首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pro‐glacial landscapes are some of the most active on Earth. Previous studies of pro‐glacial landscape change have often been restricted to considering either sedimentological, geomorphological or topographic parameters in isolation and are often mono‐dimensional. This study utilized field surveys and digital elevation model (DEM) analyses to quantify planform, elevation and volumetric pro‐glacial landscape change at Sólheimajökull in southern Iceland for multiple time periods spanning from 1960 to 2010. As expected, the most intense geomorphological changes persistently occurred in the ice‐proximal area. During 1960 to 1996 the pro‐glacial river was relatively stable. However, after 2001 braiding intensity was higher, channel slope shallower and there was a shift from overall incision to aggradation. Attributing these pro‐glacial river channel changes to the 1999 jökulhlaup is ambiguous because it coincided with a switch from a period of glacier advance to that of glacier retreat. Furthermore, glacier retreat (of ~40 m yr?1) coincided with ice‐marginal lake development and these two factors have both altered the pro‐glacial river channel head elevation. From 2001 to 2010 progressive increase in channel braiding and progressive downstream incision occurred; these together probably reflecting stream power due to increased glacier ablation and reduced sediment supply due to trapping of sediment by the developing ice‐marginal lake. Overall, this study highlights rapid spatiotemporal pro‐glacial landscape reactions to changes in glacial meltwater runoff regimes, glacier terminus position, sediment supply and episodic events such as jökuhlaups. Recognizing the interplay of these controlling factors on pro‐glacial landscapes will be important for understanding the geological record and for landscape stability assessments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The ongoing debate over the effects of global environmental change on Earth's cryosphere calls for detailed knowledge about process rates and their variability in cold environments. In this context, appraisals of the coupling between glacier dynamics and para‐glacial erosion rates in tectonically active mountains remain rare. We contribute to filling this knowledge gap and present an unprecedented regional‐scale inventory of supra‐glacial sediment flux and hillslope erosion rates inferred from an analysis of 123 large (> 0·1 km2) catastrophic bedrock landslides that fell onto glaciers in the Chugach Mountains, Alaska, as documented by satellite images obtained between 1972 to 2008. Assuming these supra‐glacial landslide deposits to be passive strain markers we infer minimum decadal‐scale sediment yields of 190 to 7400 t km–2 yr–1 for a given glacier‐surface cross‐section impacted by episodic rock–slope failure. These rates compare to reported fluvial sediment yields in many mountain rivers, but are an order of magnitude below the extreme sediment yields measured at the snouts of Alaskan glaciers, indicating that the bulk of debris discharged derives from en‐glacial, sub‐glacial or ice‐proximal sources. We estimate an average minimum para‐glacial erosion rate by large, episodic rock–slope failures at 0·5–0·7 mm yr–1 in the Chugach Mountains over a 50‐yr period, with earthquakes likely being responsible for up to 73% of this rate. Though ranking amongst the highest decadal landslide erosion rates for this size of study area worldwide, our inferred rates of hillslope erosion in the Chugach Mountains remain an order of magnitude below the pace of extremely rapid glacial sediment export and glacio‐isostatic surface uplift previously reported from the region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In glacier‐fed rivers, melting of glacier ice sustains streamflow during the driest times of the year, especially during drought years. Anthropogenic and ecologic systems that rely on this glacial buffering of low flows are vulnerable to glacier recession as temperatures rise. We demonstrate the evolution of glacier melt contribution in watershed hydrology over the course of a 184‐year period from 1916 to 2099 through the application of a coupled hydrological and glacier dynamics model to the Hood River basin in Northwest Oregon, USA. We performed continuous simulations of glaciological processes (mass accumulation and ablation, lateral flow of ice and heat conduction through supra‐glacial debris), which are directly linked with seasonal snow dynamics as well as other key hydrologic processes (e.g. evapotranspiration and subsurface flow). Our simulations show that historically, the contribution of glacier melt to basin water supply was up to 79% at upland water management locations. We also show that supraglacial debris cover on the Hood River glaciers modulates the rate of glacier recession and progression of dry season flow at upland stream locations with debris‐covered glaciers. Our model results indicate that dry season (July to September) discharge sourced from glacier melt started to decline early in the 21st century following glacier recession that started early in the 20th century. Changes in climate over the course of the current century will lead to 14–63% (18–78%) reductions in dry season discharge across the basin for IPCC emission pathway RCP4.5 (RCP8.5). The largest losses will be at upland drainage locations of water diversions that were dominated historically by glacier melt and seasonal snowmelt. The contribution of glacier melt varies greatly not only in space but also in time. It displays a strong decadal scale fluctuations that are super‐imposed on the effects of a long‐term climatic warming trend. This decadal variability results in reversals in trends in glacier melt, which underscore the importance of long‐time series of glacio‐hydrologic analyses for evaluating the hydrological response to glacier recession. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Glacier recession and landform development in a debris‐charged glacial landsystem characterized by an overdeepening is quantified using digital photogrammetry, digital elevation model (DEM) construction and mapping of the Icelandic glacier Kvíárjökull for the period 1945–2003. Melting of ice‐cores is recorded by surface lowering rates of 0·8 m yr–1 (1945–1964), 0·3 m yr–1 (1964–1980), 0·015 m yr–1 (1980–1998) and 0·044 m yr–1 (1998–2003). The distribution/preservation of pushed and stacked ice‐cored moraine complexes are determined by the location of the long‐term glacial drainage network in combination with retreat from the overdeepening, into which glacifluvial sediment is being directed and where debris‐rich ice masses are being reworked and replaced by esker networks produced in englacial meltwater pathways that bypassed the overdeepening and connected to outwash fans prograding over the snout. Recent accelerated retreat of Kvíárjökull, potentially due to increased mass balance sensitivity, has made the snout highly unstable, especially now that the overdeepening is being uncovered and the snout flooded by an expanding pro‐glacial, and partially supraglacial, lake. This case study indicates that thick sequences of debris‐charged basal ice/controlled moraine have a very low preservation potential but ice‐cored moraine complexes can develop into hummocky moraine belts in de‐glaciated terrains because they are related to the process of incremental stagnation, which at Kvíárjökull has involved periodic switches from transport‐dominant to ablation‐dominant conditions. Glacier recession is therefore recorded temporally and spatially by two suites of landforms relating to two phases of landform production which are likely typical for glaciers occupying overdeepenings: an early phase of active, temperate recession recorded by push moraines and lateral moraines and unconfined pro‐glacial meltwater drainage; and a later phase of incremental stagnation and pitted outwash head development initiated by the increasing topographic constraints of the latero‐frontal moraine arc and the increasing importance of the overdeepening as a depo‐centre. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The hydrology of near‐surface glacier ice remains a neglected aspect of glacier hydrology despite its role in modulating meltwater delivery to downstream environments. To elucidate the hydrological characteristics of this near‐surface glacial weathering crust, we describe the design and operation of a capacitance‐based piezometer that enables rapid, economical deployment across multiple sites and provides an accurate, high‐resolution record of near‐surface water‐level fluctuations. Piezometers were employed at 10 northern hemisphere glaciers, and through the application of standard bail–recharge techniques, we derive hydraulic conductivity (K) values from 0.003 to 3.519 m day?1, with a mean of 0.185 ± 0.019 m day?1. These results are comparable to those obtained in other discrete studies of glacier near‐surface ice, and for firn, and indicate that the weathering crust represents a hydrologically inefficient aquifer. Hydraulic conductivity correlated positively with water table height but negatively with altitude and cumulative short‐wave radiation since the last synoptic period of either negative air temperatures or turbulent energy flux dominance. The large range of K observed suggests complex interactions between meteorological influences and differences arising from variability in ice structure and crystallography. Our data demonstrate a greater complexity of near‐surface ice hydrology than hitherto appreciated and support the notion that the weathering crust can regulate the supraglacial discharge response to melt production. The conductivities reported here, coupled with typical supraglacial channel spacing, suggest that meltwater can be retained within the weathering crust for at least several days. Not only does this have implications for the accuracy of predictive meltwater run‐off models, but we also argue for biogeochemical processes and transfers that are strongly conditioned by water residence time and the efficacy of the cascade of sediments, impurities, microbes, and nutrients to downstream ecosystems. Because continued atmospheric warming will incur rising snowline elevations and glacier thinning, the supraglacial hydrological system may assume greater importance in many mountainous regions, and consequently, detailing weathering crust hydraulics represents a research priority because the flow path it represents remains poorly constrained.  相似文献   

6.
