首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
Hysteretic dampers are used to dissipate earthquake‐induced energy in base‐isolated structures by acquiring inelastic deformations, rendering their hysteretic behavior of vital importance. The present paper focuses on investigating the behavior of U‐shaped steel dampers under bidirectional loading; this is significantly different from their corresponding uniaxial behavior. Two main sets of loading tests on full‐scale specimens are conducted in this regard: (i) quasi‐static tests with simple histories and (ii) dynamic tests with realistic loading histories. Based on the results obtained in the quasi‐static tests, an interaction curve that accounts for the reduction of the cyclic deformation capacity is proposed. However, the fidelity of this relation must be assessed under loading conditions similar to those of a seismically isolated structure subjected to an earthquake, which represents the goal of the second set of tests. The results of the dynamic tests validate the proposed interaction curve for estimating the deformation capacity of U‐shaped steel dampers under bidirectional loading. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A reliable performance of anti‐seismic devices when the upper‐structure is subjected to strong biaxial seismic excitation is of vital importance to ensure the latter doesn't reach critical behavior. U‐shaped steel dampers are hysteretic devices used to dissipate the earthquake‐induced energy of base‐isolated structures. In the framework of performance‐based design, which is gaining more and more recognition, it is of particular importance to assess the performance of base‐isolated structures with such dampers under different intensity levels of bidirectional ground motion. To achieve this goal, an analytical model able to simulate the bidirectional displacement response of an isolation system is adopted. Incremental dynamic analysis (IDA) is used to obtain the relation between the earthquake‐induced bidirectional damage of U‐shaped steel dampers and different intensity levels of the considered records. The performance of the dampers is categorized into 5 levels delimited by 4 limit states for which fragility curves are derived. The results obtained using the bidirectional approach are quantitatively compared to those given by employing an in‐plane model (widely used in current design practices in Japan) with the purpose of assessing whether the latter provides unconservative estimates of the performance of the dampers. The main conclusion is that, for large seismic intensities, the safety margin against fracture of the dampers is significantly overestimated when an in‐plane model is adopted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A ductile Vierendeel frame can be constructed by incorporating steel panel dampers (SPDs) into a moment‐resisting frame (MRF). Thus, the stiffness, strength, and ductility of the lateral force–resisting system can be enhanced. The proposed 3‐segment SPD possesses a center inelastic core (IC) and top and bottom elastic joints. This paper discusses the mechanical properties, capacity design method, and buckling‐delaying stiffeners for the SPDs through the use of cyclic loading tests on 2 specimens. Tests confirm that SPDs' cyclic force vs deformation relationships can be accurately predicted using either the Abaqus or PISA3D model analyses. The paper also presents the capacity design method for boundary beams connected to the SPDs of a typical SPD‐MRF. The seismic performance of an example 6‐story SPD‐MRF is evaluated using nonlinear response history analysis procedures and 240 ground accelerations at 3 hazard levels. Results indicate that under 80 maximum considered earthquake ground accelerations, the mean‐plus‐one standard deviation of the shear deformation of the ICs in the SPDs is 0.055 rad, substantially less than the 0.11 rad deformational capacity observed from the SPD specimens. The experimental cumulative plastic deformation of the proposed SPD is 242 times the yield deformation and is capable of sustaining a maximum considered earthquake at least 8 times before failure. This paper introduces the method of using one equivalent beam‐column element for effective modeling of the 3‐segment SPD. The effects of the IC's relative height and stiffness on the overall SPD's elastic and postelastic stiffness, elastic deformation limits, and inelastic deformational demands are discussed.  相似文献   

4.
Cable‐stayed bridges require a careful consideration of the lateral force exerted by the deck on the towers under strong earthquakes. This work explores the seismic response of cable‐stayed bridges with yielding metallic dampers composed of triangular plates that connect the deck with the supports in the transverse direction. A design method based on an equivalent single‐degree of freedom approximation is proposed. This is proved valid for conventional cable‐stayed bridges with 200‐ and 400‐m main spans, but not 600 m. The height of the plates is chosen to (1) achieve a yielding capacity that limits the maximum force transmitted from the deck to the towers, and to (2) control the hysteretic energy that the dampers dissipate by defining their design ductility. In order to select the optimal ductility and the damper configuration, a multi‐objective response factor that accounts for the energy dissipation, peak damper displacement and low‐cycle fatigue is introduced. The design method is applied to cable‐stayed bridges with different spans and deck–support connections. The results show that the dissipation by plastic deformation in the dampers prevents significant damage in the towers of the short‐to‐medium‐span bridges under the extreme seismic actions. However, the transverse response of the towers in the bridge with a 600‐m main span is less sensitive to the dampers. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
A semi‐active hydraulic damper (SHD) for a semi‐active damper system, which is useful for practical structural control especially for large earthquakes, has been developed. Its maximum damping force is set to 1 or 2 MN, and it is controlled by only 70 W of electric power. An SHD with a maximum damping force of 1 MN was applied to an actual building in 1998. This paper first presents the results of a dynamic loading test to confirm the control performance of the SHD. Next, an analytical model of SHDs (SHD model) is constructed with the same concept for two kinds of SHDs based on the test results. Through simulation analyses of the test results using the proposed SHD model, the dynamic characteristics of the SHD can be well represented within practical conditions. Simulation analyses are also carried out using a simple structure model with the SHD model. It is shown that this SHD model can be used to precisely evaluate the control effect of the semi‐active damper system and is useful in practical SHD design under the applied conditions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号