共查询到20条相似文献,搜索用时 0 毫秒
1.
The term connectivity has emerged as a powerful concept in hydrology and geomorphology and is emerging as an innovative component of catchment erosion modeling studies. However, considerable confusion remains regarding its definition and quantification, especially as it relates to fluvial systems. This confusion is exacerbated by a lack of detailed case studies and by the tendency to treat water and sediment separately. Extreme flood events provide a useful framework to assess variability in connectivity, particularly the connection between channels and floodplains. The catastrophic flood of January 2011 in the Lockyer valley, southeast Queensland, Australia provides an opportunity to examine this dimension in some detail and to determine how these dynamics operate under high flow regimes. High resolution aerial photographs and multi‐temporal LiDAR digital elevation models (DEMs), coupled with hydrological modeling, are used to assess both the nature of hydrologic and sedimentological connectivity and their dominant controls. Longitudinal variations in flood inundation extent led to the identification of nine reaches which displayed varying channel–floodplain connectivity. The major control on connectivity was significant non‐linear changes in channel capacity due to the presence of notable macrochannels which contained a > 3000 average recurrence interval (ARI) event at mid‐catchment locations. The spatial pattern of hydrological connectivity was not straight‐forward in spite of bankfull discharges for selected reaches exceeding 5600 m3 s–1. Data indicate that the main channel boundary was the dominant source of sediment while the floodplains, where inundated, were the dominant sinks. Spatial variability in channel–floodplain hydrological connectivity leads to dis‐connectivity in the downstream transfer of sediments between reaches and affected sediment storage on adjacent floodplains. Consideration of such variability for even the most extreme flood events, highlights the need to carefully consider non‐linear changes in key variables such as channel capacity and flood conveyance in the development of a quantitative ‘connectivity index’. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
The sediment connectivity concept is particularly suitable for tackling complex, multidisciplinary questions through systems thinking. However, it is unclear how to directly measure connectivity, and so proxy variables are often applied by indices to provide estimates. In this study, we critically evaluate a broad range of connectivity indices encompassing structural and functional connectivity as well as hillslope channel coupling. We then discuss their role in providing a more holistic estimation of connectivity within the Tahoma Creek Watershed, WA. Of the 14 km of channel below the glacier front, the upper 6 km (0–6 km) are coupled to the adjacent hillslopes. Coupled reaches correspond to regions with a high proportion of area contributing sediment and relatively high connectivity values, where all measures decrease in the downstream direction. A significant transition occurs near river kilometer 6. Here the valley bottom abruptly widens, deposition occurs, and the hillslopes become decoupled from the active channel. This transitional reach is also identified as a geomorphic hotspot based on the network structure. The lower 8 km of channel downstream of this reach are largely depositional and percent contributing area and connectivity values remain low, eventually reaching a minimum. Despite their limitations, we found each method to provide unique and useful information regarding connectivity. The effect of scale and event magnitude on connectivity is illustrated. We also found vegetation, topographic characteristics, and network structure to be important in high-gradient glacio-volcanic landscapes. The choice of an index will depend on the research objectives, data availability, and the proxy variables that best describe the variability within the defined area. 相似文献
3.
Reworking of basin fill deposits along a tributary of the upper Yellow River: Implications for changes to landscape connectivity 总被引:1,自引:0,他引:1 下载免费PDF全文
Recent emphasis on sediment connectivity in the literature highlights the need for quantitative baseline studies on the patterns and distribution of sediment stores to facilitate understanding of how sediment moves through the landscape at various temporal and spatial scales. This study evaluates the distribution and make‐up of sediment stores within the dramatically incised landscapes of the upper Yellow River, where basin fill deposits up to 1200 m in depth have been extensively reworked following incision by the Yellow River. Field and GIS analyses highlight the discontinuous distribution of sediment stores in Garang catchment, a 236 km2 tributary of the upper Yellow River. Volumetric estimates of sediment storage were obtained through a combination of field mapping, GPR transects, and GIS analyses. Sediment stores cover 20% of the Garang catchment, with an estimated volume of 474.0 × 106 m3, and inferred residence times from OSL and 14C dating of 103–104 years. Fans and terraces reworked from basin fill deposits, and associated cut and fill terrace features, are the dominant forms of sediment storage (~90% of total). A space‐for‐time argument is used to assess stages of basin infilling and subsequent landscape responses to incision, outlining a dramatic example of changes to sediment dynamics and connectivity relationships within the upper Yellow River. Sediments within the upper catchment lie above the regional basin fill level, offering a glimpse of pre‐incisional conditions. This contrasts markedly with the enduring influence of basin incisional history seen within the middle catchment, and the contemporary landscapes of the lower catchment where nearly all available sediment has been excavated from the basin and the landscape effectively operates under post‐incisional conditions. The need to contextualise catchment‐scale studies in terms of landscape history is emphasised. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
4.
