首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blasting constitutes a beneficial industrial technology, used in quarries and mining production processes, which ensures the achievement of the expected results in a short period of time with relatively low cost. Nevertheless, a significant part of the used blasting energy is wasted in the form of ground vibration and air blast. Hence, blasting-induced ground vibrations are one of the fundamental problems in the mining industry which may cause severe damage to structures and plants nearby. Therefore, a vibration control study plays an important part in the minimization of the environmental effects of blasting in mines. This study represents an investigation reporting ground motion (measured in terms of peak particle velocity (mm/s)) and air blast overpressure measurements around the open-pit phosphate mine near Metlaoui area (southwestern Tunisia). It aimed to calculate the site’s constants: K (ground transmission coefficient) and n (site attenuation curve slope). The obtained site parameters allowed determining the propagation equation of the blast-induced seismic waves in the study area. The scope of this study was to predict the peak particle velocity when the amount of explosive charge and/or the distance were altered with minimum spoil to the environment. Also, a frequency overview of the study area revealed the dominance of low frequencies (>?40 Hz). Such values can cause damage to the nearby structures when a specific peak particle velocity value is reached by blasting. Moreover, this study demonstrated that all overpressure magnitudes were less than 134 dB, which is the safe limit of air blast level.  相似文献   

2.
Blasting is a widely used technique for rock fragmentation in opencast mines and tunneling projects. Ground vibration is one of the most environmental effects produced by blasting operation. Therefore, the proper prediction of blast-induced ground vibrations is essential to identify safety area of blasting. This paper presents a predictive model based on gene expression programming (GEP) for estimating ground vibration produced by blasting operations conducted in a granite quarry, Malaysia. To achieve this aim, a total number of 102 blasting operations were investigated and relevant blasting parameters were measured. Furthermore, the most influential parameters on ground vibration, i.e., burden-to-spacing ratio, hole depth, stemming, powder factor, maximum charge per delay, and the distance from the blast face were considered and utilized to construct the GEP model. In order to show the capability of GEP model in estimating ground vibration, nonlinear multiple regression (NLMR) technique was also performed using the same datasets. The results demonstrated that the proposed model is able to predict blast-induced ground vibration more accurately than other developed technique. Coefficient of determination values of 0.914 and 0.874 for training and testing datasets of GEP model, respectively show superiority of this model in predicting ground vibration, while these values were obtained as 0.829 and 0.790 for NLMR model.  相似文献   

3.
Summary A variety of overbreak control techniques are used during excavation with the drill and blast system. Tracer blasting is used in Canadian underground mines to minimize blast damage and involves placing a low-strength detonating cord along the length of a blast hole prior to charging with ammonium nitrate-fuel oil (ANFO). The results of tracer blasting are not always consistent and its mechanism is only hazily comprehended. In the absence of a clearly defined mechanism, it is difficult to analyse the results of tracer blasting and to identify the factors responsible for the inconsistency of results.A series of bench blasts and pipe tests were carried out to investigate the mechanism of tracer blasting. The evidence indicated partial deflagration and desensitization of ANFO, thus reducing the total available explosive energy. The rock mass surrounding the traced blasthole experienced a low level of ground vibrations. As a result of the continuous side initiation of ANFO, energy partitioning was more in favour of gas energy. A mechanism of tracer blasting has been proposed and the factors responsible for the inconsistency of the results have been identified in this paper.  相似文献   

4.
Natural Hazards - Ground vibrations induced by the blasting of explosives can cause damage to the slope stability of mines. The important indicators of rock mass such as the geological...  相似文献   

