首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The effects of the topographic data source and resolution on the hydraulic modelling of floods were analysed. Seven digital terrain models (DTMs) were generated from three different altimetric sources: a global positioning system (GPS) survey and bathymetry; high‐resolution laser altimetry data LiDAR (light detection and ranging); and vectorial cartography (1:5000). Hydraulic results were obtained, using the HEC‐RAS one‐dimensional model, for all seven DTMs. The importance of the DTM's accuracy on the hydraulic modelling results was analysed within three different hydraulic contexts: (1) the discharge and water surface elevation results from the hydraulic model; (2) the delineation of the flooded area; and (3) the relative sensitivity of the hydraulic model to changes in the Manning's n roughness coefficient. The contour‐based DTM was the least accurate with a root mean square error (RMSE) of 4·5 m in the determination of the water level and a variation of up to 50 per cent in the estimation of the inundated area of the floodplain. The GPS‐based DTM produced more realistic water surface elevation results and variations of up to 8 per cent in terms of the flooded area. The laser‐based model's RMSE for water level was 0·3 m, with the flooded area varying by less than 1 per cent. The LiDAR data also showed the greatest sensitivity to changes in the Manning's roughness coefficient. An analysis of the effect of mesh resolution indicated an influence on the delineation of the flooded area with variations of up to 7·3 per cent. In addition to determining the accuracy of the hydraulic modelling results produced from each DTM, an analysis of the time–cost ratio of each topographic data source illustrates that airborne laser scanning is a cost‐effective means of developing a DTM of sufficient accuracy, especially over large areas. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Sediments produced by landslides are crucial in the sediment yield of a catchment, debris flow forecasting, and related hazard assessment. On a regional scale, however, it is difficult and time consuming to measure the volumes of such sediment. This paper uses a LiDAR‐derived digital terrain model (DTM) taken in 2005 and 2010 (at 2 m resolution) to accurately obtain landslide‐induced sediment volumes that resulted from a single catastrophic typhoon event in a heavily forested mountainous area of Taiwan. The landslides induced by Typhoon Morakot are mapped by comparison of 25 cm resolution aerial photographs taken before and after the typhoon in an 83.6 km2 study area. Each landslide volume is calculated by subtraction of the 2005 DTM from the 2010 DTM, and the scaling relationship between landslide area and its volume are further regressed. The relationship between volume and area are also determined for all the disturbed areas (VL = 0.452AL1.242) and for the crown areas of the landslides (VL = 2.510AL1.206). The uncertainty in estimated volume caused by use of the LiDAR DTMs is discussed, and the error in absolute volume estimation for landslides with an area >105 m2 is within 20%. The volume–area relationship obtained in this study is also validated in 11 small to medium‐sized catchments located outside the study area, and there is good agreement between the calculation from DTMs and the regression formula. By comparison of debris volumes estimated in this study with previous work, it is found that a wider volume variation exists that is directly proportional to the landslide area, especially under a higher scaling exponent. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Gully erosion of cultural sites in Grand Canyon National Park is an urgent management problem that has intensified in recent decades, potentially related to the effects of Glen Canyon Dam. We studied 25 gullies at nine sites in Grand Canyon over the 2002 monsoon–erosion season to better understand the geomorphology of the gully erosion and the effectiveness of erosion‐control structures (ECS) installed by the park under the direction of the Zuni Conservation Program. Field results indicate that Hortonian overland flow leads to concentrated flow in gullies and erosion focused at knickpoints along channels as well as at gully heads. Though groundcover type, soil shear strength and permeability vary systemat‐ically across catchments, gradient and, to a lesser degree, contributing drainage area seem to be the first‐order controls on gully extent, location of new knickpoints, and ECS damage. The installed ECS do reduce erosion relative to reaches without them and initial data suggest woody checkdams are preferable to rock linings, but maintenance is essential because damaged structures can exacerbate erosion. Topographic data from intensive field surveys and detailed photogrammetry provide slope–contributing area data for gully heads that have a trend consistent with previous empirical and theoretical formulations from a variety of landscapes. The same scaling holds below gully heads for knickpoint and ECS topographic data, with threshold coefficients the lowest for gully heads, slightly higher for knickpoints, and notably higher for damaged ECS. These topographic thresholds were used with 10‐cm digital elevation models to create simple predictive models for gully extent and structure damage. The model predictions accounted for the observed gullies but there are also many false‐positives. Purely topographical models are probably inadequate at this scale and application, but models that also parameterize the variable soil properties across sites would be useful for predicting erosion problems and ECS failure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