(Dis)Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem 总被引:2,自引:0,他引:2
Kirstie Fryirs 《地球表面变化过程与地形》2013,38(1):30-46
The concept of the sediment delivery problem was introduced into the literature in 1983 by Des Walling. This concept describes how only a fraction of sediment eroded within a catchment will reach the basin outlet and be represented as sediment yield, and that sediment storage mechanisms operating within a catchment explain this discrepancy. Since this paper was published, geomorphologists have been examining in great detail the fate of sediment eroded from the landsurface, and the pathways and timeframes of sediment transport and storage in catchments. However, to fully understand the internal dynamics of sediment flux requires a ‘fresh look at the sediment delivery problem’. A framework is required that can incorporate the various processes involved in sediment movement from source areas through a basin to its outlet, and can take account of the spatial distribution of, and timeframes over which, these processes operate. This paper presents a conceptual framework for analysis of catchment (dis)connectivity that incorporates both spatial and temporal variability in the operation of the sediment cascade. This approach examines where blockages occur to disrupt these longitudinal, lateral and vertical linkages in catchments. Depending on the position of blockages (termed buffers, barriers and blankets), and their sediment residence time, various parts of a catchment may be actively contributing sediment to the sediment cascade and be switched on, or inactive and switched off. This paper discusses how such a framework can be used to model response times to disturbance and explain the manifestation of geomorphic change in catchments. The paper then highlights challenges geomorphologists face in applying such a framework to understand the internal dynamics of the catchment sediment cascades, and forecast how environmental change might affect the operation of sediment fluxes into the future. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
5.
Bartel H. J. Van Nieuwenhuyse Michael Antoine Guido Wyseure Gerard Govers 《水文研究》2011,25(24):3760-3773
The degree of hydrological connectivity is mainly determined by the spatial organisation of heterogeneity. A meaningful and aggregate abstraction of spatial patterns is one of the promising means to gain fundamental insights into this complex interaction and can, moreover, be used as a tool to acquire a profound understanding of the major controls of catchment hydrology. In order to disclose such controls, pattern‐process relationships and the explanatory power of landscape metrics were tested by simulating the runoff of differently patterned virtual basins, generated by neutral landscape models and fractal networks and solved by a surface hydrological model composed of kinematic wave routing and Green‐Ampt infiltration. A total of 23 landscape metrics quantified the spatial patterns and were subsequently related to the functional connectivity, assessed as the proportion of internal runoff generation constituting the hydrological response at the outlet. Landscape metrics allowed the identification of dominant features of heterogeneity that explained the observed connectivity, and to disclose changes in control with class abundance. Therefore, landscape metrics are a useful tool for basin comparison and classification in terms of the dominant processes and the corresponding model structure requirements. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
6.
The influence of landscape connectivity and landslide dynamics upon channel adjustments and sediment flux in the Liwu Basin,Taiwan 下载免费PDF全文
Catchment‐scale analyzes of spatial and temporal variability in landscape connectivity are critical considerations in appraisals of landscape evolution and disaster mitigation in tectonically active mountain belts such as Taiwan. This study uses historical aerial photographs, flow discharge and seismic data to analyze landslide changes and channel adjustments over a 30 year period in the Liwu Basin. Recurrent earthquakes and typhoon events trigger frequent landslide activity, channel adjustment and sediment reworking in this system. Spatial variability in magnitude–frequency relations of hillslope‐valley floor (lateral) and upstream–downstream (longitudinal) connectivity during the study period are shown to reflect annual reworking in source and accumulation zones, while partly‐confined valleys in the mid‐catchment area trap sediment behind landslide‐induced dams that are formed and breached on an approximately decadal basis. This promotes partial longitudinal connectivity in these areas. Landscape responses to disturbance events were especially pronounced following combinations of seismic and typhoon events prior to the 1998 and 2005 images. Although single high magnitude events and series of moderate events affect patterns of landscape connectivity in the Liwu Basin, residence times for sediment storage are very short in this highly‐connected river system, where confined valley settings extend virtually to the coast. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
7.
