首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It seems that the explicit KR‐α method (KRM), which was developed by Kolay and Ricles, is promising for the step‐by‐step integration because it simultaneously integrates unconditional stability, explicit formulation, and numerical dissipation together. It was shown that KRM can inherit the numerical dispersion and energy dissipation properties of the generalized‐α method [1] for a linear elastic system, and it reduces to CR method (CRM), which was developed by Chen and Ricles [2] if ρ = 1 is adopted, where ρ is the spectral radius of the amplification matrix of KRM as the product of the natural frequency and the step size tends to infinity. However, two unusual properties were found for KRM and CRM, and they might limit their application to solve either linear elastic or nonlinear systems. One is the lack of capability to capture the structural nonlinearity, and the other is that it is unable to realistically reflect the dynamic loading. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The implicit dissipative generalized‐ α method is analyzed using discrete control theory. Based on this analysis, a one‐parameter family of explicit direct integration algorithms with controllable numerical energy dissipation, referred to as the explicit KR‐α method, is developed for linear and nonlinear structural dynamic numerical analysis applications. Stability, numerical dispersion, and energy dissipation characteristics of the proposed algorithms are studied. It is shown that the algorithms are unconditionally stable for linear elastic and stiffness softening‐type nonlinear systems, where the latter indicates a reduction in post yield stiffness in the force–deformation response. The amount of numerical damping is controlled by a single parameter, which provides a measure of the numerical energy dissipation at higher frequencies. Thus, for a specific value of this parameter, the resulting algorithm is shown to produce no numerical energy dissipation. Furthermore, it is shown that the influence of the numerical damping on the lower mode response is negligible. It is further shown that the numerical dispersion and energy dissipation characteristics of the proposed explicit algorithms are the same as that of the implicit generalized‐ α method. A numerical example is presented to demonstrate the potential of the proposed algorithms in reducing participation of undesired higher modes by using numerical energy dissipation to damp out these modes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents novel predictor–corrector time‐integration algorithms based on the Generalized‐α method to perform pseudo‐dynamic tests with substructuring. The implicit Generalized‐α algorithm was implemented in a predictor–one corrector form giving rise to the implicit IPC–ρ∞ method, able to avoid expensive iterative corrections in view of high‐speed applications. Moreover, the scheme embodies a secant stiffness formula that can closely approximate the actual stiffness of a structure. Also an explicit algorithm endowed with user‐controlled dissipation properties, the EPC–ρb method, was implemented. The resulting schemes were tested experimentally both on a two‐ and on a six‐degrees‐of‐freedom system, using substructuring. The tests indicated that the numerical strategies enhance the fidelity of the pseudo‐dynamic test results even in an environment characterized by considerable experimental errors. Moreover, the schemes were tested numerically on severe non‐linear substructured multiple‐degrees‐of‐freedom systems reproduced with the Bouc–Wen model, showing the reliability of the seismic tests under these conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
In real‐time hybrid simulations (RTHS) that utilize explicit integration algorithms, the inherent damping in the analytical substructure is generally defined using mass and initial stiffness proportional damping. This type of damping model is known to produce inaccurate results when the structure undergoes significant inelastic deformations. To alleviate the problem, a form of a nonproportional damping model often used in numerical simulations involving implicit integration algorithms can be considered. This type of damping model, however, when used with explicit integration algorithms can require a small time step to achieve the desired accuracy in an RTHS involving a structure with a large number of degrees of freedom. Restrictions on the minimum time step exist in an RTHS that are associated with the computational demand. Integrating the equations of motion for an RTHS with too large of a time step can result in spurious high‐frequency oscillations in the member forces for elements of the structural model that undergo inelastic deformations. The problem is circumvented by introducing the parametrically controllable numerical energy dissipation available in the recently developed unconditionally stable explicit KR‐α method. This paper reviews the formulation of the KR‐α method and presents an efficient implementation for RTHS. Using the method, RTHS of a three‐story 0.6‐scale prototype steel building with nonlinear elastomeric dampers are conducted with a ground motion scaled to the design basis and maximum considered earthquake hazard levels. The results show that controllable numerical energy dissipation can significantly eliminate spurious participation of higher modes and produce exceptional RTHS results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Seismic imaging is an important step for imaging the subsurface structures of the Earth. One of the attractive domains for seismic imaging is explicit frequency–space (fx) prestack depth migration. So far, this domain focused on migrating seismic data in acoustic media, but very little work assumed visco‐acoustic media. In reality, seismic exploration data amplitudes suffer from attenuation. To tackle the problem of attenuation, new operators are required, which compensates for it. We propose the weighted L 1 ‐error minimisation technique to design visco‐acoustic f – x wavefield extrapolators. The L 1 ‐error wavenumber responses provide superior extrapolator designs as compared with the previously designed equiripple L 4 ‐norm and L‐norm extrapolation wavenumber responses. To verify the new compensating designs, prestack depth migration is performed on the challenging Marmousi model dataset. A reference migrated section is obtained using non‐compensating fx extrapolators on an acoustic dataset. Then, both compensating and non‐compensating extrapolators are applied to a visco‐acoustic dataset, and both migrated sections are then compared. The final images show that the proposed weighted L 1 ‐error method enhances the resolution and results in practically stable images.  相似文献   