5.
The mechanism by which the explosive energy is transferred to the surrounding rock mass is changed in air-deck blasting. It allows the explosive energy to act repeatedly in pulses on the surrounding rock mass rather than instantly as in the case of concentrated charge blasting. The air-deck acts as a regulator, which first stores energy and then releases it in separate pulses. The release of explosion products in the air gap causes a decrease in the initial bore hole pressure and allows oscillations of shock waves in the air gap. The performance of an air-deck blast is basically derived from the expansion of gaseous products and subsequent multiple interactions between shock waves within an air column, shock waves and stemming base and shock waves and hole bottom. This phenomenon causes repeated loading on the surrounding rock mass by secondary shock fronts for a prolonged period. The length of air column and the rock mass structure are critical to the ultimate results. Several attempts have been made in the past to study the mechanism of air-deck blasting and to investigate its effects on blast performance but a clear understanding of the underlying mechanism and the physical processes to explain its actual effects is yet to emerge. In the absence of any theoretical basis, the air-deck blast designs are invariably carried out by the rules of thumb. The field trials of this technique in different blast environments have demonstrated its effectiveness in routine production blasting, pre-splitting and controlling over break and ground vibrations etc. The air-deck length appropriate to the different rock masses and applications need to be defined more explicitly. It generally ranges between 0.10 and 0.30 times the original charge length. Mid column air-deck is preferred over the top and bottom air-decks. Top air-deck is used especially in situations, which require adequate breakage in the stemming region. The influence of air-deck location within the hole on blast performance also requires further studies. This paper reviews the status of knowledge on the theory and practice of air-deck blasting in mines and surface excavations and brings out the areas for further investigation in this technique of blasting.  相似文献   

6.
Drilling and blasting is a major technology in mining since it is necessary for the initial breakage of rock masses in mining. Only a fraction of the explosive energy is efficiently consumed in the actual breakage and displacement of the rock mass, and the rest of the energy is spent in undesirable effects, such as ground vibrations. The prediction of induced ground vibrations across a fractured rock mass is of great concern to rock engineers in assessing the stability of rock slopes in open pit mines. The waveform superposition method was used in the Gol-E-Gohar iron mine to simulate the production blast seismograms based upon the single-hole shot vibration measurements carried out at a distance of 39 m from the blast. The simulated production blast seismograms were then used as input to predict particle velocity time histories of blast vibrations in the mine wall using the universal distinct element code (UDEC). Simulated time histories of particle velocity showed a good agreement with the measured production blast time histories. Displacements and peak particle velocities were determined at various points of the engineered slope. The maximum displacement at the crest of the nearest bench in the X and Y directions was 26 mm, which is acceptable in regard to open pit slope stability.  相似文献   

7.
An intelligent approach to prediction and control ground vibration in mines   总被引:8,自引:0,他引:8  
Drilling and Blasting are still considered to be the most economical method for rock excavation either on surface or underground. The explosive energy, which breaks the rockmass, is not fully utilized for this purpose. Only 20–30% of explosive energy is utilized for fragmenting the rockmass and the rest wasted away in the form of ground vibration, air blast, noise, fly rock, back breaks, etc. Among them, ground vibration is considered to have the most damaging effect. A number of predictor equations have been proposed by various researchers to predict ground vibration prior to blasting. Still, it is difficult to recommend any one predictor for a particular ground condition because ground vibration is influenced by a number of parameters. These parameters are either controllable or non-controllable like blast geometry, explosive types, rock strength properties, joints patterns, etc. In the present paper, an attempt has been made to predict the ground vibration using an Artificial Neural Network incorporating large number of parameters, which affect the ground vibration. Results are also compared with the values obtained from regression analysis and observed field data sets. Finally, it is found that the neural network approach is more accurate and able to predict the value of blast vibration without increasing error with increasing number of inputs and non-linearity among these.  相似文献   

8.
不耦合装药爆破对硬岩应力场影响的数值分析   总被引:7,自引:1,他引:6  
姜鹏飞  唐德高  龙源 《岩土力学》2009,30(1):275-279
爆破地震勘探石油是一种重要的方法,但爆破地震效应与爆破参数、地质条件等密切相关。采用动力有限元软件ANSYS/LS-DYNA,对柱状炸药与药孔壁之间为空气或其他介质以及空隙间距变化时碳酸盐岩岩石中爆炸应力波的传播规律和爆炸地震波能量的衰减特性进行了数值模拟研究,得到了不耦合装药爆炸时岩石应力、振动速度的衰减规律以及与不耦合系数、间隙介质的关系,分析了不耦合效应对爆炸地震波能量的影响。研究表明,不耦合或耦合不好时会使岩体中爆炸应力波的强度大大降低;耦合状态对岩体应力及速度的衰减系数和衰减指数影响较大;在空隙中注水或灌满泥浆会改善它们的耦合关系,增大下传的爆破能量。所得成果可为我国西南地区优选适合碳酸盐地层地震勘探的激发因素提供技术途径和方法。  相似文献   