Analysis of landslide frequencies and characteristics in a natural system,coastal British Columbia 总被引:1,自引:0,他引:1
Two hundred and one debris slides and debris ?ows were analyzed in a 286 km2 study area on the west coast of Vancouver Island, British Columbia, Canada. The study area remains essentially untouched by humans and therefore affords a natural setting in which to examine slope processes. Landslides were identi?ed and characterized on aerial photographs from 1:15 000 to 1:31 680, and were then mapped and transferred to a GIS for analysis. Based on detailed landslide surveys, we propose a new method to accurately determine volume of landslides of this type by measured total area. Results indicate average denudation rates of 56 m3 y?1 km?2, and higher natural rates of failure than analogous regions in coastal British Columbia. In contrast, the landslide rates are substantially less than those from forested watersheds. Landslide distribution is spatially clustered in air photograph epochs, and we propose intense storm cells within regional events as the causal mechanism. Further, failures occurred preferentially over the West Coast Crystalline Complex (by 1·4 times), a metamorphic assemblage of gabbros, schists and amphibolites, but 1·5 times less often over the Island Plutonic Suite, a granitic intrusive formation. The former result represents a new ?nding, while the latter corroborates ?ndings of previous authors. We examined magnitude–frequency relationships of the data set and present for the ?rst time a strong argument that the rollover effect is not merely an artefact, but is instead a consequence of the physical characteristics of the landslides themselves. We subsequently analyzed magnitude–frequency relationships from two other complete data sets from coastal British Columbia and produced a family of curves corroborating this result. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
8.
Any attempt to measure connectivity within a system requires a set of entities to be defined that permit the connectivity among them to be quantified. Here we propose the geomorphic cell as such an entity. We provide a means to identify these cells, define a terminology for describing cell state, and identify the pathways of connections (connecteins) to and from cells. We conceptualize the geomorphic cell as being a three‐dimensional body of the geomorphosphere, which is delimited from neighbouring cells and neighbouring spheres by different types of boundary. Vertically, the upper boundary of a geomorphic cell is defined by the atmosphere, while the lower boundary is generally formed by the bedrock layer of the lithosphere. Laterally, geomorphic cells are delimited from neighbouring cells with a change in environmental characteristics that determine hydro‐geomorphic boundary conditions (e.g. geology, soils, topography and/or vegetation). Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
9.
There has been little work to date into the controls on slope‐to‐channel fine sediment connectivity in alpine environments largely ice‐free for most of the Holocene. Characterization of these controls can be expected to result in better understanding of how landscapes “relax” from such perturbations as climate shock. We monitored fine sediment mobilization on a slope segment hydrologically connected to a stream in the largely ice‐free 8·3 km2 Hoophorn Valley, New Zealand. Gerlach traps were installed in ephemeral slope channels to trap surficial material mobilized during rainfall events. Channel sediment flux was measured using turbidimeters above and below the connected slope, and hysteresis patterns in discharge‐suspended sediment concentrations were used to determine sediment sources. Over the 96 day measurement period, sediment mobilization from the slope segment was limited to rainfall events, with increasingly larger particles trapped as event magnitude increased. Less than 1% of the mass of particles collected during these events was fine sediment. During this period, 714 t of suspended sediment was transported through the lower gauging station, 60% of it during rainfall events. Channel sediment transfer patterns during these events were dominated by clockwise hysteresis, interpreted as remobilization of nearby in‐channel sources, further suggesting limited input of fine sediment from slopes in the lower valley. Strong counterclockwise hysteresis, representing input of fine sediment from slope segments, was restricted to the largest storm event (JD2 2009) when surfaces in the upper basin were activated. The results indicate that the slopes of the lower Hoophorn catchment are no longer functioning as sources of fine sediment, but rather as sources of coarse material, with flux rates controlled by the intensity and duration of rainfall events. Although speculative, these findings suggest a shift to a coarse sediment dominated slope‐to‐channel transfer system as the influence of pre‐Holocene glacial erosion declines. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
10.