An integral approach to bedrock river profile analysis   总被引:5,自引:0,他引:5  
Bedrock river profiles are often interpreted with the aid of slope–area analysis, but noisy topographic data make such interpretations challenging. We present an alternative approach based on an integration of the steady‐state form of the stream power equation. The main component of this approach is a transformation of the horizontal coordinate that converts a steady‐state river profile into a straight line with a slope that is simply related to the ratio of the uplift rate to the erodibility. The transformed profiles, called chi plots, have other useful properties, including co‐linearity of steady‐state tributaries with their main stem and the ease of identifying transient erosional signals. We illustrate these applications with analyses of river profiles extracted from digital topographic datasets. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Analysis of mapped landslide locations using a high‐resolution (5‐m grid) digital elevation model (DEM) in the Tachia River basin, Taiwan, finds distinct differences in the topographic locations and size of landslides during the 1999 Chi‐Chi earthquake and the 2001 Toraji typhoon. Our analysis supports Densmore and Hovius' hypothesis that earthquake‐induced landslides cluster near ridgetops due to topographic amplification of ground shaking, and that typhoon‐induced landslides occur with greater frequency lower on slopes. In addition, the differing topographic locations of seismically‐induced and subsequent typhoon‐induced landslides shows no evidence of residual post‐earthquake influences on landslides during typhoon Toraji previously hypothesized for drainage basins closer to the earthquake epicenter. Our results support the interpretation that in this tectonically active landscape, seismically‐induced landslides help shatter and erode ridgetops but typhoon‐triggered landslides concentrate erosion farther downslope, with the combination acting to more uniformly lower upland terrain than either process does individually. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This paper analyses the significance of the entropy concept in the topography parameterization within the model TOPMODEL proposed by Beven and Kirkby (1979), by means of the hydrological behaviour of an experimental basin in southern Italy. For a significant number of flood events recorded at the basin outlet, the performance of TOPMODEL for different spatial distributions of the topographic index, ln(a/tan β), has been observed. Performance is related to the information content estimated as an entropy measure, corresponding to each of the spatial distributions of the topographic index, with the aim of identifying the procedures most suitable to represent the hydrological process of rainfall–runoff. The results obtained have shown that for flood events corresponding to brief, heavy precipitation, some procedures provide better performances than others. Moreover, these improvements are justified by greater information content in the corresponding spatial distributions of the topographic index. Finally, TOPMODEL performances for some procedures have been analysed, varying the resolution scale of the topographic index. For analogous hydrological performances, scale change produced variations in some of the subsurface hydraulic parameters. These variations were proportional to a spatial variability measure of the topographic index distribution, derived from the corresponding information content. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
This paper describes and analyses the structure and deposits of a large UK peat slide, located at Hart Hope in the North Pennines, northern England. This particular failure is unusual in that it occurred in the winter (February, 1995) and shows excellent preservation of the sedimentary structures and morphology, both at the failure scar and downstream. The slide was triggered by heavy rain and rapid snowmelt along the line of an active peatland stream flush. Detailed mapping of the slide area and downstream deposits demonstrate that the slide was initiated as a blocky mass that degenerated into a debris flow. The slide pattern was complex, with areas of extending and compressive movement. A wave‐like motion may have been set up in the failure. Within the slide site there was