Glaciokarst is a landscape which combines karst features and hydrology as well as inherited glacial features. It is a result of glaciation upon a karst geomorphological system. The relationship between glaciers and karst is rather poorly known and inadequately recognized. This research focuses on three distinct karst areas along the Adriatic coast in the southern Dinaric Alps that were affected by the Quaternary glaciations. An insight into specific glaciokarst processes and surface features was provided through the study of the areas of the Lov?en, Orjen and Vele? Mountains. A glaciokarst geomorphology is in general well preserved due to the prevailing vertically oriented chemical denudation following de‐glaciation and almost the entire absence of other surface processes. Typical glacial erosional features are combined by a variety of depressions which are the result of a karstic drainage of sub‐glacial waters. The majority of glacial deposits occur as extensive lateral‐terminal moraine complexes, which are often dissected by smaller breach‐lobe moraines on the external side of the ridge. Those moraine complexes are likely to be a product of several glacial events, which is supported by complex depositional structures. According to the type of glacial depositional features, the glaciers in the study areas were likely to have characteristics of moraine‐dammed glaciers. Due to vertical drainage ice‐marginal fluvial processes were unable to evacuate sediment. Fluvial transport between glacial and pro‐glacial systems in karst areas is inefficient. Nevertheless, some sediment from the glacier margin is washed away by the pro‐glacial streams, filling the karst depressions and forming piedmont‐type poljes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Rock glaciers are slowly flowing mixtures of debris and ice occurring in mountains. They can represent a reservoir of water, and melting ice inside them can affect surface water hydrochemistry. Investigating the interactions between rock glaciers and water bodies is therefore necessary to better understand these mechanisms. With this goal, we elucidate the hydrology and structural setting of a rock glacier–marginal pond system, providing new insights into the mechanisms linking active rock glaciers and impounded surface waters. This was achieved through the integration of waterborne geophysical techniques (ground penetrating radar, electrical resistivity tomography and self‐potentials) and heat tracing. Results of these surveys showed that rock glacier advance has progressively filled the valley depression where the pond is located, creating a dam that could have modified the level of impounded water. A sub‐surface hydrological window connecting the rock glacier to the pond was also detected, where an inflow of cold and mineralised underground waters from the rock glacier was observed. Here, greater water contribution from the rock glacier occurred following intense precipitation events during the ice‐free season, with concomitant increasing electrical conductivity values. The outflowing dynamic of the pond is dominated by a sub‐surface seepage where a minor fault zone in bedrock was found, characterised by altered and highly‐fractured rocks. The applied approach is evaluated here as a suitable technique for investigating logistically‐complex hydrological settings which could be possibly transferred to wider scales of investigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
The water storage and energy transfer roles of supraglacial ponds are poorly constrained, yet they are thought to be important components of debris‐covered glacier ablation budgets. We used an unmanned surface vessel (USV) to collect sonar depth measurements for 24 ponds to derive the first empirical relationship between their area and volume applicable to the size distribution of ponds commonly encountered on debris‐covered glaciers. Additionally, we instrumented nine ponds with thermistors and three with pressure transducers, characterizing their thermal regime and capturing three pond drainage events. The deepest and most irregularly‐shaped ponds were those associated with ice cliffs, which were connected to the surface or englacial hydrology network (maximum depth = 45.6 m), whereas hydrologically‐isolated ponds without ice cliffs were both more circular and shallower (maximum depth = 9.9 m). The englacial drainage of three ponds had the potential to melt ~100 ± 20 × 103 kg to ~470 ± 90 × 103 kg of glacier ice owing to the large volumes of stored water. Our observations of seasonal pond growth and drainage with their associated calculations of stored thermal energy have implications for glacier ice flow, the progressive enlargement and sudden collapse of englacial conduits, and the location of glacier ablation hot‐spots where ponds and ice cliffs interact. Additionally, the evolutionary trajectory of these ponds controls large proglacial lake formation in deglaciating environments. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Digital elevation models of the surface and bed of Midtdalsbreen, Norway are used to calculate subglacial hydraulic potential and infer drainage system structure for a series of subglacial water pressure assumptions ranging from atmospheric to ice overburden. A distributed degree‐day model is used to calculate the spatial distribution of melt on the glacier surface throughout a typical summer, which is accumulated along the various drainage system structures to calculate water fluxes beneath the glacier and exiting the portals for the different water pressure assumptions. In addition, 78 dye‐tracing tests were performed from 33 injection sites and numerous measurements of water discharge were made on the main proglacial streams over several summer melt seasons. Comparison of the calculated drainage system structures and water fluxes with dye tracing results and measured proglacial stream discharges suggests that the temporally and spatially averaged steady‐state water pressures beneath the glacier are ~70% of ice overburden. Analysis of the dye return curves, together with the calculated subglacial water fluxes shows that the main drainage network on the eastern half of the glacier consists of a hydraulically efficient system of broad, low channels (average width/height ratio ≈ 75). The smaller drainage network on the west consists of a hydraulically inefficient distributed system, dominated by channels that are exceptionally broad and very low (average width/height ratio ≈ 350). The even smaller central drainage network also consists of a hydraulically inefficient distributed system, dominated by channels that are very broad and exceptionally low (average width/height ratio ≈ 450). The channels beneath the western and central glacier must be so broad and low that they can essentially be thought of as a linked cavity system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In recent years, ground‐penetrating radar (GPR) has been increasingly used for characterization of subglacial and englacial environments at polythermal glaciers. The geophysical method is able to exploit the dielectric difference between water, air, sediment and ice, allowing delineation of subsurface hydrological, thermal and structural conditions. More recent GPR research has endeavoured to examine temporal change in glaciers, in particular the distribution of the cold ice zone at polythermal glaciers. However, the exact nature of temporal change that can be identified using GPR has not been fully examined. This research presents the results of three GPR surveys conducted over the course of a summer ablation season at a polythermal glacier in the Canadian Arctic. A total of approximately 30 km of GPR profiles were collected in 2002 repeatedly covering the lower 2 km of Stagnation Glacier, Bylot Island (72°58′ N 78°22′ W). Comparison between profiles indicated changes in the radar signature, including increased noise, appearance and disappearance of englacial reflections, and signal attenuation in the latter survey. Further, an area of chaotic returns in up‐glacier locations, which was interpreted to be a wet temperate ice zone, showed marked recession over the course of the ablation season. Combining all the temporal changes that were detected by GPR, results indicate that a polythermal glacier may exhibit strongly seasonal changes in hydrological and thermal characteristics throughout the ice body, including the drainage of 17 000 m3 of temporarily stored intra‐glacial meltwater. It is also proposed that the liquid water content in the temperate ice zone of polythermal glaciers can be described as a fraction of a specific retention capacity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Overdeepenings, i.e. closed topographic depressions with adverse slopes in the direction of flow, are characteristic for glacier beds and glacially sculpted landscapes. Quantitative information about their morphological characteristics, however, has so far hardly been available. The present study provides such information by combining the analysis of (a) numerous bed overdeepenings below still existing glaciers of the Swiss Alps and the Himalaya‐Karakoram region modelled with a robust shear stress approximation and (b) detailed bathymetries from recently exposed lakes in the Peruvian Andes. The investigated overdeepenings exist where glacier surface slopes are low (< 5°–10°), occur in bedrock or morainic material and are most commonly a fraction of a kilometre squared in surface area, hundreds of metres long, about half the length in width and tens of metres deep. They form under conditions of low to high basal shear stresses, at cirque, confluence, trunk valley and terminus positions. The most striking phenomenon, however, is the high variability of their geometries: Depths, surface areas, lengths and widths of the overdeepenings vary over orders of magnitude and are only weakly – if at all – interrelated. Inclinations of adverse slopes do not differ significantly from those of forward slopes and are in many cases higher than so far assumed theoretical limits for supercooling of ascending water and corresponding closure of sub‐glacial channels. Such steep adverse slopes are a robust observation and in support of recently developed new concepts concerning the question about where supercooling of sub‐glacial water and closure of ice channels can or must occur. However, the question of when and under what climatic, topographic and ice conditions the overdeepenings had formed remains unanswered. This open question constitutes a key problem concerning the interpretation of observed overdeepenings, the understanding of the involved glacio‐hydraulic processes and the possibility of realistic predictive modelling of overdeepening formation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