Xiaoping Zhang Pengfei Lin Hao Chen Rui Yan Jianjun Zhang Yipeng Yu Erjia Liu Yahui Yang Wenhui Zhao Du Lv Siyue Lei Baoyuan Liu Xihua Yang Zhiguang Li 《水文研究》2018,32(4):576-589
The Loess Plateau has been experiencing large‐scale land use and cover changes (LUCCs) over the past 50 years. It is well known about the significant decreasing trend of annual streamflow and sediment load in the catchments in this area. However, how surface run‐off and sediment load behaved in response to LUCC at flood events remained a research question. We investigated 371 flood events from 1963 to 2011 in a typical medium‐sized catchment within the Plateau in order to understand how LUCC affected the surface run‐off generation and sediment load and their behaviours based on the analysis of return periods. The results showed that the mean annual surface run‐off and sediment load from flood events accounted for 49.6% and 91.8% of their mean annual totals. The reduction of surface run‐off and associated sediment yield in floods explained about 85.0% and 89.2% of declines in the total annual streamflow and sediment load, respectively. The occurrences of flood events and peak sediment concentrations greater than 500 kg/m3 showed a significantly downward trend, yet the counterclockwise loop events still dominated the flood event processes in the catchment. The results suggest that LUCC over the past 50 years resulted in significant changes in the water balance components and associated soil erosion and sediment transportation in the catchment. This was achieved mainly by reducing surface run‐off and sediment yield during floods with return period of less than 5 years. Run‐off–sediment load behaviour during the extreme events with greater than 10‐year return periods has not changed. Outcomes from this study are useful in understanding the eco‐hydrological processes and assisting the sustainable catchment management and land use planning on the Loess Plateau, and the methodologies are general and applicable to similar areas worldwide. 相似文献
11.
M. Wyss F. Klein K. Nagamine S. Wiemer 《Journal of Volcanology and Geothermal Research》2001,106(1-2)
The pattern of b-value of the frequency–magnitude relation, or mean magnitude, varies little in the Kaoiki-Hilea area of Hawaii, and the b-values are normal, with b=0.8 in the top 10 km and somewhat lower values below that depth. We interpret the Kaoiki-Hilea area as relatively stable, normal Hawaiian crust. In contrast, the b-values beneath Kilauea's South Flank are anomalously high (b=1.3–1.7) at depths between 4 and 8 km, with the highest values near the East Rift zone, but extending 5–8 km away from the rift. Also, the anomalously high b-values vary along strike, parallel to the rift zone. The highest b-values are observed near Hiiaka and Pauahi craters at the bend in the rift, the next highest are near Makaopuhi and also near Puu Kaliu. The mildest anomalies occur adjacent to the central section of the rift. The locations of the three major and two minor b-value anomalies correspond to places where shallow magma reservoirs have been proposed based on analyses of seismicity, geodetic data and differentiated lava chemistry. The existence of the magma reservoirs is also supported by magnetic anomalies, which may be areas of dike concentration, and self-potential anomalies, which are areas of thermal upwelling above a hot source. The simplest explanation of these anomalously high b-values is that they are due to the presence of active magma bodies beneath the East Rift zone at depths down to 8 km. In other volcanoes, anomalously high b-values correlate with volumes adjacent to active magma chambers. This supports a model of a magma body beneath the East Rift zone, which may widen and thin along strike, and which may reach 8 km depth and extend from Kilauea's summit to a distance of at least 40 km down rift. The anomalously high b-values at the center of the South Flank, several kilometers away from the rift, may be explained by unusually high pore pressure throughout the South Flank, or by anomalously strong heterogeneity due to extensive cracking, or by both phenomena. The major b-value anomalies are located SSE of their parent reservoirs, in the direction of motion of the flank, suggesting that magma reservoirs leave an imprint in the mobile flank. We hypothesize that the extensive cracking may have been acquired when the anomalous parts of the South Flank, now several kilometers distant from the rift zone, were generated at the rift zone near persistent reservoirs. Since their generation, these volumes may have moved seaward, away from the rift, but earthquakes occurring in them still use the preexisting complex crack distribution. Along the decollement plane at 10 km depth, the b-values are exceptionally low (b=0.5), suggesting faulting in a more homogeneous medium. 相似文献
12.