9.
Ground vibration due to blasting causes damages in the existence of the surface structures nearby the mine. The study of vibration control plays an important role in minimizing environmental effects of blasting in mines. Ground vibration regulations primarily rely on the peak particle velocity (PPV, mm/s). Prediction of maximum charge weight per delay (Q, kg) by distance from blasting face up to vibration monitoring point as well as allowable PPV was proposed in order to perform under control blasting and therefore avoiding damages on structures nearby the mine. Various empirical predictor equations have proposed to determine the PPV and maximum charge per delay. Maximum charge per delay is calculated by using PPV predictors indirectly or Q predictor directly. This paper presents the results of ground vibration measurement induced by bench blasting in Sungun copper mine in Iran. The scope of this study is to evaluate the capability of two different methods in order to predict maximum charge per delay. A comparison between two ways of investigations including empirical equations and artificial neural network (ANN) are presented. It has been shown that the applicability of ANN method is more promising than any under study empirical equations.  相似文献   

10.
岩石中柱状装药爆炸能量分布   总被引:21,自引:0,他引:21  
吴亮  卢文波  宗琦 《岩土力学》2006,27(5):735-739
岩石中装药爆炸产生的爆破能量可分为爆炸冲击波能量和爆生气体膨胀能量。对爆炸能量分布的理论分析有助于改善爆破效果,提高爆破质量。在柱状耦合装药情况下,分析了冲击波作用下岩石变形和破坏的特点、爆生气体对爆腔的扩腔作用,考虑了在岩体的损伤情况下爆生气体对裂纹的驱裂作用。计算结果表明:埋深在临界深度以下时,岩石中柱状装药爆破冲击波做功消耗的能量约占爆炸总能量的40 %,剩余爆生气体能量中用于扩腔和扩展主要裂隙的能量约占总能量的23 %,剩余大约37 %的能量中有小部分能量用于新增裂纹数目,而大部分损失掉了。  相似文献   

11.
Excavation of coal, overburden, and mineral deposits by blasting is dominant over the globe to date, although there are certain undesirable effects of blasting which need to be controlled. Blast-induced vibration is one of the major concerns for blast designers as it may lead to structural damage. The empirical method for prediction of blast-induced vibration has been adopted by many researchers in the form of predictor equations. Predictor equations are site specific and indirectly related to physicomechanical and geological properties of rock mass as blast-induced ground vibration is a function of various controllable and uncontrollable parameters. Rock parameters for blasting face and propagation media for blast vibration waves are uncontrollable parameters, whereas blast design parameters like hole diameter, hole depth, column length of explosive charge, total number of blast holes, burden, spacing, explosive charge per delay, total explosive charge in a blasting round, and initiation system are controllable parameters. Optimization of blast design parameters is based on site condition and availability of equipment. Most of the smaller mines have predesigned blasting parameters except explosive charge per delay, total explosive charge, and distance of blast face from surface structures. However, larger opencast mines have variations in blast design parameters for different benches based on strata condition: Multivariate predictor equation is necessary in such case. This paper deals with a case study to establish multivariate predictor equation for Moher and Moher Amlohri Extension opencast mine of India. The multivariate statistical regression approach to establish linear and logarithmic scale relation between variables to predict peak particle velocity (PPV) has been used for this purpose. Blast design has been proposed based on established multivariate regression equation to optimize blast design parameters keeping PPV within legislative limits.  相似文献   