6.
A new family of generalized‐α (G‐α) algorithm without overshoot is presented by introducing seven free parameters into the single‐step three‐stage formulation for solution of structural dynamic problems. It is proved through finite difference analysis that these algorithms are unconditionally stable, second‐order accurate and numerical dissipation controllable. The comparison of the new G‐α algorithms with the commonly used G‐α algorithms shows that the newly developed algorithms have the advantage of eliminating the overshooting characteristics exhibited by the commonly used algorithms while their excellent property of dissipation is preserved. The numerical simulation results obtained using a single‐degree‐of‐freedom system and a two‐degree‐of‐freedom system to represent the character of typical large systems coincide well with the results of theoretical analyses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to a lack of analytical evaluation techniques. Thus, a novel technique is proposed herein to evaluate its efficiency for application to nonlinear systems by introducing two parameters to describe the stiffness change. As a result, the numerical properties and error propagation characteristics of the γ-function explicit method for the pseudodynamic testing of a nonlinear system are analytically assessed. It is found that the upper stability limit decreases as the step degree of nonlinearity increases; and it increases as the current degree of nonlinearity increases. It is also shown that this integration method provides favorable numerical dissipation not only for linear elastic systems but also for nonlinear systems. Furthermore, error propagation analysis reveals that the numerical dissipation can effectively suppress the severe error propagation of high frequency modes while the low frequency responses are almost unaffected for both linear elastic and nonlinear systems.  相似文献   

8.
    
It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to a lack of analytical evaluation techniques. Thus, a novel technique is proposed herein to evaluate its efficiency for application to nonlinear systems by introducing two parameters to describe the stiffness change. As a result, the numerical properties and error propagation characteristics of the γ-function explicit method for the pseudodynamic testing of a nonlinear system are analytically assessed. It is found that the upper stability limit decreases as the step degree of nonlinearity increases; and it increases as the current degree of nonlinearity increases. It is also shown that this integration method provides favorable numerical dissipation not only for linear elastic systems but also for nonlinear systems. Furthermore, error propagation analysis reveals that the numerical dissipation can effectively suppress the severe error propagation of high frequency modes while the low frequency responses are almost unaffected for both linear elastic and nonlinear systems. Supported by: National Science Council, Chinese Taipei, Under Grant No. NSC-92-2211-E-027-015  相似文献   