Riffle–pool sequences are maintained through the preferential entrainment of sediment grains from pools rather than riffles. This preferential entrainment has been attributed to a reversal in the magnitude of velocity and shear stress under high flows; however the Differential Sediment Entrainment Hypothesis (DSEH) postulates that differential entrainment can instead result from spatial sedimentological contrasts. Here we use a novel suite of in situ grain‐scale field measurements from a riffle–pool sequence to parameterize a physically‐based model of grain entrainment. Field measurements include pivoting angles, lift forces and high resolution digital elevation models (DEMs) acquired using terrestrial laser scanning, from which particle exposure, protrusion and surface roughness were derived. The entrainment model results show that grains in pools have a lower critical entrainment shear stress than grains in either pool exits or riffles. This is because pool grains have looser packing, hence greater exposure and lower pivoting angles. Conversely, riffle and pool exit grains have denser packing, lower exposure and higher pivoting angles. A cohesive matrix further stabilizes pool exit grains. The resulting predictions of critical entrainment shear stress for grains in different subunits are compared with spatial patterns of bed shear stress derived from a two‐dimensional computational fluid dynamics (CFD) model of the reach. The CFD model predicts that, under bankfull conditions, pools experience lower shear stresses than riffles and pool exits. However, the difference in sediment entrainment shear stress is sufficiently large that sediment in pools is still more likely to be entrained than sediment in pool exits or riffles, resulting in differential entrainment under bankfull flows. Significantly, this differential entrainment does not require a reversal in flow velocities or shear stress, suggesting that sedimentological contrasts alone may be sufficient for the maintenance of riffle–pool sequences. This finding has implications for the prediction of sediment transport and the morphological evolution of gravel‐bed rivers. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
13.
Geomorphic processes operate at multiple spatio-temporal scales and different levels of hierarchy. It is therefore necessary to understand the linkages of landscapes across various scales and levels to gain insights into their interactions and feedbacks. Connectivity is an emergent property of the hydro-geomorphic systems, and it is gradually evolving into a unifying concept in geomorphology. The connectivity approach has the potential to be applied extensively to diverse hydro-geomorphic systems of India to understand their complexity as well as for designing effective management practices for river systems and wetlands, optimizing water resources for agriculture, and monitoring and restoration of habitats. Studies on connectivity, particularly in geomorphic context, have been growing steadily in India, albeit at a much slower pace compared to the global trends. This article undertakes a brief overview of the global developments particularly in terms of providing some clarity among the different types of geomorphic connectivity and their inter-relationships and feedbacks. We then take stock of the connectivity research in India in recent years as applied in different hydrogeomorphic systems across the country. We utilize a number of Indian case studies to illustrate the important developments and applications of connectivity concepts, and also present future perspective of this important field with special relevance to India. © 2020 John Wiley & Sons, Ltd. 相似文献
14.
Núria Martínez‐Carreras Michael P. Schwab Julian Klaus Christophe Hissler 《水文研究》2016,30(19):3533-3540
It is well known that sediment properties, including sediment‐associated chemical constituents and sediment physical properties, can exhibit significant variations within and between storm runoff events. However, the number of samples included in suspended sediment studies is often limited by time‐consuming and expensive laboratory procedures after stream water sampling. This restricts high frequency sampling campaigns to a limited number of events and reduces accuracy when aiming to estimate fluxes and loads of sediment‐associated chemical constituents. In this study, we address the potential of a portable ultraviolet–visible spectrophotometer (220–730 nm) to estimate suspended sediment properties in a resource efficient way. Several field deployable spectrophotometers are currently available for in‐stream measurements of environmental variables at high temporal resolution. These instruments have primarily been developed and used to quantify solute concentrations (e.g. dissolved organic carbon and NO3‐N), total concentrations of dissolved and particulate forms (e.g. total organic carbon) and turbidity. Here we argue that light absorbance values can be calibrated to estimate sediment properties. We present light absorbance data collected at 15‐min intervals in the Weierbach catchment (NW Luxembourg, 0.45 km2) from December 2013 to January 2015. In this proof‐of‐concept study, we performed a local calibration using suspended sediment loss‐on‐ignition (LOI) measurements as an example of suspended sediment property. We assessed the performance of several regression models that relate light absorbance measurements with the percentage weight LOI. The MM‐robust regression method presented the lowest standard error of prediction (0.48%) and was selected for calibration (adjusted r2 = 0.76 between observed and predicted values). The model was then used to predict LOI during a storm runoff event in December 2014. This study demonstrates that spectrophotometers can be used to estimate suspended sediment properties at high temporal resolution and for long‐time spans in a simple, non‐destructive and affordable manner. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
15.