There are still relatively few hydrochemical studies of glacial runoff and meltwater routing from the high latitudes, where non-temperate glacier ice is frequently encountered. Representative samples of glacier meltwater were obtained from Scott Turnerbreen, a ‘cold-based’ glacier at 78° N in the Norwegian high Arctic archipelago of Svalbard, during the 1993 melt season and analysed for major ion chemistry. Laboratory dissolution experiments were also conducted, using suspended sediment from the runoff. Significant concentrations of crustal weathering derived SO2−4 are present in the runoff, which is characterized by high ratios of SO2−4: (SO2−4+HCO3) and high p(CO2). Meltwater is not routed subglacially, but flows to the glacier terminus through subaerial, ice marginal channels, and partly flows through a proglacial icing, containing highly concentrated interstitial waters, immediately afront the terminus. The hydrochemistry of the runoff is controlled by: (1) seasonal variations in the input of solutes from snow- and icemelt; (2) proglacial solute acquisition from the icing; and (3) subaerial chemical weathering within saturated, ice-cored lateral moraine adjoining drainage channels at the glacier margins, sediment and concentrated pore water from which is entrained by flowing meltwater. Diurnal variations in solute concentration arise from the net effects of variable sediment pore water entrainment and dilution in the ice marginal streams. Explanation of the hydrochemistry of Scott Turnerbreen requires only one major subaerial flow path, the ice marginal channel system, in which seasonally varying inputs of concentrated snowmelt and dilute icemelt are modified by seepage or entrainment of concentrated pore waters from sediment in lateral moraine, and by concentrated interstitial waters from the proglacial icing, supplied by leaching, slow drainage at grain intersections or simple melting of the icing itself. The ice marginal channels are analogous neither to dilute supra/englacial nor to concentrated subglacial flow components. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
This paper addresses the effect of accurately mapping spatially heterogeneous drainage densities in high‐altitude alpine basins on Rescaled Width Functions (RWFs), used in some applications as a minimalist model of the hydrologic response. The channel network and 373 of its channel heads were mapped in the field in a high mountain catchment in the Swiss Alps. The mapped channel network is characterized by highly uneven drainage density, here described by the distribution of the length to the first channelized site computed along steepest descent from any unchannelled site. Various channel networks were extracted from a 1 m lidar‐derived digital terrain model and compared with the field‐mapped channel network using geomorphologic parameters, hillslope‐to‐channel distance and RWFs. Our results show that the channel network derived by statistical analysis of surface morphology is consistent with the field‐mapped network. Larger discrepancies were observed when the channel network was obtained with classical threshold‐based approaches relying on cumulative drainage area and local slope. The actual arrangement of the drainage densities has a significant impact on the RWFs. The discrepancy was largest between RWFs derived from classical extraction methods and RWFs derived with the field‐mapped network, indicating an inappropriate extraction of the channelled portion of the high‐altitude catchment that is a reflection of the variety of channel initiation processes. Our results suggest that spatial heterogeneity of the drainage density might play an important role in modelling streamflow generation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Evacuation of basal sediment by subglacial drainage is an important mediator of rates of glacial erosion and glacier flow. Glacial erosion patterns can produce closed basins (i.e., overdeepenings) in glacier beds, thereby introducing adverse bed gradients that are hypothesized to reduce drainage system efficiency and thus favour basal sediment accumulation. To establish how the presence of a terminal overdeepening might mediate seasonal drainage system evolution and glacial sediment export, we measured suspended sediment transport from Findelengletscher, Switzerland during late August and early September 2016. Analyses of these data demonstrate poor hydraulic efficiency of drainage pathways in the terminus region but high sediment availability. Specifically, the rate of increase of sediment concentration with discharge was found to be significantly lower than that anticipated if channelized flow paths were present. Sediment availability to these flow paths was also higher than would be anticipated for discrete bedrock-floored subglacial channels. Our findings indicate that subglacial drainage in the terminal region of Findelengletscher is dominated by distributed flow where entrainment capacity increases only marginally with discharge, but flow has extensive access to an abundant sediment store. This high availability maintains sediment connectivity between the glacial and proglacial realm and means daily sediment yield is unusually high relative to yields exhibited by similar Alpine glaciers. We present a conceptual model illustrating the potential influence of ice-bed morphology on subglacial drainage evolution and sediment evacuation mechanics, patterns and yields, and recommend that bed morphology should be an explicit consideration when monitoring and evaluating glaciated basin sediment export rates.  相似文献   

15.