relatively little variability in block size (b axis); however, downstream the block sizes decrease rapidly. Stability analysis suggests the area at the head of the scar is most susceptible to failure. A ‘secondary’ slide area is thought to have only been initiated once the main failure had occurred. Estimates of the velocity of the flowing peat mass as it entered the main stream channel indicate a flow velocity of approximately 10 m s?1, which rapidly decreases downstream. A sediment budget for the peat slide estimates the failed peat mass to be 30 800 t. However, sediment delivery to the stream channel was relatively low. About 37% of the failed mass entered the stream channel and, despite moving initially as debris flow, the amount of deposition along the stream course and on the downstream fan is small (only about 1%). The efficiency of fluvial systems in transporting the eroded peat is therefore high. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Relationships between riverbed morphology, concavity, rock type and rock uplift rate are examined to independently unravel the contribution of along-strike variations in lithology and rates of vertical deformation to the topographic relief of the Oregon coastal mountains. Lithologic control on river profile form is reflected by convexities and knickpoints in a number of longitudinal profiles and by general trends of concavity as a function of lithology. Volcanic and sedimentary rocks are the principal rock types underlying the northern Oregon Coast Ranges (between 46°30′ and 45°N) where mixed bedrock–alluvial channels dominate. Average concavity, θ, is 0·57 in this region. In the alluviated central Oregon Coast Ranges (between 45° and 44°N) values of concavity are, on average, the highest (θ = 0·82). South of 44°N, however, bedrock channels are common and θ = 0·73. Mixed bedrock–alluvial channels characterize rivers in the Klamath Mountains (from 43°N south; θ = 0·64). Rock uplift rates of ≥0·5 mm a−1, mixed bedrock–alluvial channels, and concavities of 0·53–0·70 occur within the northernmost Coast Ranges and Klamath Mountains. For rivers flowing over volcanic rocks θ = 0·53, and θ = 0·72 for reaches crossing sedimentary rocks. Whereas channel type and concavity generally co-vary with lithology along much of the range, rivers between 44·5° and 43°N do not follow these trends. Concavities are generally greater than 0·70, alluvial channels are common, and river profiles lack knickpoints between 44·5° and 44°N, despite the fact that lithology is arguably invariant. Moreover, rock uplift rates in this region vary from low, ≤0·5 mm a−1, to subsidence (<0 mm a−1). These observations are consistent with models of transient river response to a decrease in uplift rate. Conversely, the rivers between 44° and 43°N have similar concavities and flow on the same mapped bedrock unit as the central region, but have bedrock channels and irregular longitudinal profiles, suggesting the river profiles reflect a transient response to an increase in uplift rate. If changes in rock uplift rate explain the differences in river profile form and morphology, it is unlikely that rock uplift and erosion are in steady state in the Oregon coastal mountains. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.

台风双眼墙受到大尺度环境场强迫(如垂直风切变和高空槽/急流等)、海气相互作用和涡旋内部热动力过程共同作用,双眼墙的形成及其演变一直是台风研究中的热点和难点.虽然学术界提出了许多双眼墙形成和眼墙替换的可能机制,但一直未达成共识,尤其在平衡和非平衡、对称与非对称过程对双眼墙形成的相对贡献,以及边界层超梯度风的作用等方面还存在许多争议.本文重点梳理过去十余年来,国内外台风双眼墙统计特征、形成机制和演变机理等方面的发展现状及最新研究进展,讨论分析双眼墙研究中有待进一步解决的问题和发展方向,以期为下一步台风双眼墙研究提供有益的借鉴和参考.

  相似文献   

10.
11.
Traditional variational data assimilation (VDA) with only one regularization parameter constraint cannot produce optimal error tuning for all observations. In this paper, a new data assimilation method of “four dimensional variational data assimilation (4D-Var) with multiple regularization parameters as a weak constraint (Tikh-4D-Var)” is proposed by imposing different regularization parameters for different observations. Meanwhile, a new multiple regularization parameters selection method, which is suitable for actual high-dimensional data assimilation system, is proposed based on the posterior information of 4D-Var system. Compared with the traditional single regularization parameter selection method, computation of the proposed multiple regularization parameters selection method is smaller. Based on WRF3.3.1 4D-Var data assimilation system, initialization and simulation of typhoon Chaba (2010) with the new Tikh-4D-Var method are compared with its counterpart 4D-Var to demonstrate the effectiveness of the new method. Results show that the new Tikh-4D-Var method can accelerate the convergence with less iterations. Moreover, compared with 4D-Var method, the typhoon track, intensity (including center surface pressure and maximum wind speed) and structure prediction are obviously improved with Tikh-4D-Var method for 72-h prediction. In addition, the accuracy of the observation error variances can be reflected by the multiple regularization parameters.  相似文献   

12.
