首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Following a previous attempt to reproduce miniature sorted patterns on a level surface, we report the results of a full‐scale laboratory simulation on frost sorting produced by needle ice activity on inclined surfaces. Four models, with different slope gradients (5°, 7°, 9°, 11°), were designed. Stones 6 mm in diameter placed in a grid covered 20% of the surface of frost‐susceptible water‐saturated soil. These models were subjected to 20–40 freeze–thaw cycles between 10°C and ?5°C in 12 hours. The evolution of surface patterns was visually traced by photogrammetry. Needle ice growth and collapse induced downslope movement and concentrations of stones. A model produced incipient sorted circles on a 5° slope, whereas it resulted in three distinct sorted stripes on a 7° slope. The average diameter or spacing of these forms is 9.7–19.4 cm, comparable to those in the field dominated by diurnal freeze–thaw cycles. Surface parallel displacements of stone markers were traced with motion analysis software. The observed downslope stone displacements agree with those expected assuming that surface soil and stones move by repeated heaving perpendicular to the surface and vertical settlement due to gravity, although the growth of curved needle adds complexity to the overall displacements. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Sediment transport in the scoria areas of Marion Island is primarily the result of needle‐ice‐induced frost creep associated with diurnal soil frost cycles. Clasts move most rapidly in ?ne textured areas (532 mm a?1; SD 382), more slowly in stony areas (161 mm a?1; SD 179), and most slowly in blocky areas (26 mm a?1; SD 23). Movement rates increase with increasing frost susceptibility of sediments, slope angle and altitude. The heave of dowels indicates that frost heave is active in all the scoria areas examined. The depth of effective frost heave increases with increasing altitude, with frost heave being restricted to the upper 100 mm of the soil in low altitude areas (<200 m). The heave of 150 mm dowels at the higher altitude sites provides evidence for segregation ice formation at depths greater than those associated with needle ice and diurnal soil frost cycles. Vertical movement pro?les show a concave downslope pro?le, with sediment movement rates being most rapid at the soil surface and decreasing rapidly with depth. This pro?le shape is typical of areas dominated by diurnal freeze–thaw cycles and needle ice. The capture of sediments moving downslope in troughs and the sampling of material lifted by needle ice, suggest that sediment transport by needle ice under present conditions is extremely effective. Observations suggest that although both ?ne material and clasts are transported downslope, some preferential transport of clasts occurs. Experiment results and observations of soil frost processes suggest that frost creep associated with needle ice activity is the dominant slope process in the scoria areas of Marion Island. Other slope processes such as slopewash and debris ?ows appear to play a relatively minor and localized role in sediment transport. It is suggested that needle ice activity is likely to be the dominant geomorphic agent in other areas of the Subantarctic with similar climatic characteristics to Marion Island. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes up to ten years of continuous monitoring of frost heave, creep and associated parameters on high mountain crest slopes in the Japanese and Swiss Alps, aiming to evaluate spatial and interannual variations in the rates and controls of soil movement. Shallow frost creep re?ecting diurnal frost heave activity dominates the crest slopes that lack a vegetation mat and have a thin debris mantle with good drainage. Seasonal frost heave activity can induce slightly deeper movement where ?ne soil exists below the depth reached by diurnal freeze–thaw penetration, although the shallow bedrock impedes movements below 20 cm depth. As a result, downslope velocity pro?les display strong concavity with surface velocities of 2–50 cm a?1. The frost creep rates vary spatially, depending on the soil texture, slope gradient, frequency of temperature cycling across 0 °C and moisture availability during freeze–thaw periods. Soil movements recur in every freeze–thaw period, although with some interannual variations affected by the length of seasonal snow cover and the occurrence of precipitation during freeze–thaw periods. The Swiss Alps encounter more signi?cant interannual variations than the Japanese Alps, re?ecting the large variability of the annual snow regime. