG, basalts, and rhyolites. The Sojat sandstones owe their source form Archean crust while Punagarh sandstones got detritus from Mesoproterozic crust. Immobile element ratios and REE abundances of Sojat sandstones closely match with Paleoproterozoic metagreywackes of Ghana of African craton while Punagarh sandstones show near geochemical characteristic with Gogunda, Kumbalgarh and Vindhyan quartzites of Aravalli craton. This geochemical similarity of Sojat sandstones provides credence to the hypothesis that Trans–Aravalli region of India had been an integral part of Arabian - Nubian shield. The chemical data advocate the deposition of these sandstones in a tectonic setting comparable to modern back arc setting.  相似文献   

7.
Geochemical composition (major and trace elements) of Miocene sandstones of the Surma Group exposed in Sitapahar anticline, Southeastern Bengal Basin was determined to reveal their provenance, tectonic setting and source area weathering conditions. The sandstones are sub-arkosic, sub-lithic and greywacke in composition with abundant low-grade metamorphic, sedimentary lithics (mainly chert with some shale fragments), low feldspars and little volcanic detritus. Compared to the average sandstone value, the Surma Group sandstones are depleted in CaO and enriched in Al2O3, Fe2O3 and Na2O. The Chemical Index of Alteration (CIA) values for the Miocene Surma Group sandstones vary from 57 to 73 with an average of 65, indicating low to moderate weathering of the source areas. The geochemical characteristics suggest an active continental margin to passive margin setting for the Surma Group sandstones; preserve the signatures of a recycled provenance that is agreement with sandstone petrography and derivation of these sandstones from felsic source rocks.  相似文献   

8.
Lower Jurassic sandstones of Shemshak Formation of Kerman basin, central Iran were analyzed for major and select trace elements to infer their provenance, palaeoweathering of source rocks and tectonic setting. Average modal framework components (Qt: F: L= 67.25: 2.41: 30.48) and chemical composition of the sandstones classify them as litharenites. The sandstones are quartz-rich (~ 67% quartz; 75.34 wt.% SiO2) and derived from a recycled orogen composed of quartzose sedimentary rocks. Average CIA, PIA and CIW values (69%, 76% and 80%, respectively) indicate moderate to intense chemical weathering of the source material. The inferred index of weathering/alteration is the sum total of intensities of weathering witnessed by the lithocomponents during atleast two cycles of sedimentation involving (1) chemical weathering of the source rocks («ultimate» granodiorite source and «proximal» quartzose sedimentary source), (2) chemical weathering during fluvial transport of the detritus, (3) chemical weathering of the detritus in depocenters, and (4) chemical weathering during diagenesis. Sandstones exhibit moderate maturity and were deposited under humid climatic conditions. Plots of the chemical analyses data on tectonic setting discrimination diagrams indicate active continental margin setting, which is in agreement with the tectonic evolutionary history of the Central Iran during Jurassic period.  相似文献   

9.
Petrographical and geochemical studies of Silurian Niur sandstones, Derenjal Mountains, Central Iran, were carried out to infer their provenance and tectonic setting. Modal analysis data of 37 medium sand size and well-sorted samples revealed that most quartz is composed of monocrystalline grains with straight to slightly undulos extinction and about 3 % polycrystalline quartz has inclusions, such as rutile needles. The sandstones are classified as quartzarenite, sublitharenite, and subarkose types based on framework composition and geochemistry. Petrographic studies reveal that these sandstones contain quartz, feldspars, and fragments of sedimentary rocks. The detrital modes of these sandstones indicate that they were derived from recycled orogen and stable cratonic source. Major and trace element contents of them are generally depleted (except SiO2) relative to upper continental crust which is mainly due to the presence of quartz and absence of Al-bearing minerals. Modal composition (e.g., quartz, feldspar, and lithic fragments) and discrimination diagrams based on major elements, trace elements (Ti, La, Th, Sc, and Zr), and also such ratios as La/Sc, Th/Sc, La/Co, and Th/Co, in sandstones suggest a felsic igneous source rock and quartzose polycyclic sedimentary provenance in a passive continental margin setting. Furthermore, high Zr/Sc values in these sandstones are considered as a sign of recycling. We indicated paleo-weathering conditions by modal compositions, the CIA index and Al2O3?+?K2O?+?Na2O% vs. SiO2% bivariate for these sandstones. Based on these results, although recycling is important to increase the maturity of the Niur sandstones, humid climate conditions in the source area have played a decisive role.  相似文献   