9.
A new control algorithm is developed for reducing the response of smart base isolated buildings with variable friction semiactive control systems in near‐fault earthquakes. The central idea of the control algorithm is to design a H controller for the structural system and use this controller to determine the optimum control force in the semiactive device. The H controller is designed using appropriate input and output weighting filters that have been developed for optimal performance in reducing near‐fault earthquake responses. A novel semiactive variable friction device is also developed and with the H controller shown to be effective in achieving response reductions in smart base isolated buildings in near‐fault earthquakes. The new variable friction device developed consists of four friction elements and four restoring spring elements arranged in a rhombus configuration with each arm consisting of a friction–stiffness pair. The level of friction force can be adjusted by varying the angle of the arms of the device leading to smooth variation of friction force in the device. Experimental results are presented to verify the proposed analytical model of the device. The H algorithm is implemented analytically on a five storey smart base isolated building with linear elastomeric isolation bearings and variable friction system located at the isolation level. The H controller along with the weighting filters leads to the smooth variation of friction force, thus eliminating the disadvantages associated with rapid switching. Several recent near‐fault earthquakes are considered in this study. The robustness of the H controller is shown by considering a stiffness uncertainty of ±10%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Complexities inherent to large‐scale modern civil structures pose many challenges in the design of feedback structural control systems for dynamic response mitigation. With the emergence of low‐cost sensors and control devices creating technologies from which large‐scale structural control systems can deploy, a future control system may contain hundreds, or even thousands, of such devices. Key issues in such large‐scale structural control systems include reduced system reliability, increasing communication requirements, and longer latencies in the feedback loop. To effectively address these issues, decentralized control strategies provide promising solutions that allow control systems to operate at high nodal counts. This paper examines the feasibility of designing a decentralized controller that minimizes the ?? norm of the closed‐loop system. ?? control is a natural choice for decentralization because imposition of decentralized architectures is easy to achieve when posing the controller design using linear matrix inequalities. Decentralized control solutions are investigated for both continuous‐time and discrete‐time ?? formulations. Numerical simulation results using a 3‐story and a 20‐story structure illustrate the feasibility of the different decentralized control strategies. The results also demonstrate that when realistic semi‐active control devices are used in combination with the decentralized ?? control solution, better performance can be gained over the passive control cases. It is shown that decentralized control strategies may provide equivalent or better control performance, given that their centralized counterparts could suffer from longer sampling periods due to communication and computation constraints. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Passive energy dissipation devices (EDDs), such as viscous dampers, viscoelastic dampers, etc., have been used to effectively reduce the dynamic response of civil infrastructures, such as buildings and bridges, subject to earthquakes and strong winds. The design of these passive energy dissipation devices (EDDs) involves the determination of the optimal locations and the corresponding capacities. In this paper, we present two optimal design methodologies for passive EDDs based on active control theories, including H and H2 performances, respectively. The optimal design methodologies presented are capable of determining the optimal locations and the corresponding capacities of EDDs. Emphasis is placed on the application of linear matrix inequality (LMI) for the effective design of passive EDDs using the popular MATLAB toolboxes. One important advantage of the proposed approaches is that the computation of the structural response is not needed in the design process. The proposed optimal design methodologies have been applied to: (i) a 10‐storey building and a 24‐storey building both subject to earthquake excitations, and (ii) a 76‐storey wind‐excited benchmark building, to demonstrate the advantages of the proposed design methodologies over the conventional equal capacity design. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we propose a new actuator control algorithm that achieves the design flexibility, robustness, and tracking accuracy to give real‐time hybrid‐simulation users the power to achieve highly accurate and robust actuator control. The robust integrated actuator control (RIAC) strategy integrates three key control components: loop shaping feedback control based on H optimization, a linear‐quadratic‐estimation block for minimizing noise effect, and a feed‐forward block that reduces small residual delay/lag. The combination of these components provides flexible controller design to accommodate setup limits while preserving the stability of the H algorithm. The efficacy of the proposed strategy is demonstrated through two illustrative case studies: one using large capacity but relatively slow actuator of 2500 kN and the second using a small‐scale fast actuator. Actuator tracking results in both cases demonstrate that the RIAC algorithm is effective and applicable for different setups. Real‐time hybrid‐simulation validation is implemented using a three‐DOF building frame equipped with a magneto‐rheological damper on both setups. Results using the two very different physical setups illustrate that RIAC is efficient and accurate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, we present a new method in designing static output‐feedback H controllers suitable for vibrational control of buildings under seismic excitation. The method produces a Linear Matrix Inequality (LMI) formulation that allows obtaining static output‐feedback controllers with different information structure constraints by imposing a convenient zero–nonzero structure on the LMI variables. The application of the proposed methodology is illustrated by designing centralized and decentralized velocity‐feedback H controllers to mitigate the seismic response of a five‐story building. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A new predictor–corrector (P–C) method for multi‐site sub‐structure pseudo‐dynamic (PSD) test is proposed. This method is a mixed time integration method in which computational components separable from experimental components are solved by implicit time integration method (Newmark β method). The experiments are performed quasi‐statically based on explicit prediction of displacement. The proposed P–C method has an important advantage as it does not require the determination of the initial stiffness values of experimental components and is thus suitable for representing elastic and inelastic systems. A parameter relating to quality of displacement prediction at boundaries nodes is introduced. This parameter is determined such that P–C method can be applicable to many practical problems. Error‐propagation characteristics of P–C method are also presented. A series of examples including linear and non‐linear soil–foundation–structure interaction problem demonstrate the performance of the proposed method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
A rational approach is presented for minimizing the dynamic response of reinforced concrete framed structures forced by a seismic base acceleration. Reference is made to EC8 regulations, but the presented approach may in principle be applied to structures ruled by any regulation code. Governing equations are set in the frequency domain (and not in the periods domain as usual) so as to enable the adoption of sound approaches for analysis and design of dynamic structures that are typical of automatics. Among these, a novel usage of the H‐norm concept is proposed that determines a rational design approach capable to minimize the structural response with reference to any quantity of engineering interest, eg, the overall compliance and the displacement of a specific point or the interstorey drift. A numerical investigation on a 6‐storey 3‐bay frame is performed, and relevant analysis and design results are presented in much detail to validate the theoretical framework.  相似文献   