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Freezing and thawing processes play an important role for the gravitational transport of surface materials on steep mountain slopes in Japan. The effects of deforestation on frost heave activity were observed through the 2012/2013 winter season in Ikawa University Forest, a southern mountainous area in central Japan (1180–1310 m above sea level). During periods without snow cover, needle ice development prevailed at a clear‐cut site, and the downslope sediment movement of upper soil was 10 to 15 cm through the winter season. At a non‐cut site, rise and fall in the ground surface level prevailed on a weekly scale, with no evident downslope movements at the surface; ice lens formation in the soil layer is assumed. Abrupt changes in the radiation budget, such as the strengthening of nighttime radiative cooling and increases in daytime direct insolation, induced frequent development/deformation of needle ice at the clear‐cut site. In snow‐free periods, the day‐to‐day variability in needle ice growth length and in nighttime averaged net radiation showed significant correlations; cloudy weather with warmer and moist air intrusion associated with synoptic disturbances prevented the occurrence of needle ice. Namely, day‐to‐day weather changes directly affected the mass movement of the upper soil after deforestation. Shallow snow cover occurred discontinuously through the winter and is likely an important factor in keeping the soil moisture sufficiently high in the upper soil layer for initiating needle ice during snow‐free periods. We also discuss contributions of coastal extratropical cyclone activities providing both snow cover and cloudy weather in the southern mountain areas of central Japan to the intra‐seasonal variability in frost heave and its indirect effect on soil creep and landslides on the deforested steep slopes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Riparian vegetation is frequently used for stream bank stabilization, but the effects of vegetation on subaerial processes have not been quantified. Subaerial processes, such as soil desiccation and freeze–thaw cycling, are climate‐related phenomena that deliver soil directly to the stream and make the banks more vulnerable to fluvial erosion by reducing soil strength. This study compares the impact of woody and herbaceous vegetation on subaerial processes by examining soil temperature and moisture regimes in vegetated stream banks. Soil temperature and water tension were measured at six paired field sites in southwestern Virginia, USA, for one year. Results showed that stream banks with herbaceous vegetation had higher soil temperatures and a greater diurnal temperature range during the summer compared to forested stream banks. Daily average summer soil water tension was 13 to 57 per cent higher under herbaceous vegetation than under woody vegetation, probably due to evapotranspiration from the shallow herbaceous root system on the bank. In contrast to summer conditions, the deciduous forest buffers provided little protection for stream banks during the winter: the forested stream banks experienced diurnal temperature ranges two to three times greater than stream banks under dense herbaceous cover and underwent as many as eight times the number of freeze–thaw cycles. During the winter, the stream banks under the deciduous forests were exposed to solar heating and night time cooling, which increased the diurnal soil temperature range and the occurrence of freeze–thaw cycling. Study results also indicated that freeze–thaw cycling and soil desiccation were greater on the upper stream bank due to thermal and moisture regulation of the lower bank by the stream. Therefore, subaerial erosion and soil weakening may be greater on the upper stream banks. Additional research is needed on the influence of subaerial processes on both subaerial and fluvial erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Cold room physical modelling of periglacial solifluction processes on an experimental slope of 12° is described, and data on soil temperatures, surface frost heave, thaw consolidation, downslope soil movement and porewater pressures over seven freeze–thaw cycles are presented. These data are analyzed in the context of laboratory determination of the rheometry of the experimental soils at high moisture contents. It is concluded that the observed thaw-induced solifluction represents pre-failure soil shear strain and results from loss of strength due to the combined effects of raised porewater pressures during thaw consolidation and upward seepage pressures as water flows towards the surface away from the thaw front. An investigation of the rheometry of thawing soils offers the prospect of an analytical model to predict rates and depths of periglacial solifluction. © 1997 by John Wiley & Sons, Ltd.  相似文献   

7.
An analysis of miniature sorted circles and polygons provides the first detailed assessment of sorted patterned ground from a southern African alpine region. Pattern dimensions and particle sorting were determined from two sites in the high Drakensberg. Although the sorted patterns in the high Drakensberg are somewhat polygenetic in developmental origin, they are primarily frost-induced. Miniature sorted patterned ground below 3200 m a.s.l. on the Drakensberg plateau develops annually during the winter months and disintegrates towards summer. The development of miniature sorted patterns within five to six weeks demonstrates the effect of regular freeze–thaw cycles at higher altitudes in the Drakensberg. © 1997 by John Wiley & Sons, Ltd.  相似文献   

8.