10.
The Upper Miocene shales of the Samh Formation, North Marsa Alam along the Egyptian Red Sea coastal plain were analyzed for major and selected trace elements to infer their provenance, weathering intensity, and tectonic setting. The Samh Formation consists of sandstone underlies by shale and marl intercalations. The Samh shales are texturally classified as mudstones. Mineralogically, these shales consist mainly of smectite and kaolinite, associated with non clay minerals (abundant quartz and trace of plagioclase, microcline, and halite). Compared to post-Archaean Australian shales (PAAS), the Samh shales are highly enriched in SiO2, Al2O3, and Fe2O3 and depleted in TiO2, P2O5, Na2O, MgO, and K2O contents. The K2O/Al2O3 ratio values indicate predominance of clay minerals over K-bearing minerals. Trace elements like zirconium (Zr), Cr, Pb, Sc, Rb, and Cs are positively correlated with Al2O3 indicating that these elements are likely fixed in K-feldspars and clays. The Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA), and Chemical Index of Weathering (CIW) values indicate moderate to intense weathering of the source material in a semiarid climate. The geochemistry results suggest that the Samh shales were deposited in a passive margin of a synrift basin and derived from felsic (granitic) source rocks. The inferred tectonic setting for the Upper Miocene Samh shales in Marsa Alam is in agreement with the tectonic evolutionary history of the Eastern Desert of Egypt during the Upper Miocene.  相似文献   

11.
The Wadi Sikait area lies at about 95 km southwest of Marsa Alam City along the Red Sea Coast, Eastern Desert, Egypt. It is occupied by Precambrian rocks of ophiolitic mélange, metamorphosed sandstones (MSS), gab-bros and monzogranites which were later intruded by lamprophyre dykes and quartz veins. The lamprophyre dykes were extruded in NW-SE and NE-SW trends cutting monzogranites and metamor-phosed sandstones. The lamprophyres are porphyritic and composed of clinopyroxene, olivine and amphibole phenocrysts enclosed in a fine-grained groundmass of clinopyroxene, amphibole, opaque and lithium mica. The al-teration products are represented by amphibole (tremolite-actinolite and hornblende), carbonate, epidote, chlorite, iddingsite, clay minerals, limonite and serpentine. The Sikait lamprophyre dykes can be classified as alkaline lamprophyres characterized by silica contents rang-ing from 41.65 wt% to 50.88 wt% and Na2O>K2O. They are enriched in LILE, LREE and HFSE, but strongly de-pleted in compatible elements such as Cr and Ni relative to the primitive mantle. Sikait lamprophyres have moderate Zr/Hf (35.6-52.8) and Nb/Ta (20.5-22.5) ratios. Most of these features are attributed to the origin of these dykes from the metasomatized mantle affected by subduction-related fluid. These lamprophyres are compositionally similar to Salu lamprophyres in eastern China. The Sikait lamprophyre samples have high LREE (320×10-6-419×10-6) relative to HREE (20×10-6-33×10-6) with ratios (LREE/HREE=11.6-18.7) and no negative Eu anomaly (Eu/Eu*=0.9-1.04). The relative presence of posi-tive Ce anomaly (Ce/Ce*=1.04) in lamprophyre samples suggests the oxidizing condition under which the REEs were precipitated due to the common occurrence of fluorite and apatite.  相似文献   