Restoring belts of perennial vegetation in landscapes is widely recognized as a measure of improving landscape function. While there have been many studies of the transport of pollutants through grass filter strips, few have addressed sediment related processes through restored tree belts. In order to identify these processes and quantify their relative contribution to sediment trapping, a series of rainfall simulations was conducted on a 600 m2 hillslope comprising a pasture upslope of a 15 year old tree belt. Although the simulated events were extreme (average recurrence intervals ~10 and 50 yr), the trapping efficiency of the tree belt was very high: at least 94% of the total mass of sediments was captured. All the size fractions were trapped with a minimum Sediment Trapping Ratio (STR) of 91% for the medium‐sized fragments. Fractions < 1·3 µm and > 182 µm were totally captured (STR = 100%). Through the joint analysis of sediment budgets and soil surface conditions, we identified different trapping processes. The main trapping process is the sedimentation (at least 62% of trapped sediment mass) with deposits in the backwater and as micro‐terraces within the tree belt. Modelling results show that the coarsest size fractions above 75 µm are preferentially deposited. Joint infiltration of water and sediments has also been noticed, however, this process alone cannot explain the selective trapping of the finest fractions. We suggest that the finest fractions transported by the overland flow may be trapped by adsorption on the abundant litter present within the tree belt. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
16.
Proglacial sediment dynamics from daily to seasonal scales in a glaciated Alpine catchment (Bossons glacier,Mont Blanc massif,France) 下载免费PDF全文
The sediment yields of Alpine catchments are commonly determined from streamload measurements made some distance downstream from glaciers. However, this approach indiscriminately integrates erosion processes occurring in both the glacial and proglacial areas. A specific method is required to ascertain the respective inputs from (i) subglacial and supraglacial sediments, (ii) proglacial hillslopes and (iii) proglacial alluvial areas or sandurs. This issue is addressed here by combining high‐resolution monitoring (2 min) of suspended sediment concentrations at different locations within a catchment with discharge gauging and precipitation data. This methodological framework is applied to two proglacial streams draining the Bossons glacier (Mont Blanc massif, France): the Bossons and Crosette streams. For the Bossons stream, discharge and suspended load data were acquired from June to October 2013 at 1.15 and 1.5 km from the glacial terminus, respectively upstream and downstream from a small valley sandur. These hydro‐sedimentary data are compared with the Crosette stream dataset acquired at the outlet of the Bossons glacier subglacial drainage system. A fourfold analysis focusing on seasonal changes in streamload and discharge, multilinear regression modelling, evaluation of the sandur flux balance and probabilistic uncertainty assessment is used to determine the catchment sediment budget and to explain the proglacial sediment dynamics. The seasonal fluctuation of the sediment signal observed is related to the gradual closing of the subglacial drainage network and to the role of the proglacial area in the sediment cascade: the proglacial hillslopes appear to be disconnected from the main channel and the valley sandur acts as a hydrodynamic sediment buffer both daily and seasonally. Our findings show that an understanding of proglacial sediment dynamics can help in evaluating paraglacial adjustment and subglacial erosion processes. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
17.
Fine grained (80 µm) magnetite was introduced onto a semi‐arid grassland hillslope in 1992, as part of a set of rainfall‐simulation experiments. Using measurements of magnetic susceptibility, the median distance travelled by these magnetite grains during subsequent natural runoff events in the 16‐year period up to 2008 was estimated. Coupling this estimate to direct measurements of sediment flux obtained during the rainfall‐simulation experiments has enabled estimation of the erosion rate over this period. The estimated average erosion rate of between 2·61 × 10?2 and 4·36 × 10?2 kg m?1 year?1, is equivalent to a rate of ground lowering between 0·020 and 0·033 mm year?1. This estimate is consistent with (in the sense of being less than) an estimate of total sediment detachment over the same period. The rate of erosion measured using this travel‐distance approach is an order of magnitude less that obtained from a study based on 137Cs in a nearby catchment, and compatible with the longevity of continents. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
18.