Long‐term data from the Hubbard Brook Experimental Forest in New Hampshire show that air temperature has increased by about 1 °C over the last half century. The warmer climate has caused significant declines in snow depth, snow water equivalent and snow cover duration. Paradoxically, it has been suggested that warmer air temperatures may result in colder soils and more soil frost, as warming leads to a reduction in snow cover insulating soils during winter. Hubbard Brook has one of the longest records of direct field measurements of soil frost in the United States. Historical records show no long‐term trends in maximum annual frost depth, which is possibly confounded by high interannual variability and infrequency of major soil frost events. As a complement to field measurements, soil frost can be modelled reliably using knowledge of the physics of energy and water transfer. We simulated soil freezing and thawing to the year 2100 using a soil energy and water balance model driven by statistically downscaled climate change projections from three atmosphere‐ocean general circulation models under two emission scenarios. Results indicated no major changes in maximum annual frost depth and only a slight increase in number of freeze–thaw events. The most important change suggested by the model is a decline in the number of days with soil frost, stemming from a concurrent decline in the number of snow‐covered days. This shortening of the frost‐covered period has important implications for forest ecosystem processes such as tree phenology and growth, hydrological flowpaths during winter, and biogeochemical processes in soil. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

9.
Use of isotopes to quantify the temporal dynamics of the transformation of precipitation into run‐off has revealed fundamental new insights into catchment flow paths and mixing processes that influence biogeochemical transport. However, catchments underlain by permafrost have received little attention in isotope‐based studies, despite their global importance in terms of rapid environmental change. These high‐latitude regions offer limited access for data collection during critical periods (e.g., early phases of snowmelt). Additionally, spatio‐temporal variable freeze–thaw cycles, together with the development of an active layer, have a time variant influence on catchment hydrology. All of these characteristics make the application of traditional transit time estimation approaches challenging. We describe an isotope‐based study undertaken to provide a preliminary assessment of travel times at Siksik Creek in the western Canadian Arctic. We adopted a model–data fusion approach to estimate the volumes and isotopic characteristics of snowpack and meltwater. Using samples collected in the spring/summer, we characterize the isotopic composition of summer rainfall, melt from snow, soil water, and stream water. In addition, soil moisture dynamics and the temporal evolution of the active layer profile were monitored. First approximations of transit times were estimated for soil and streamwater compositions using lumped convolution integral models and temporally variable inputs including snowmelt, ice thaw, and summer rainfall. Comparing transit time estimates using a variety of inputs revealed that transit time was best estimated using all available inflows (i.e., snowmelt, soil ice thaw, and rainfall). Early spring transit times were short, dominated by snowmelt and soil ice thaw and limited catchment storage when soils are predominantly frozen. However, significant and increasing mixing with water in the active layer during the summer resulted in more damped steam water variation and longer mean travel times (~1.5 years). The study has also highlighted key data needs to better constrain travel time estimates in permafrost catchments.  相似文献   

10.