The reconstruction of former mountain glaciers has long been used to examine the implications of rapid climate shifts, for example at the last glacial–interglacial transition, and for evaluating asynchronous behaviour of mountain glaciers compared with mid‐latitude ice sheets during the Late Quaternary. Glacier reconstruction has also been used as a source of palaeoclimatic information, based on the recognition of empirical relationships between glaciers and climate. This paper reviews the application and implications of a recently revised method of glacier reconstruction (Carr and Coleman, 2007 ), based around glaciological principles of mass‐balance. This study examines how this approach can be used to test geomorphological interpretations of former mountain glaciation and also to infer precipitation fields at sites of former glaciation. Sites of Younger Dryas niche and icefield glaciation in the British Isles demonstrate how this method can verify interpretations of marginal glaciation and begin to understand the different behaviour of outlet glaciers within the same environmental regime. Examination of a site of former niche glaciation in Southern Africa demonstrates how glacier reconstruction may be used to infer annual and seasonal precipitation values and strongly supports the idea that winter precipitation in Lesotho and SE South Africa was substantially greater than present‐day values during the last glacial cycle. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The multipart Riffeltal rock glacier, located in a tributary valley of the Kaunertal, Tyrol, Austria is investigated to enlarge the knowledge about spatial and temporal development of rock glaciers in and at the margins of pro‐glacial areas and to get a better understanding of glacier–rock glacier interactions. The subject of interest consists of a complex system of two adjacent rock glacier tongues and various superposed lobes with differing ages, origin and root zones, and therefore diverse development. To determine the reasons for their diverging development, the internal structure and permafrost occurrence on and in the surrounding area of the rock glacier were studied by application of geomorphological mapping, geophysical methods and measurement of the basal temperature of the winter snow cover (BTS). Permafrost modelling was performed on the basis of BTS data and land surface parameters derived from a high resolution airborne laser scanning (ALS) digital elevation model (DEM). Additionally, the ALS data were used to measure vertical and horizontal changes of the rock glacier surface between 2006 and 2012. Glacier–rock glacier interactions during and since the Little Ice Age (LIA) are evident for the development of the studied rock glacier. A geomorphic map gives important information about the connection between glacial advance or retreat and permafrost or ground ice occurrence. The combination of all information helps in the analysis of diverse kinematic action of neighbouring rock glacier tongues. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A global positioning system and ground penetrating radar surveys is used to produce digital elevation models of the surface and bed of Brewster Glacier. These are used to derive maps of subglacial hydraulic potential and drainage system structure using three different assumptions about the subglacial water pressure (Pw): (i) Pw = ice overburden; (ii) Pw = half ice overburden; (iii) Pw = atmospheric. Additionally, 16 dye‐tracing experiments at 12 locations were performed through a summer melt season. Dye return curve shape, together with calculations of transit velocity, dispersivity and storage, are used to infer the likely morphology of the subglacial drainage system. Taken together, the data indicate that the glacier is underlain by a channelised but hydraulically inefficient drainage system in the early summer in which water pressures are close to ice overburden. By mid‐summer, water pressures are closer to half‐ice overburden and the channelised drainage system is more hydraulically efficient. Surface streams that enter the glacier close to the location of major subglacial drainage pathways are routed quickly to the channels and then to the glacier snout. Streams that enter the glacier further away from the drainage pathways are routed slowly to the channels and then to the snout because they first flow through a distributed drainage system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Increased resolution and availability of remote sensing products, and advancements in small‐scale aerial drone systems, allows observations of glacial changes at unprecedented levels of detail. Software developments, such as structure‐from‐motion (SfM), now allow users an easy and efficient method to generate three‐dimensional (3D) models and orthoimages from aerial or