12.
Tertiary sandstones collected from southwest Sarawak, Malaysia, were analyzed to decipher their provenance, weathering, and tectonic setting. The studied sandstones have a sublitharenite composition and are dominantly composed quartz with little mica and feldspar, and a small amount of volcanic fragments. These sandstones were generally derived from quartz-rich recycled orogenic sources. They have relatively high SiO2 content with low Na2O, CaO, MnO, and MgO contents. Values of Chemical Index of Alteration (CIA) of these rock samples vary from 71 to 93, with an average of 81, implying intense chemical alteration during weathering. A felsic igneous source is suggested by a low concentration of TiO2 compared to CIA, enrichment of Light Rare Earth Elements, depletion of Heavy Rare Earth Elements, and negative Eu anomalies. A felsic origin is further supported by a Eu/Eu* range of 0.65–0.85 and high Th/Sc, La/Sc, La/Co, and Th/Co ratios. This work presents the first reported geochemical data of Tertiary sandstones of the Sarawak Basin. These data led us to conclude that the sandstones were dislodged from recycled orogenic sources and deposited in a slowly subsiding rifted basin in a passive continental tectonic setting.  相似文献   

13.
14.
Petrography and geochemistry (major, trace and rare earth elements) of clastic rocks from the Lower Cambrian Lalun Formation, in the Posht-e-badam block, Central Iran, have been investigated to understand their provenance. Petrographical analysis suggests that the Lalun conglomerates are dominantly with chert clasts derived from a proximal source, probably chert bearing Precambrian Formations. Similarly, purple sandstones are classified as litharenite (chertarenite) and white sandstones as quartzarenite types. The detrital modes of purple and white sandstones indicate that they were derived from recycled orogen (uplifted shoulders of rift) and stable cratonic source. Most major and trace element contents of purple sandstones are generally similar to upper continental crust (UCC) values. However, white sandstones are depleted in major and trace elements (except SiO2, Zr and Co) relative to UCC, which is mainly due to the presence of quartz and absence of other Al-bearing minerals. Shale samples have considerably lower content in most of the major and trace elements concentration than purple sandstones, which is possibly due to intense weathering and recycling. Modal composition (e.g., quartz, feldspar, lithic fragments) and geochemical indices (Th/Sc, La/Sc, Co/Th, Cr/Th, Cr/V and V/Ni ratios) of sandstones, and shales (La/Sc and La/Cr ratios) indicate that they were derived from felsic source rocks and deposited in a passive continental margin. The chondrite-normalized rare earth element (REE) patterns of the studied samples are characterized by LREE enrichment, negative Eu anomaly and flat HREE similar to an old upper continental crust composed chiefly of felsic components in the source area. The study of paleoweathering conditions based on modal composition, chemical index of alteration (CIA), plagioclase index of alteration (PIA) and A–CN–K (Al2O3 − CaO + Na2O − K2O) relationships indicate that probably chemical weathering in the source area and recycling processes have been more important in shale and white sandstones relative to purple sandstones. The results of this study suggest that the main source for the Lalun Formation was likely located in uplifted shoulders of a rifted basin (probably a pull-apart basin) in its post-rift stage (Pan-African basement of the Posht-e-badam block).  相似文献   