In 2008–2009, a severe cold snap affected the otherwise temperate mid‐latitude coasts of the English Channel of France. In March 2009, we gathered rock spalling observations at Mesnil Val, NW France, to document the effect of frost on platform lowering in macro‐tidal environments. Six epochs of frost were recorded in 2 months, the two longest lasted 16 and 8 days, with minimum air temperature dropping to –9.5°C. Semi‐diurnal tides flood the entire platform, imposing up to 25 freeze–thaw cycles below –2.5°C, the freezing temperature of seawater. 19 cycles occurred at neap tidal elevation lasting at most 3.5 h. Our integrated observations indicate that these frost cycles were responsible for a platform lowering of about 0.8±0.5 mm during a single winter. No clear spatial trend appears, nor do macroscopic chalk types clearly stand out as being more susceptible to erosion. Assuming that the long‐term platform retreat model preserves a constant slope, frost shattering would then account for 10 to 20% of the expected annual platform erosion rate. Under more contrasted climates, frost is thus likely to be a prominent shaping process for rocky coastal platforms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This paper reports results from two scaled centrifuge modelling experiments, designed to simulate thaw‐related geli?uction. A planar 12° prototype slope was modelled in each experiment, using the same natural ?ne sandy silt soil. However two different scales were used. In Experiment 1, the model scale was 1/10, tested in the centrifuge at 10 gravities (g) and in Experiment 2, the scale was 1/30, tested at 30 g. Centrifuge scaling laws indicate that the time scaling factor for thaw consolidation between model and prototype is N2, where N is the number of gravities under which the model was tested. However, the equivalent time scaling for viscous ?ow is 1/1. If geli?uction is a viscosity‐controlled ?ow process, scaling con?icts will therefore arise during centrifuge modelling of thawing slopes, and rates of displacement will not scale accurately to the prototype. If, however, no such scaling con?icts are observed, we may conclude that geli?uction is not controlled by viscosity, but rather by elasto‐plastic soil deformation in which frictional shear strength depends on effective stress, itself a function of the thaw consolidation process. Models were saturated, consolidated and frozen from the surface downwards on the laboratory ?oor. The frozen models were then placed in the geotechnical centrifuge and thawed from the surface down. Each model was subjected to four freeze–thaw cycles. Soil temperatures and pore water pressures were monitored, and frost heave, thaw settlement and downslope displacements measured. Pore water pressures, displacement rates and displacement pro?les re?ecting accumulated shear strain, were all similar at the two model scales and volumetric soil transport per freeze–thaw cycle, when scaled to prototype, were virtually identical. Displacement rates and pro?les were also similar to those observed in earlier full‐scale laboratory ?oor experiments. It is concluded therefore that the modelled geli?uction was not a time‐dependent viscosity‐controlled ?ow phenomenon, but rather elasto‐plastic in nature. A ?rst approximation ‘?ow’ law is proposed, based on the ‘Cam Clay’ constitutive model for soils. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Freezing and thawing processes at the soil surface play an important role in determining the nature of Tibetan land and atmosphere interactions. In this study, land surface water and heat exchanges under different freezing and thawing conditions over the central Tibetan Plateau were investigated using observations from the Coordinated Enhanced Observing Period/Asia‐Australia Monsoon Project on the Tibetan Plateau, and the Simultaneous Heat and Water Model. During the freezing and thawing stages, significant diurnal variation of soil temperature resulted in a diurnal cycle of unfrozen water content at the surface. Radiation and energy components and evapotranspiration averaged over four freeze/thaw stages also changed diurnally. On average, the surface albedo (0·68) during the completely frozen stage was sharply higher than those during the freezing, thawing, and completely thawed stages due to the snow cover. The Bowen ratios were 3·1 and 2·5 in the freezing and thawing stages, respectively, but the ratio was only 0·5 in the completely thawed stage. Latent heat flux displayed distinctly better correlation with unfrozen soil water content during the freezing and thawing stages than during the completely frozen and thawed stages. This implies that the diurnal cycle of unfrozen soil water, resulting from diurnal freeze/thaw cycles at the surface, has a significant impact on latent heat flux. A surface energy imbalance problem was encountered, and the possible sources of error were analysed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This study aims to analyse the environmental controls on soil frost processes in the Western Cape mountains of South Africa. Two microclimatic monitoring stations were established on different substrates at about 1900 m a.s.l. recording air and soil temperature, soil moisture and precipitation over periods of five and two years respectively. Other data available are snow cover estimations and soil textural data. Results show the region to experience surficial diurnal frost only. The frequency of effective frost days in the sandstone areas is extremely limited due to insulation by snow cover and vegetation, effectiveness of the zero-curtain effect and high albedo values of the surface. Irrespective of climatic controls, sandstone-derived sediments are found to be too coarse to develop segregation ice. These strata underlie over 90 per cent of the Western Cape mountains over 1000 m a.s.l. Monitoring on shales indicates 12 and 16 diurnal frost cycles for needle-ice growth for 1993 and 1994, respectively. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