Landslides and rockfalls are key geomorphic processes in mountain basins. Their quantification and characterization are critical for understanding the processes of slope failure and their contributions to erosion and landscape evolution. We used digital photogrammetry to produce a multi‐temporal record of erosion (1963–2005) of a rock slope at the head of the Illgraben, a very active catchment prone to debris flows in Switzerland. Slope failures affect 70% of the study slope and erode the slope at an average rate of 0.39 ± 0.03 m yr¯¹. The analysis of individual slope failures yielded an inventory of ~2500 failures ranging over 6 orders of magnitude in volume, despite the small slope area and short study period. The slope failures form a characteristic magnitude–frequency distribution with a rollover and a power‐law tail between ~200 m³ and 1.6 × 106 m³ with an exponent of 1.65. Slope failure volume scales with area as a power law with an exponent of 1.1. Both values are low for studies of bedrock landslides and rockfall and result from the highly fractured and weathered state of the quartzitic bedrock. Our data suggest that the magnitude–frequency distribution is the result of two separate slope failure processes. Type (1) failures are frequent, small slides and slumps within the weathered layer of highly fractured rock and loose sediment, and make up the rollover. Type (2) failures are less frequent and larger rockslides and rockfalls within the internal bedded and fractured slope along pre‐determined potential failure surfaces, and make up the power‐law tail. Rockslides and rockfalls of high magnitude and relatively low frequency make up 99% of the total failure volume and are thus responsible for the high erosion rate. They are also significant in the context of landscape evolution as they occur on slopes above 45° and limit the relief of the slope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
On patterned peatlands, open water pools develop within a matrix of terrestrial vegetation (‘ridges’). Regional patterns in the distribution of ridge–pool complexes suggest that the relative cover of these two surface types is controlled in part by climate wetness, but landscape topography must also be an important controlling factor. In this paper, a functional model that relates relative cover of ridges and pools to climate and surface gradient was developed and tested. The model was formulated in terms of a water budget, based on the differential effects of ridges and pools on losses by evapotranspiration and subsurface flow. It predicts a positive relationship between surface gradient and ridge proportion, with a linear effect related to water supply and ridge hydraulic conductivity, modified at high ridge proportion by differences in evapotranspiration between ridges and pools. The limit to patterned peatland distribution occurs where the surface is completely covered by ridges. The model may be sensitive or insensitive to climate differences between localities, depending on whether hydraulic characteristics of ridge peat co‐vary with water supply. To distinguish between these alternative hypotheses, surface gradient and ridge proportion were surveyed along 20 transects in each of three localities in Scotland that differ threefold in net precipitation to pools. The results of the field survey served to reject the climate‐sensitive hypothesis, but were consistent with the climate‐insensitive hypothesis. Analysis of the residuals suggested that variation within localities was related more to topographic control of water supply than to ridge hydraulic conductivity or developmental stage. Hence, within this maritime climate region, the distribution of ridge–pool complexes and the relative abundance of pools are controlled mainly by topographic variables. Field surveys across both maritime and continental regions are required to confirm a subtle climatic effect that allows pools to occur on higher gradients in drier climates than in wetter climates. Further development and testing of the functional model will provide a stronger basis for assessing potential feedback between climate change, peatland surface structure and methane emission from pools. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Yonghui Yang  Fei Tian   《Journal of Hydrology》2009,374(3-4):373-383
Runoff in Haihe River Catchment of China is steadily declining due to climate change and human activity. Determining abrupt changes in runoff could enhance identification of the main driving factors for the sudden changes. In this study, the sequential Mann–Kendall test analysis is used to determine abrupt changes in runoff in eight sub-catchments of Haihe River Catchment, while trend analysis via the traditional Mann–Kendall test for the period 1960–1999 is used to identify the basic trend of precipitation and runoff. The results suggest an insignificant change in precipitation and a significant decline in runoff in five of the eight sub-catchments. For most of the sub-catchments, abrupt changes in runoff occurred in 1978–1985. Through correlation comparisons for precipitation and runoff for the periods prior to and after abrupt runoff changes, human activity, rather than climatic change, is identified as the main driving factor of runoff decline. It is also noted that abrupt decline in runoff was actually at the beginning of China’s 1978–1985 land reform. Given that the land reform motivated farmers to productively manage their reallocated lands, agricultural water use therefore increased. Hence percent agricultural land is analyzed in relation to land use/cover pattern for the late 1970s and early 1980s. The analysis shows that when cultivated farmland exceeds 25% of a sub-catchment area, an abrupt decline in runoff occurs. It is therefore concluded that high percent agricultural land and related agricultural water use are the most probable driving factors of runoff decline in the catchment.  相似文献   

16.