The importance of surface controls on overland flow connectivity in semi‐arid environments: results from a numerical experimental approach 下载免费PDF全文
In semi‐arid environments, the characteristics of the land surface determine how rainfall is transformed into surface runoff and influences how this runoff moves from the hillslopes into river channels. Whether or not water reaches the river channel is determined by the hydrological connectivity. This paper uses a numerical experiment‐based approach to systematically assess the effects of slope length, gradient, flow path convergence, infiltration rates and vegetation patterns on the generation and connectivity of runoff. The experiments were performed with the Connectivity of Runoff Model, 2D version distributed, physically based, hydrological model. The experiments presented are set within a semi‐arid environment, characteristic of south‐eastern Spain, which is subject to low frequency high rainfall intensity storm events. As a result, the dominant hydrological processes are infiltration excess runoff generation and surface flow dynamics. The results from the modelling experiments demonstrate that three surface factors are important in determining the form of the discharge hydrograph: the slope length, the slope gradient and the infiltration characteristics at the hillslope‐channel connection. These factors are all related to the time required for generated runoff to reach an efficient flow channel, because once in this channel, the transmission losses significantly decrease. Because these factors are distributed across the landscape, they have a fundamental role in controlling the landscape hydrological response to storm events. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
19.
Modelling storage‐driven connectivity between landscapes and riverscapes: towards a simple framework for long‐term ecohydrological assessment 下载免费PDF全文
The importance of conceptualizing the dynamics of storage‐driven saturation area connectivity in runoff generation has been central to the development of TOPMODEL and similar low parameterized rainfall–runoff models. In this contribution, we show how we developed a 40‐year hydrometric data base to simulate storage–discharge relationships in the Girnock catchment in the Scottish Highlands using a simple conceptual model. The catchment is a unique fisheries reference site where Atlantic salmon populations have been monitored since 1966. The modelling allowed us to track storage dynamics in hillslopes, the riparian zone and groundwater, and explicitly link non‐linear changes of streamflows to landscape storage and connectivity dynamics. This provides a fundamental basis for understanding how the landscape and riverscape are hydrologically connected and how this regulates in‐stream hydraulic conditions that directly influence salmonids. We use the model to simulate storage and discharge dynamics over the 40‐year period of fisheries records. The modelled storage‐driven connectivity provides an ecohydological context for understanding the dynamics in stream flow generation which determine habitat hydraulics for different life stages of salmon population. This new, long‐term modelling now sets this variability in the riverscape in a more fundamental context of the inter‐relationships between storage in the landscape and stream flow generation. This provides a simple, robust framework for future ecohydrological modelling at this site, which is an alternative to more increasingly popular but highly parameterized and uncertain commercial ecohydrological models. It also provides a wider, novel context that is a prerequisite for any model‐based scenario assessment of likely impacts resulting from climate or land use change. Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd. Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd. 相似文献
20.
In humid regions, where gaining river conditions generally prevail, daily hydroelectric dam releases alter downstream surface water–groundwater interactions by reversing the head gradient between river and adjacent groundwater. Previously, it has been noted that artificial stage changes due to dam releases enhance hyporheic exchange. Here we investigate the regulated Deerfield River in northwestern Massachusetts at multiple scales to evaluate how changing downstream geologic conditions along the river mediate this artificial hyporheic pumping. Water budget analysis indicates that roughly 10% of bank‐stored water is permanently lost from the 19.5‐km river reach, likely as a result of transpiration by bank vegetation. An adjacent reference stream with similar dimensions and geomorphology, but without hydropeaking, shows predictable gaining conditions. Field observations from streambed piezometers and thermistors show that water losses are not uniform throughout the study reach. Riparian aquifer transmissivity in river sub‐reaches largely determines the magnitude of surface water–groundwater exchange as well as net water loss from the river. These newly documented losses from hydropeaking river systems should inform decisions by river managers and hydroelectric operators of additional tradeoffs of oscillatory dam‐release river management. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献