Active sorted circles are quantitatively described for the first time for the maritime Subantarctic. Increasing altitude and hence increasing frost penetration are associated with systematic increases in pattern spacing, cell width, height of the fine centre relative to the border, and depth of sorting (but not the width of coarse margins). These results imply consistent dimensional scaling of circle parameters. It is argued, on the basis of the altitudinal trends in pattern morphology, the dimensional scaling of forms, and the morphology of the patterns, that differential frost heave in association with convection cells is responsible for circle formation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Width and temperature of rock joints were automatically monitored in the Japanese Alps. Three years of monitoring on a sandstone rock face shows two seasonal peaks of joint widening in autumn and spring. The autumn events are associated with short‐term freeze–thaw cycles, and the magnitude of widening reflects the freezing intensity and water availability. The short‐term freezing can produce wedging to a depth of at least 20 cm. The spring events follow a rise in the rock surface temperature to 0 °C beneath the seasonal snowcover, and likely originate from refreezing of meltwater entering the joint. Some of these events contribute to permanent enlargement of the joint. Two other joints on nearby rock faces experience only sporadic widening accompanying freeze–thaw cycles and insignificant permanent enlargement. Observations indicate that no single thermal criterion can explain frost weathering. The temperature range at which wedging occurs varies with the bedrock conditions, water availability and duration of freezing. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Frozen soil plays an important role on the stability of railway and highway subgrade in cold regions. However, the dynamic properties of frozen soil subjected to the freeze–thaw cycles have rarely been investigated. In this study, cryogenic cyclic triaxial tests were conducted on frozen compacted sand from Nehe, Heilongjiang Province in China which was subjected to the closed-system freeze–thaw cycles. A modified Hardin hyperbolic model was suggested to describe the backbone curves. Then, dynamic shear modulus and damping ratio versus cyclic shear strain were analyzed under the different freeze–thaw cycles, temperatures, initial water contents, loading frequencies and confining pressures. The results indicate that the freeze–thaw process plays a significant effect on the dynamic shear modulus and damping ratio, which slightly change after one freeze–thaw cycle. Dynamic shear modulus increases with increasing initial water content, temperature, loading frequency and confining pressure. Damping ratio increases with increasing initial water content, while decreases with increasing temperature and loading frequency. The effect of confining pressure on the damping ratio was found not significant. Furthermore, the empirical expressions were formulated to estimate dynamic shear modulus and damping ratio of the frozen compacted sand. The results provide guidelines for evaluating the infrastructures in cold regions.  相似文献   

17.
Seasonal changes over 2 years (2004–2006) in soil moisture content (θv) of frozen alpine frost meadow soils of the Qinghai‐Tibet plateau permafrost region under three different levels of vegetation cover were investigated. Vegetation cover and air temperature changes had significant effects (synergistic effect) on θv and its distribution in the soil profile. During periods of soil freezing or thawing, the less the vegetation cover, the quicker the temperature drop or rise of soil water, and the shorter the duration of the soil water freeze–thaw response in the active soil layer. Under 30% and 65% vegetation cover the amplitude of variation in θv during the freezing period was 20–26% greater than that under 93% cover, while during the thawing period, it was 1·5‐ to 40·5‐fold greater. The freezing temperature of the surface soil layer, fTs, was 1·6 °C lower under 30% vegetation cover than under 93% vegetation cover. Changes in vegetation cover of the alpine frost meadow affected θv and its distribution, as well as the relationship between θv and soil temperature (Ts). As vegetation cover decreased, soil water circulation in the active layer increased, and the response to temperature of the water distribution across the soil profile was heightened. The quantity of transitional soil phase water at different depths significantly increased as vegetation cover decreased. The influence of vegetation cover and soil temperature distribution led to a relatively dry soil layer in the middle of the profile (0·70–0·80 m) under high vegetation cover. Alpine meadow θv and its pattern of distribution in the permafrost region were the result of the synergistic effect of air temperature and vegetation cover. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Rock temperatures were monitored for a year at two alpine rockwalls in the Akaishi Range, Japan, where permafrost is absent. Diurnal frost and thaw penetration depths were evaluated from subsurface isotherms drawn on the basis of the temperature records at 0, 10 and 40 cm depths. The surface of the rockwalls experienced more than 100 diurnal freeze-thaw cycles, most of which accompanied a frost or thaw penetration shallower than 50 cm, and several long duration cycles with deeper frost or thaw penetration. Theoretical frost and thaw depths were also calculated by incorporating the surface freezing indices into the modified Berggren equation, the results from which were then compared with the actual values. The modified Berggren equation provided values that showed a strong correlation with observed depths, despite somewhat underestimating the actual values. Using the modified Berggren equation, the seasonal frost depth in the observed winter was estimated to be about 4·5 m. The frost and thaw depths are considered to give the maximum estimation of the depth to which frost-induced cracking can propagate in the bedrock.  相似文献   

19.
