共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigation on drought characteristics such as severity, duration, and frequency is crucial for water resources planning and management in a river basin. While the methodology for multivariate drought frequency analysis is well established by applying the copulas, the estimation on the associated parameters by various parameter estimation methods and the effects on the obtained results have not yet been investigated. This research aims at conducting a comparative analysis between the maximum likelihood parametric and non-parametric method of the Kendall \(\tau \) estimation method for copulas parameter estimation. The methods were employed to study joint severity–duration probability and recurrence intervals in Karkheh River basin (southwest Iran) which is facing severe water-deficit problems. Daily streamflow data at three hydrological gauging stations (Tang Sazbon, Huleilan and Polchehr) near the Karkheh dam were used to draw flow duration curves (FDC) of these three stations. The \(Q_{75}\) index extracted from the FDC were set as threshold level to abstract drought characteristics such as drought duration and severity on the basis of the run theory. Drought duration and severity were separately modeled using the univariate probabilistic distributions and gamma–GEV, LN2–exponential, and LN2–gamma were selected as the best paired drought severity–duration inputs for copulas according to the Akaike Information Criteria (AIC), Kolmogorov–Smirnov and chi-square tests. Archimedean Clayton, Frank, and extreme value Gumbel copulas were employed to construct joint cumulative distribution functions (JCDF) of droughts for each station. Frank copula at Tang Sazbon and Gumbel at Huleilan and Polchehr stations were identified as the best copulas based on the performance evaluation criteria including AIC, BIC, log-likelihood and root mean square error (RMSE) values. Based on the RMSE values, nonparametric Kendall- \(\tau \) is preferred to the parametric maximum likelihood estimation method. The results showed greater drought return periods by the parametric ML method in comparison to the nonparametric Kendall \(\tau \) estimation method. The results also showed that stations located in tributaries (Huleilan and Polchehr) have close return periods, while the station along the main river (Tang Sazbon) has the smaller return periods for the drought events with identical drought duration and severity. 相似文献
2.
Droughts are complex natural hazards that, to a varying degree, affect some parts of the world every year. The range of drought impacts is related to drought occurring in different stages of the hydrological cycle and usually different types of droughts such as meteorological, agricultural, hydrological, and socio-economical are the most distinguished types. Hydrological drought includes streamflow and groundwater droughts. In this paper, streamflow drought was analyzed using the method of truncation level (at 70 % level) by daily discharges at 54 stations in southwestern Iran. Frequency analysis was carried out for annual maximum series of drought deficit volume and duration. 35 factors such as physiographic, climatic, geologic and vegetation were studied to carry out the regional analysis. According to conclusions of factor analysis, the six most effective factors include watershed area, the sum rain from December to February, the percentage of area with NDVI <0.1, the percentage of convex area, drainage density and the minimum of watershed elevation, explained 89.2 % of variance. The homogenous regions were determined by cluster analysis and discriminate function analysis. The suitable multivariate regression models were ascertained and evaluated for hydrological drought deficit volume with 2 years return period. The significance level of models was 0.01. The conclusion showed that the watershed area is the most effective factor that has a high correlation with drought deficit volume. Moreover, drought duration was not a suitable index for regional analysis. 相似文献
5.
As drought occurs in different climates, assessment of drought impacts on parameters such as vegetation cover is of utmost importance. Satellite remote sensing images with various spectral and spatial resolutions represent information about different land covers such as vegetation cover. Hence, the purpose of this study was to investigate the performance of satellite vegetation indices to monitor the agricultural drought on a local scale. In this regard, satellite images including Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) data were used to evaluate vegetation cover and their gradual changes effects on agricultural drought. Fars province in Iran with relatively low precipitation values was selected as the study area. Modified Perpendicular Drought Index (MPDI), MPDI1, Vegetation Condition Index (VCI), Normalized Difference Vegetation Index Anomalies (NDVIA), and Standardized Vegetation Index (SVI), were evaluated to select the remote sensing based index with the best performance in drought monitoring. The performance of such indices were investigated during 13 years (2000–2013) for MODIS and 29 years (1985–2013) for AVHRR. To assess the efficiency of the satellite indices in drought investigation, Standardized Precipitation Index (SPI) data of five selected stations were used for 3, 6, and 9 month periods on August. The results showed that NDVI-based vegetation indices had the highest correlation with SPI in cold climate and long-term timescale (6 and 9 month). The highest correlation values between remote sensing based indices and SPI were acquired, respectively, in 9-month and 6-month time-scales, with the values of 43.5% and 40%. Moreover, VCI showed the highest capability for agricultural drought investigating in different climate regions of the study area. Overall, the results proved that NDVI-based indices can be used for drought monitoring and assessment in a long-term timescale on a local time-scale. 相似文献
8.