12.
The optimal delay time between the contour holes in rock blasting has been studied by theoretical and empirical research in Sweden, regarding ground vibrations, increase in crack frequency, radial crack length and finally overbreak (half cast factor). The model test presented in this paper concerns controlled contour blasting in tunnelling and the full-scale blasts concern tunnelling, road cutting, and dimensional stone quarrying. The results indicate that the microsequential contour blasting technique (contour holes fired in sequence and with a delay in the order of 1–2 ms) is superior to simultaneous initiation both regarding blast-induced ground vibrations and crack frequency increase in the rock mass. Both these evaluation methods reflects the conditions deeper in the remaining rock mass. Simultaneous initiation, however, is superior to micro-sequential contour blasting both regarding the half cast factor and the length of radial cracks emanating from the blastholes. These two parameters are more related to the surface conditions after blasting. The industrial applications of this new knowledge are the use of micro-sequential contour blasting when ground vibrations are of greater concern than the contour, for example, in trench blasting or quarrying in urban areas, and the use of simultaneous initiation when an even rock surface is of high priority.  相似文献   

13.
The purpose of blasting operations is rock fragmentation. Blasting is a key component in the overall rock fragmentation system - the first element of the ore extraction process. It provides appropriate rock material granulation or size that is suitable for loading and transportation. However, in spite of many advantages explosives have, their usage may cause environmental problem such as seismic vibration. One of the solutions to this particular problem may be application of an artificial screen as a barrier to the seismic wave path. The results of experimental research on the artificial screen concept, its characteristics and role in attenuation of seismic effects generated by blasting are presented. The experiment is based on two physical phenomena: (1) the size and degree of discontinuity and (2) the reflection and refraction of seismic waves. More than 1,500 laboratory measurements were conducted with different combinations of screen sizes, positions of the screen to blasting source, and intensities of blasting impulses. The results of the study show reduction of generated vibrations up to 58% by employment of artificial screens.  相似文献   

14.
Summary Conditions under which dynamic loads occur in mines are briefly described and the special vulnerability of roadways in coal mines to fail under dynamic load is considered. A method for assessment of shock load energy anticipated is proposed, based on the volume of rock and the velocity of rock particles induced by rapid rock failure and/or seismic tremors. Case examples from Upper Silesian coal mines are given and the safety factor of steel supports against the shock energy from rockbursts is discussed. The shock energy damping ability of various parts of steel supports and support systems is calculated as a basis for rational support design. Results of six mine experiments where various types of roadway support were installed and then loaded dynamically by blasting within surrounding rocks are discussed.  相似文献   

15.
Ground vibrations arising from excavation with blasting is one of the fundamental problems in the mining industry. Therefore, the prediction of ground vibration components plays an important role in the minimization of environmental complaints. In this study, 582 events were recorded during limestone production at a quarry (Akyol Quarry) during a period of time. The blasting parameters of these shots were also carefully recorded. During the statistical analysis of the collected data, three predictor equations proposed by the United States Bureau of Mines (USBM), Ambraseys–Hendron and Langefors–Kihlstrom were used to establish a relationship between peak particle velocity and scaled distance described by these prediction equations. As a result of this analysis, the most powerful relationship was determined and proposed to be used in this site. And also, this equation was used in the derivation of the practical blasting charts specific to this site as a practical way of predicting the peak particle velocity and maximum charge amount per delay for future blasting.  相似文献   

16.
In the blasting operation, risk of facing with undesirable environmental phenomena such as ground vibration, air blast, and flyrock is very high. Blasting pattern should properly be designed to achieve better fragmentation to guarantee the successfulness of the process. A good fragmentation means that the explosive energy has been applied in a right direction. However, many studies indicate that only 20–30 % of the available energy is actually utilized for rock fragmentation. Involvement of various effective parameters has made the problem complicated, advocating application of new approaches such as artificial intelligence-based techniques. In this paper, artificial neural network (ANN) method is used to predict rock fragmentation in the blasting operation of the Sungun copper mine, Iran. The predictive model is developed using eight and three input and output parameters, respectively. Trying various types of the networks, it was found that a trained model with back-propagation algorithm having architecture 8-15-8-3 is the optimum network. Also, performance comparison of the ANN modeling with that of the statistical method was confirmed robustness of the neural networks to predict rock fragmentation in the blasting operation. Finally, sensitivity analysis showed that the most influential parameters on fragmentation are powder factor, burden, and bench height.  相似文献   