Recent studies have focused on the relationship between solute concentrations and discharge in streams, demonstrating that concentrations can vary little relative to changes in discharge (chemostatic behaviour). Chemostatic behaviour is dependent on catchment characteristics (e.g., lithology, geomorphology, and vegetation) and chemical characteristics of the solute (e.g., availability, reactivity, and mobility). An investigation of 3 springs and a stream near Los Alamos, NM, reveals that springs can behave in a chemostatic fashion as stream systems tend to do. Another unique finding of this study is that the anthropogenic contaminants barium and the high explosive RDX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine) can also behave chemostatically. The chemostatic behaviour of a contaminant has important implications for the residence time of contaminants in a system as well as having a major control on contaminant flux and mass transport. Redox (reduction–oxidation) and biogeochemically sensitive analytes (e.g., Fe, SO4, and NO3) display a combination of chemostatic and chemodynamic behaviour, showing the influence of temporally variable conditions on stream and spring chemistries.  相似文献   

17.
A theoretical, dimensionless rainfall–runoff model was used to simulate the discharge of Wulongdong spring in western Hubei province, South China. The single parameter (time constant τ) in the model is easy to obtain by fitting the recession rate of the observed hydrographs. The model was scaled by simply matching the total annual flow volume of the model to the observed value. Annual distribution of actual evapotranspiration was embedded in the model input to calculate the accumulated deficit of soil moisture before each rain event. Hourly precipitation input data performed better than daily data, defining τ of 0.85 days and returning a Nash–Sutcliffe efficiency of 0.89 and the root mean square error of 0.07. This model offers an effective way to simulate the discharge of karst springs that respond sensitively to rainfall events. The model parameters of a successful simulation can be used to estimate the recharge area and indicate the intrinsic response time of the basin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Kee‐Won Seong 《水文研究》2014,28(6):2881-2896
A general form of formula is presented for the rainfall Intensity–Duration–Frequency (IDF) relationship. This formula is derived from the nearly normal probability distribution function of transformed intensities. In order to transform the raw intensities, a correcting non‐constant spread technique, the Kruskal–Wallis statistic, and the Box–Cox transformation are adopted. These transformations enable to express a simpler model for the IDF formula that agrees well with traditional IDF relationships. Since the proposed method allows the estimation of any percentile value of intensities with a single equation, the intensity percentile at arbitrary duration can be generated easily. The validity of the formula derived by means of the proposed method is assessed using data from major weather stations in Korea. The results show that the percentile intensities produced using the proposed method are in good agreement with those of traditional frequency analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Periodic summer hypoxia occurring in the Northern Gulf of Mexico has been attributed to large nutrient inputs, especially nitrate‐nitrogen, from the Mississippi–Atchafalaya River system. The 2008 Gulf Hypoxia Action Plan calls for river corridor wetland restoration to reduce nitrate loads, but it is largely unknown how effective riverine wetland systems in the lower Mississippi River are for nitrate removal. We carried out an intensive isotope study to address this question by comparing nitrate isotopic signatures of the well‐channelized Mississippi River with those of the Atchafalaya River, which has extensive floodplains and backwater swamps. We investigated changes in δ15NNO3 and δ18ONO3 for water samples collected biweekly to monthly over a 2‐year period at the Atchafalaya River outlets (Morgan City and Wax Lake) and on the Mississippi River at Baton Rouge. In addition, in situ water quality parameters including temperature, dissolved oxygen and pH were recorded for each sampling date. Waters from both rivers showed moderately high nitrate concentration (>1 mg l?1) and undetectable (< 0.01 mg l?1) nitrite throughout the study period. The Mississippi River had slightly, but significantly higher (p=0.01) mean nitrate concentrations (1.5 mg l?1) and higher δ15NNO3 (7.7‰) than the Atchafalaya (1.1 mg l?1, 7.0‰); while no difference in δ18ONO3 (4.6‰) was found between the rivers. Flux‐weighted mean isotope values were overall lower than mean values for both the Mississippi and Atchafalaya Rivers, with a greater difference between the two rivers (7.4‰ versus 6.5‰, respectively). River flooding and hurricane storm surge also appeared to affect nitrate isotopic values. The lack of large difference in isotopic values between the Atchafalaya and Mississippi Rivers suggests that the majority of nitrate is transported through the Atchafalaya River with relatively little processing, and that riverine floodplains and wetlands are not effective sinks for nitrate, as previously assumed, because of insufficient residence time and well‐oxygenated river waters. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号