Drought is accounted as one of the most natural hazards. Studying on drought is important for designing and managing of water resources systems. This research is carried out to evaluate the ability of Wavelet-ANN and adaptive neuro-fuzzy inference system (ANFIS) techniques for meteorological drought forecasting in southeastern part of East Azerbaijan province, Iran. The Wavelet-ANN and ANFIS models were first trained using the observed data recorded from 1952 to 1992 and then used to predict meteorological drought over the test period extending from 1992 to 2011. The performances of the different models were evaluated by comparing the corresponding values of root mean squared error coefficient of determination ( R 2) and Nash–Sutcliffe model efficiency coefficient. In this study, more than 1,000 model structures including artificial neural network (ANN), adaptive neural-fuzzy inference system (ANFIS) and Wavelet-ANN models were tested in order to assess their ability to forecast the meteorological drought for one, two, and three time steps (6 months) ahead. It was demonstrated that wavelet transform can improve meteorological drought modeling. It was also shown that ANFIS models provided more accurate predictions than ANN models. This study confirmed that the optimum number of neurons in the hidden layer could not be always determined using specific formulas; hence, it should be determined using a trial-and-error method. Also, decomposition level in wavelet transform should be delineated according to the periodicity and seasonality of data series. The order of models with regard to their accuracy is as following: Wavelet-ANFIS, Wavelet-ANN, ANFIS, and ANN, respectively. To the best of our knowledge, no research has been published that explores coupling wavelet analysis with ANFIS for meteorological drought and no research has tested the efficiency of these models to forecast the meteorological drought in different time scales as of yet. 相似文献
9.
This paper describes the application of the knowledge-based fuzzy logic method to integrate various exploratory geo-dataset in order to prepare a mineral prospectivity map (MPM) for copper exploration. Different geophysical layers which are derived from the magnetic and the electrical surveys, along with the ones extracted from the background geology (i.e., lithology, fault and alteration) and geochemical data are incorporated in such process. Seridune copper deposit located in the Kerman province of Iran is the case study to delineate its high potential zones of Cu-bearing mineralization for drilling additional boreholes. Four layers from the magnetic data involving upward continuation, analytic signal, reduced to pole and pseudo gravity are assigned in the multi-disciplinary geo-dataset to locate the intrusive complexes responsible for Cu mineralization. The apparent resistivity, chargeability and sulfide factor layers acquired from geo-electrical data are also included in the final preparation of MPM. Then the normalized weights of seven geophysical, three geological and one geochemical evidential layers as main criteria are determined based upon the knowledge of expert decision makers. Fuzzy operators (i.e., Sum and Gamma) are applied to integrate these exploratory features. To evaluate the performance and applicability of the approach, the productivity of the drilled boreholes (Cu concentration multiplied by ore thickness) are used to validate the produced MPMs. It is shown that an optimum correlation coefficient of 0.86 exists between the MPM values and Cu productivity criterion along drilled boreholes. 相似文献
10.
Investigations of failures of soil masses are subjects touching both geology and engineering. These investigations call the joint efforts of engineering geologists and geotechnical engineers. Geotechnical engineers have to pay particular attention to geology, ground water, and shear strength of soils in assessing slope stability. Artificial neural networks (ANNs) are very sophisticated modeling techniques, capable of modeling extremely complex functions. In particular, neural networks are nonlinear. In this research, with respect to the above advantages, ANN systems consisting of multilayer perceptron networks are developed to predict slope stability in a specified location, based on the available site investigation data from Noabad, Mazandaran, Iran. Several important parameters, including total stress, effective stress, angle of slope, coefficient of cohesion, internal friction angle, and horizontal coefficient of earthquake, were used as the input parameters, while the slope stability was the output parameter. The results are compared with the classical methods of limit equilibrium to check the ANN model’s validity. 相似文献
11.