15.
Tertiary basalt is widespread in the area south of Wadi Hodein, south Eastern Desert, Egypt. It is the youngest unit in the basement rocks of the Central Eastern Desert classification of El Shazly (Proc 22nd Intl Geol Congr, New Delhi 10:88–101, 1964) and El Ramly (Ann Geol Surv Egypt II:1–17, 1972), traversed all the previous succession of the basement rocks as well as the Nubia Sandstone of Cretaceous age, forming sheets, small hills, ridges, and dikes. This Tertiary basalt is strongly associated with the opening of the Red Sea. Geologic, petrographic, and petrochemical studies as well as microprobe and X-ray analyses were performed on samples from Wadi Hodein Tertiary basalt. Field and petrographic studies classified the Tertiary basalt in south Wadi Hodein into porphyritic olivine basalt, plagiophyric basalt, and doleritic basalt. Opaque minerals (magnetite and ilmenite) constitute 6–7.5% of this basalt. Petrochemical studies and microprobe analyses reveal that they are low-TiO2 basalt with low uranium and thorium contents, classified as being basaltic andesite to andesite, originated from calc-alkaline magma, and developed in within-plate tectonic environment. Scanning electron microscopy shows that magnetite and ilmenite are the prevalent opaque minerals in this Tertiary basalt. Field radiometric measurements of the Tertiary basalt in south Wadi Hodein reveals low uranium and thorium contents. Uranium contents range from 0.5 to 0.9 ppm, while thorium contents range from 1.2 to 3.2 ppm. Fractional crystallization and mass balance modeling indicate that the most-silica low-TiO2 Tertiary basalt in south Wadi Hodein can be derived from the relatively less-silica low-TiO2 Tertiary basalt of south Quseir and Gabal Qatrani through fractional crystallization of plagioclase, olivine, augite, and titanomagnetite oxides. Tertiary basalts in south Wadi Hodein and south Quseir have nearly the same age, 25 Ma (Sherif, The Fifth International Conference on the Geology of Africa, 2007), 24 Ma (Meneisy and Abdel Aal, Ain Shams Sci Bull 25(24B): 163–176, 1984), and 27 Ma (El Shazly et al., Egypt J Geol 1975), respectively. Finally, the fractionation modeling and geochemical characteristics of these basalts suggested their origination from one basaltic magma emplaced in late Oligocene.  相似文献   

16.
Geochemical analysis of sandstones from the Sardar Formation (from two stratigraphic successions) in east-central Iran were used for identification of geochemical characterization of sandstones, provenance and tectonic setting. Sandstones in the two lithostratigraphic successions have similar chemical compositions suggesting a common provenance. Bulk-rock geochemistry analysis of Carboniferous sandstones from Sardar Formation indicates that they are mainly quartz dominated and are classified as quartzarenites, sublitharenites and subarkoses, derived from acid igneous to intermediate igneous rocks. Discrimination function analysis indicates that the sandstones of Sardar Formation were derived from quartzose sedimentary provenance in a recycled orogenic setting. Also, major and trace elements in sandstones of Sardar Formation (e.g., K2O/Na2O vs. SiO2) indicate deposition in a stable passive continental margin (PM). Chemical index of alteration (CIA) for these rocks (> 65%) suggests a moderate to relatively high degree of weathering in the source area.  相似文献   

17.
The provenance and tectonic setting of sandstones from the Bombouaka Group of the Voltaian Supergroup, in the northeastern part of Ghana, have been constrained from their petrography and whole-rock geochemistry. Modal analysis carried out by point-counting sandstone samples indicates that they are quartz arenites. The index of compositional variability values and SiO2/Al2O3, Zr/Sc, and Th/Sc values indicates that the sediments are mature. The sandstones are depleted in CaO and Na2O. They are, however, enriched in K2O, Ba, and Rb relative to average Neoproterozoic upper crust. These characteristics reflect intense chemical weathering in the source region as proven by high weathering indices (i.e., CIA, PIA, and CIW). In comparison with average Neoproterozoic upper crust, the sandstones show depletion by transition metals and enrichment by high field strength elements. They generally show chondrite-normalized fractionated light rare-earth element (LREE) patterns (average LaN/SmN = 4.40), negative Eu anomalies (average Eu/Eu* = 0.61), and generally flat heavy rare-earth elements (HREE) (average GdN/YbN = 1.13). The sandstones have La/Sc, Th/Sc, La/Co, Th/Co, Th/Cr, and Eu/Eu* ratios similar to those of sandstones derived from felsic source. Mixing calculations using the rare-earth elements (REE) suggests 48% tonalite–trondhjemite–granodiorite and 52% granite as possible proportions for the source of the sandstones. Both the petrographic and whole-rock geochemical data point to a passive margin setting for the sandstones from the Bombouaka Group.  相似文献   