17.
范勇  卢文波  杨建华  严鹏  陈明 《岩土力学》2015,36(2):541-549
深埋洞室爆破开挖过程中围岩初始地应力的瞬态卸荷会诱发振动。针对圆形隧洞开挖,分析了地应力瞬态卸荷过程中围岩应变能、动能、径向应力做功3者之间的平衡机制,并采用量纲分析,建立了基于开挖岩体应变能的瞬态卸荷诱发振动衰减公式。结合锦屏二级引水隧洞和瀑布沟地下主厂房爆破开挖实例,开展了瞬态卸荷诱发振动的识别分离,并分析了诱发振动的衰减规律。研究表明:地应力瞬态卸荷诱发振动的峰值与被开挖岩体应变能密度的二次方根成正比,且开挖卸荷体积越大,诱发振动越强烈;与Lu-Hustrulid衰减公式相比,新衰减公式应用范围更广,使用精度更高。  相似文献   

18.
爆破工程地质控制论   总被引:2,自引:1,他引:1  
爆破理论与技术的创新和发展,对我国爆破工程事业乃至基础设施建设都是十分重要的。在数十年爆破理论研究与生产实践的基础上,对爆破及其破岩的科学概念进行了定义,系统阐述了炸药能量特征、岩体介质特征、炸药能量与岩体介质相互作用等决定爆破作用机制和效果的因素及其相互关系,明确指出地质条件是爆破的基础,炸药能量特征必须与岩体介质特征来适应;基于岩体特性及其爆破特征,将自然岩体划分为似均匀连续体和不连续体两类。研究表明,在似均匀连续体中,岩体爆破作用机制和效果受微地形最小抵抗线控制;在不连续体中,受岩体结构特征控制。两者结合,形成了爆破工程地质控制论。  相似文献   

19.
采矿爆破振动波在岩溶区的传播影响因素分析   总被引:1,自引:1,他引:0  
为研究不同情况下爆破振动强度衰变规律和振动对岩溶塌陷的影响,为当地矿山合理开采及减少地面塌陷灾害的发生提供可靠依据,对湖南水口山铅锌矿区进行现场爆破振动测试,并利用古丹铅锌矿实测数据作对比分析;试验矿区共布设4条测线,接收8组爆破振动数据。采用萨道夫斯基修正公式对采集的数据进行计算,以爆破产生的振动波频率及振动速度作为测试指标,对实测数据进行提取、处理,确定爆破振动波的频率及其在介质中的传播速度及地震波引发的质点振动峰值振速。试验结果表明:采矿活动是岩溶地面塌陷的主要影响因素;爆破振动波的频率衰减强度与其在岩土体中的传播距离和断层有关,振动波的传播速度受到岩土体性质、岩层结构特征、岩层走向等因素的影响。   相似文献   

20.
不耦合装药下爆炸应力波传播规律的试验研究   总被引:2,自引:0,他引:2  
王伟  李小春 《岩土力学》2010,31(6):1723-1728
通过室外爆破试验,利用预埋研制的PVDF压力传感器对耦合及水不耦合延长药包装药爆破时爆炸应力波的中远场压力进行测量,拟合实测结果,得到4种不耦合系数下爆炸应力波峰值随传播距离衰减的指数关系式。分析试验结果可知: ①在试验所涉及的范围内,不耦合装药时爆破应力波峰值衰减幅度小于耦合装药(即K =1)时爆破应力波峰值衰减幅度,验证了水介质作为炸药爆轰产物与岩体间的弹性缓冲层作用,减少了粉碎孔壁岩体造成的能量耗散,增加了能量传递,加大了爆炸的作用范围;②当不耦合系数K = 3.29时,应力波峰值衰减指数表现出大于K =1.79及大于K =2.57时应力波峰值衰减指数的趋势,表明过大的不耦合系数造成了不耦合介质--水过多的能量耗散(在高温高压下水并不完全是弹性的),削弱了不耦合装药爆破的优势;③在不耦合装药爆破中,存在最佳的不耦合系数,此时爆炸应力波峰值衰减最慢,爆炸能得到充分利用,达到最优的爆破效果。研究结果对不耦合装药爆破的设计及工程应用有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号