Land use/land cover (LU/LC) that are significant elements for the interconnection of human activities and environment monitoring can be useful to find out the deviations of saving a maintainable environment. Remote sensing is a very useful tool for the affair of land use or land cover monitoring, which can be helpful to decide the allocation of land use and land cover. Supervised classification-maximum likelihood algorithm in GIS was applied in this study to detect land use/land cover changes observed in Kan basin using multispectral satellite data obtained from Landsat 5 (TM) and 8 (OLI) for the years 2000 and 2016, respectively. The main aim of this study was to gain a quantitative understanding of land use and land cover changes in Kan basin of Tehran over the period 2000–2016. For this purpose, firstly supervised classification technique was applied to Landsat images acquired in 2000 and 2016. The Kan basin was classified into five major LU/LC classes including: Built up areas, garden, pasture, water and bare-land. Change detection analysis was performed to compare the quantities of land cover class conversions between time intervals. The results revealed both increase and decrease of the different LU/LC classes from 2000 to 2016. The results indicate that during the study period, built-up land, and pastures have increased by 0.2% (76.4 km 2) and 0.3% (86.03 km 2) while water, garden and bare land have decreased by 0, 0.01% (3.62 km 2) and 0.4% (117.168 km 2), respectively. Information obtained from change detection of LU/LC can aid in providing optimal solutions for the selection, planning, implementation and monitoring of development schemes to meet the increasing demands of human needs in land management. 相似文献
12.
Soil texture is a key variable that reflect a number of soil properties such as soil permeability, water holding capacity, nutrient storage and availability, and soil erosion. The main objective of this study was to produce the kriged maps of soils of the Shahrekord region, central Iran. One hundred four soil samples were collected on a 375-m 2 sampling grid from the depths of 0–30, 30–60, and 60–100 centimeter, and their particle sizes were determined using hydrometer method. The results showed a moderately spatial correlation in the soil particles among sampling soil layers and across the study area. Moreover, increasing clay and therewith observation of heavier soil textures is evident from surface to subsurface layers of the soils in the studied area due to rainfall and/or irrigation agriculture. These findings indicated that study of the soil texture variation with depth can be used as a clue for site-specific management and precision agriculture. Moreover, we suggest further analysis by using other data layers like topographical parameters, land use, parent material, soil erosion, and any other information which might influence the spatial distribution of soil texture. 相似文献
13.
Earth dam site selection is one of the most important problems in water resources management. It depends on a set of qualitative and quantitative criteria, and they may even be in conflict with each other. This study aims to develop a multicriteria decision-making approach to locate the dam site and construct a multipurpose earth dam in Harsin City at the western part of Iran. For this purpose, firstly, the influential criteria for locating the earth dam site were determined using a comprehensive literature review and the experts’ opinions. Then, some watersheds in the surrounding areas of Iran’s Harsin City were studied and four feasible sites proposed. In the final stage, these sites, in order to construct a multipurpose earth dam, were prioritized using the analytic hierarchy process approach and the most optimal site was selected. 相似文献
14.
Accurate estimation of low flow as a criterion for different objectives in water resource management, including drought is of crucial importance. Despite the complex nature of water deficits, univariate methods have often been used to analyze the frequency of low flows. In this study, low flows of Dez River basin were examined during period of 1956–2012 using copula functions at the upstream of headbranches’ junction. For this purpose, at first 7-day series of low flow was extracted at the studied stations, then their homogeneity was examined by Mann–Kendall test. The results indicated that 7-day low flow series of Dez basin were homogenous. In the next stage, 12 different distribution functions were fitted onto the low flow data. Finally, for Sepid Dasht Sezar (SDS), Sepid Dasht Zaz (SDZ), and Tang Panj Bakhtiyari (TPB) stations, logistic distribution had the best fit, while for Tang Panj Sezar (TPS) station, GEV distribution enjoyed the best fit. After specifying the best fitted marginal distributions, seven different copula functions including Ali–Mikhail–Haq (AMH), Frank, Clayton, Galambos, Farlie–Gumbel–Morgenstern (FGM), Gumbel–Hougaard (GH), and Plackett were used for bivariate frequency analysis of the 7-day low flow series. The results revealed that the GH copula had the best fitness on paired data of SDS and SDZ stations. For TPS and TPB stations, Frank copula has had the best correspondence with empirical copula values. Next, joint and conditional return periods were calculated for the low flow series at the upstream of branches’ junction. The results of this study indicated that the risk of incidence of severe drought is higher in upstream stations (SDZ and SDS) when compared with downstream stations (TPB and TPS) in Dez basin. Generally, application of multivariate analysis allows researchers to investigate hydrological events with a more comprehensive view by considering the simultaneous effect of the influencing factors on the phenomenon of interest. It also enables them to evaluate different combinations of required scenarios for integrated management of basin and planning to cope with the damages caused by natural phenomena. 相似文献
16.