This study integrated spatially distributed field observations and soil thermal models to constrain the impact of frozen ground on snowmelt partitioning and streamflow generation in an alpine catchment within the Niwot Ridge Long-Term Ecological Research site, Colorado, USA. The study area was comprised of two contrasting hillslopes with notable differences in topography, snow depth and plant community composition. Time-lapse electrical resistivity surveys and soil thermal models enabled extension of discrete soil moisture and temperature measurements to incorporate landscape variability at scales and depths not possible with point measurements alone. Specifically, heterogenous snowpack thickness (~0–4 m) and soil volumetric water content between hillslopes (~0.1–0.45) strongly influenced the depths of seasonal frost, and the antecedent soil moisture available to form pore ice prior to freezing. Variable frost depths and antecedent soil moisture conditions were expected to create a patchwork of differing snowmelt infiltration rates and flowpaths. However, spikes in soil temperature and volumetric water content, as well as decreases in subsurface electrical resistivity revealed snowmelt infiltration across both hillslopes that coincided with initial decreases in snow water equivalent and early increases in streamflow. Soil temperature, soil moisture and electrical resistivity data from both wet and dry hillslopes showed that initial increases in streamflow occurred prior to deep soil water flux. Temporal lags between snowmelt infiltration and deeper percolation suggested that the lateral movement of water through the unsaturated zone was an important driver of early streamflow generation. These findings provide the type of process-based information needed to bridge gaps in scale and populate physically based cryohydrologic models to investigate subsurface hydrology and biogeochemical transport in soils that freeze seasonally.  相似文献   

20.
Rock moisture during freeze–thaw events is a key factor for frost weathering. Data on moisture levels of natural rockwalls are scarce and difficult to obtain. To close this gap, we can benefit from the extensive knowledge of moisture‐related phenomena in building materials, which is incorporated into simulation software, for example the WUFI® package of the Fraunhofer Institute of Building Physics. In this paper we applied and adapted this type of simulation to natural rockwalls to gain new insights on which moisture‐related weathering mechanisms may be important under which conditions. We collected the required input data on physical rock properties and local climate for two study areas in the eastern European Alps with different elevation [Sonnblick, 3106 m above sea level (a.s.l.) and Johnsbach, 700 m a.s.l.] and different lithologies (gneiss and dolomite, respectively). From this data, moisture profiles with depth and fluctuations in the course of a typical year were calculated. The results were cross‐checked with different thermal conditions for frost weathering reported in the literature (volumetric expansion and ice segregation theories). The analyses show that in both study areas the thresholds for frost cracking by volumetric expansion of ice (90% pore saturation, temperature < ?1 °C) are hardly ever reached (in one year only 0.07% of the time in Johnsbach and 0.4% at Sonnblick, mostly in north‐exposed walls). The preconditions for weathering by ice segregation (?3 to ?8 °C, > 60% saturation) prevail over much longer periods; the time spent within this ‘frost cracking window‘ is also higher for north‐facing sites. The influence of current climate warming will reduce effective frost events towards 2100; however the increase of liquid precipitation and rock moisture will promote weathering processes like ice segregation at least at the Sonnblick site. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号