18.
Petrographical and geochemical methods were combined to investigate the provenance, geodynamic and weathering history of the Shurijeh sandstones, Kopet-Dagh Basin. The point-counting method and XRF technique are used for modal and geochemical analyses. Based on petrographical examinations, it seems that the Shurijeh sandstones are mainly deposited in the craton interior and recycled orogen belts. In addition to petrographical investigation, geochemical analyses (major oxides and trace elements) of Late Jurassic-Early Cretaceous rocks reveal that the sedimentation processes are performed in a passive continental margin. Such interpretation is supported with geodynamic and paleogeographical studies of the Kopeh-Dagh basin during this time. The geochemical investigations suggested that the composition of probable source rocks mostly was acidic-intermediate with minor mafic igneous rocks. Based on the above, Paleo-Tethys remnants and their collision-related granitoids, in the south and west of Mashhad, may have been the source area for these rocks. CIA values, which range from 63.8 to 94.9 in samples, are suggesting a moderate to relatively high degree of alteration (weathering) in the source area. Therefore, petrographical and paleogeographical studies of siliciclastic rocks can be used for the provenance, tectonic setting and paleoweathering studies in the source area.  相似文献   

19.
The Neoproterozoic Bhander Group in the Son Valley, central India conformably overlying the Rewa Group, is the uppermost subdivision of the Vindhyan Supergroup dominantly composed of arenites, carbonates and shales. In Maihar-Nagod area, a thick pile of unmetamorphosed clastic sedimentary rocks of Bhander Group is exposed, which provides a unique opportunity to study Neoproterozoic basin development through provenance and tectonic interpretations. The provenance discrimination and tectonic setting interpretations are based on modal analysis and whole rock geochemistry. The average framework composition of the detrital sediments composed of quartz and sedimentary lithic fragments are classified as quartz arenite to sublitharenite. The sandstone geochemically reflects high SiO2, moderate Al2O3 and low CaO and Na2O type arenite. The high concentration of HFSE such as Zr, Hf, and Th/Sc, Th/U ratios in these sandstones indicate a mixed provenance. The chondrite normalized REE pattern shows moderate to strong negative Eu anomaly which suggests that major part of the sediments were derived from the granitic source area. The sandstone tectonic discrimination diagrams and various geochemical plots suggest that the provenance of the lower and upper Bhander sandstone formations was continental interior to recycled orogen.  相似文献   

20.
The mineralogy and geochemistry of the Upper Cretaceous Duwi black shales of Nile Valley district, Aswan Governorate, Egypt, have been investigated to identify the source rock characteristics, paleoweathering, and paleoenvironment of the source area. The Duwi Formation consists mainly of phosphorite and black shales and is subdivided into three members. The lower and upper members composed mainly of phosphorite beds intercalated with thin lenses of gray shales, while the middle member is mainly composed of gray shale, cracked, and filled with gypsum. Mineralogically, the Duwi black shales consist mainly of smectite and kaolinite. The non-clay minerals are dominated by quartz, calcite, phosphate, dolomite, feldspar, with little gypsum, anhydrite, iron oxides, and pyrite. Based on the CIA, PIA, and CIW values (average?=?84, 94, 95, respectively), it can be concluded that the litho-components of the studied shales were subjected to intense chemical weathering and reflect warm/humid climatic conditions in the depositional basin. The provenance discrimination diagram indicates that the nature of the source rocks probably was mainly intermediate and mafic igneous sources with subordinate recycled sedimentary rocks (Nubia Formation). Geochemical characteristics indicate that the Duwi black shales in Nile Valley district were deposited under anoxic reducing marine environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号