All the conventional techniques for the analysis of slope stability ranging from simple kinematic analysis using stereonets, to the various widely used limit equilibrium methods, to sophisticated numerical methods belong to a category that are generally known as the analytic approaches and thus are only able to consider a limited number of affecting factors and then solve the problem in details. In contrast, the systems approaches not only can examine the problem in its totality with a complete list of the components, but also can take the interactions between the factors into account. This paper presents a complete application of a well-known systems technique named the Interaction Matrix (IM) in ranking the instability potential of rock slopes of the Khosh-Yeylagh Main Road, Iran as the case study of the research. For this purpose, 15 stations have been selected and a relatively comprehensive database containing the fieldwork information has been constructed. Following the IM technique, the most important factors relating to the general environment and to the rock mass characteristics have been considered. Their reciprocal causes and effects have been analyzed in order to weight each parameter according to its degree of interactivity in the system. Then, the slope instability index has been calculated which refers to the inherent potential instability of each slope of the examined region. The final instability ranking has been presented for the investigated slopes in Khosh-Yeylagh Main Road based on a simple classification. The main aim of the study is to extend the use of systems approach and specifically the IM technique in slope stability analysis. Also, this research shows the importance of consideration of an approximately complete set of key parameters affecting the stability of rock slopes. 相似文献
18.
Qom is the eighth most populated city in center of Iran, and its population growth rate is among the highest in this country. Th presence of a Great Salt Lake, petroleum potential and tourism attractions in this city sheds light on the importance of how solid waste landfill locations should be disposed, located and managed as an environmental issue. Considering the key parameters in landfill site selection, in this study a series of location analysis have been conducted to locate optimum regions for municipal solid waste disposal, using analytical hierarchy process (AHP) and geographical information system (GIS). The main factors in selecting the suitable location for waste disposal include geomorphology–hydrography, environmental–social factors and design criteria, each of which are subdivided into several categories. Criteria are selected according to the regional condition; therefore, important factors such as distance from sea and forested areas were not considered. In the next step, digital layers are weighted and classified according to the available standards and expert judgment. Then, analytical multi-criteria decision-making algorithms as AHP and weighted linear combination are applied upon existing layers in GIS. The results show that by implementing the AHP method in this region only 7% of the study area has a very good and appropriate condition for landfill location and the field observation confirms them. Finally, considering the environmental effects of landfill, appropriate locations are suggested. 相似文献
19.
Groundwater quality of Tehran city is considered in this study. Nine sampling stations were selected, and composite sampling campaign was performed in summer 2012. Groundwater sampled from northern stations appeared to have acceptable characteristics for agricultural and drinking uses. The southern station samples did not meet the required guidelines. Concentration of SO 4 2?, Na + and Cl ? obey a sharp ascending trend southwards. Accordingly, the electrical conductivity of the last station at the very southern areas is more than fifteen times greater than that of the first northern station. Tehran city is located in a semi-arid climate and experiences long hot summers. High rates of evapo-transpiration within urban green spaces and agricultural lands facilitate the salinization phenomenon in root zones. As a result, excess irrigation water eases the consequent percolation into aquifers. Furthermore, saline water intrusion from salt marshes located down south of the city is an expected consequence of wells overpumping. Such case is especially remarkable in hot seasons when an increased urban water demand is observed. Remarkable sulfate concentrations in saline water are mainly justified by percolation of sulfate containing fertilizers which are broadly used by local farmers in an uncontrolled manner. Surface run-offs and municipal wastewater leakage may also trigger the salinization process. 相似文献
20.
This article concerns the analysis of the heavy precipitation, which allows investigating the effect of the blocking system on the unusual precipitation and temperature occurrence in Iran. The days of January 2008 have been the coldest days during the history of recorded data in Iran. Variation of precipitation during January 2008 compared with long-term data (30 years) shows the maximum positive anomaly in the stations located in southeast of Iran. However, the precipitation in consecutive days, 14–15 and 15–16 of January, produce a more important proportion of the heavy precipitation in this region. In order to study the role of the blocking system related to heavy precipitation in January 2008, the position and movement of the atmospheric systems including cyclones, anticyclones, fronts, and wind fields have been analyzed by the use of synoptic maps by the environment to circulation approach. Consequently, the weather maps indicated that the blocking system over the north of the Caspian Sea has caused the relatively deep low trough on January 5, 7, 14, 15, and 16, 2008, while the thermal and moisture gradients in the warm section of air masses have produced heavy precipitation. As a result, wind field of low levels (850 hPa) provided remarkable moisture fed by the Arabian Sea, Oman Sea, and Persian Gulf in the study area. Furthermore, the speed of wavelength and the position of the blocking system associated with the heavy precipitation can be clearly identified. 相似文献
|