terrestrial datasets. While these advancements show promise for current and future glacier monitoring, many regions still suffer a lack of observations from earlier time periods. We report on the use of SfM to extract spatial information from various historic imagery sources. We focus on three geographic regions, the European Alps, high Arctic Norway and the Nepal Himalayas. We used terrestrial field photographs from 1896, high oblique aerial photographs from 1936 and aerial handheld photographs from 1978 to generate digital elevation models (DEMs) and orthophotos of the Rhone glacier, Brøggerhalvøya and the lower Khumbu glacier, respectively. Our analysis shows that applying SfM to historic imagery can generate high quality models using only ground control points. Limited camera/orientation information was largely reproduced using self‐calibrated model data. Using these data, we calculated mean ground sampling distances across each site which demonstrates the high potential resolution of resulting models. Vertical errors for our models are ±5.4 m, ±5.2 m and ±3.3 m. Differencing shows similar patterns of thinning at lower Rhone (European Alps) and Brøggerhalvøya (Norway) glaciers, which have mean thinning rates of 0.31 m a?1 (1896–2010) to 0.86 m a?1 (1936–2010) respectively. On these clean ice glaciers thinning is highest in the terminus region and decreasing up‐glacier. In contrast to these glaciers, uneven topography, exposed ice‐cliffs and debris cover on the Khumbu glacier create a highly variable spatial distribution of thinning. The mean thinning rate for the Khumbu study area was found to be 0.54 ± 0.9 m a?1 (1978–2015). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Glaciers and slope movements may act simultaneously to erode and modify glaciated slopes. Undercutting by glaciers can destabilize slopes but the extent to which slope failure may progress prior to subsequent glacier withdrawal has not hitherto been considered. The traditional view has been that the buttressing effect of ice prevents slope movement. The problem with this view is that ice is one‐third the density of rock and flows under low applied stress. Consequently, failed slopes may move into the glacier if they exert a stress in excess of the resistance provided by the glacier. Slope movement rate depends on ice rheology and other factors influencing driving and resisting stresses. Simple viscous equations are used to investigate these variables. The equations predict that small (<125 000 m3) ice‐contact rockslides can deform ice at several mm/year, increasing to several m/year for very large (>108 m3) rockslides. To test these estimates, field evidence is presented of slope movements in glaciated valleys of New Zealand; narrowing or squeezing of glaciers adjacent to unstable rock slopes is demonstrated and considered to be the result of slope movement. For one site, geomorphic mapping and slope movement monitoring data show that movement rates are of similar order of magnitude to those predicted by the viscous equations; closer agreement could be achieved with the application of modelling techniques that can more realistically model the complex slope geometries and stability factors encountered, or by obtaining additional empirical data to calibrate the models. This research implies that, while the concept of glacial debuttressing – the reduction of slope support from withdrawal of glaciers – is valid, complete debuttressing is not a prerequisite for the movement of ice‐contact rock slopes. These slope movements may contribute to the erosional processes of glaciers and the evolution of glaciated slopes in a previously unrecognized way. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Radar surveys of Bench Glacier, Alaska, collected over five field seasons between 2002 and 2006 reveal a surface layer of radar transparent ice in this temperate valley glacier. The transparent layer covers the up‐glacier half of the ablation zone and is defined by a distinct lack of the radar scattering events considered typical of temperate ice. Radar scattering ice underlies the transparent zone, and extends to the surface elsewhere on the glacier. We observed the layering in constant offset radar surveys conducted with characteristic frequencies ranging from 5 MHz to 100 MHz. The radar transparent layer extends from the surface to 20 m depth on average, but up to 50 m in some places. Bench Glacier's transparent layer appears similar to the cold surface layer of polythermal glaciers, however, observations in over 50 boreholes on Bench Glacier suggest there is no cold ice corresponding to the radar transparent layer. We conclude that spatially extensive radar‐transparent layers normally used to identify cold ice in polythermal glaciers are present in some temperate glaciers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号