16.
This paper deals with an explicit numerical integration method for real‐time pseudo dynamic tests. The proposed method, termed the MPC‐SSP method, is suited to use in real‐time pseudo dynamic tests as no iteration steps are involved in each step of computation. A procedure for implementing the proposed method in real‐time pseudo dynamic tests is described in the paper. A state‐space approach is employed in this study to formulate the equations of motion of the system, which is advantageous in real‐time pseudo dynamic testing of structures with active control devices since most structural control problems are formulated in state space. A stability and accuracy analysis of the proposed method was performed based on linear elastic systems. Owing to an extrapolation scheme employed to predict the system's future response, the MPC‐SSP method is conditionally stable. To demonstrate the effectiveness of the MPC‐SSP method, a series of numerical simulations were performed and the performance of the MPC‐SSP method was compared with other pseudo dynamic testing methods including Explicit Newmark, Central Difference, Operator Splitting, and OS‐SSP methods based on both linear and non‐linear single‐degree‐of‐freedom systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
We analysed the complications in laboratory velocity anisotropy measurement on shales. There exist significant uncertainties in the laboratory determination of c13 and Thomsen parameter δ. These uncertainties are primarily related to the velocity measurement in the oblique direction. For reliable estimation of c13 and δ, it is important that genuine phase velocity or group velocity be measured with minimum uncertainty. The uncertainties can be greatly reduced if redundant oblique velocities are measured. For industrial applications, it is impractical to make multiple oblique velocity measurements on multiple core plugs. We demonstrated that it is applicable to make multiple genuine oblique group velocity measurements on a single horizontal core plug. The measurement results show that shales can be classified as a typical transversely isotropic medium. There is a coupling relation between c44 and c13 in determining the directional dependence of the seismic velocities. The quasi‐P‐wave or quasi‐S‐wave velocities can be approximated by three elastic parameters.  相似文献   

18.
A new semiactive independently variable damper, SAIVD, is developed and shown to be effective in achieving response reductions in smart base isolated buildings in near fault earthquakes. The semiactive device consists of four linear visco‐elastic elements, commonly known as Kelvin–Voigt elements, arranged in a rhombus configuration. The magnitude of force in the semiactive device can be adjusted smoothly in real‐time by varying the angle of the visco‐elastic elements of the device or the aspect ratio of the rhombus configuration. Such a device is essentially linear, simple to construct, and does not present the difficulties commonly associated with modelling and analysing nonlinear devices (e.g. friction devices). The smooth semiactive force variation eliminates the disadvantages associated with rapid switching devices. Experimental results are presented to verify the proposed analytical model of the device. A H control algorithm is implemented in order to reduce the response of base isolated buildings with variable damping semiactive control systems in near fault earthquakes. The central idea of the control algorithm is to design a H controller for the structural system that serves as an aid in the determination of the optimum control force in the semiactive device. The relative performance of the SAIVD device is compared to a variable friction device, recently developed by the authors in a separate study, and several key aspects of performance are discussed regarding the use of the two devices for reducing the responses of smart base isolated buildings in near fault earthquakes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Following up our recent study of an indirect procedure for the practical determination of the maximum frequency-effect, defined as fe = 1 ? pρdc with ρ the resistivity at infinite frequency, we show at first how, through the Laplace transform theory, ρ can be related to stationary field vectors in the simple form of Ohm's law. Then applying the equation of continuity for stationary currents with a suitable set of boundary conditions, we derive the integral expression of the apparent resistivity at infinite frequency ρ,a in the case of a horizontally layered earth. Finally, from the definition of the maximum apparent frequency-effect, analytical expressions of feα are obtained for both Schlumberger and dipole arrays placed on the surface of the multi-layered earth section in the most general situation of vertical changes in induced polarization together with dc resistivity variations not at the same interfaces. Direct interpretation procedures are suggested for obtaining the layering parameters directly from the analysis of the sounding curves.  相似文献   

20.
Post‐tensioned technologies for concrete seismic resistant buildings were first developed in the 1990s during the PREcast Seismic Structural Systems program. Among different solutions, the hybrid system proved to be the most resilient solution providing a combination of re‐centering and energy dissipative contributions respectively by using post‐tensioned tendons and mild steel reinforcement. The system, while providing significant strength and energy dissipation, reduces structural element damage and limits post‐earthquake residual displacements. More recently, the technology was extended to laminated veneer lumber (LVL) structural members, and extensive experimental and numerical work was carried out and allowed the development of reliable analytical and numerical models as well as design guidelines. On the basis of the experimental and numerical outcomes, this paper presents the evaluation of the seismic performance factors for post‐tensioned rocking LVL walls using the FEMA P‐695 procedure. Several archetype buildings were designed considering different parameters such as the building and story height, the type of seismic resistant system, the magnitude of gravity loads and the seismic design category. Lumped plasticity models were developed for each index archetype to simulate the behavioral aspects and collapse mechanisms. Non‐linear quasi‐static analyses were carried out to evaluate the system over‐strength factor; moreover, non‐linear time history analyses were performed using the incremental dynamic analysis concept to assess the collapse of each building. From the results of quasi‐static and dynamic analyses the response modification factor, R, system over‐strength factor, Ω0, and deflection amplification factor, Cd, values of, respectively, 7, 3.5 and 7.5 are recommended. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号