首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Proxies, such as changes in beach profiles and shoreline positions, are commonly used in management and research for estimating changes in subaerial beach volume; however, the accuracy of these proxies across increasing time scales and complex morphologies is unclear. Volume changes associated with along‐beach morphologic variability may not be captured well by changes in profiles, while volume changes associated with across‐beach morphologic variability may not be captured well by measuring shoreline change. This study assesses the impacts of morphologic variations, associated with beach cusps and nourishment material, on volume change estimates from profiles and shoreline change at 0.5 to 3.5 year time periods. Results indicate that profiles spaced ≥ 150 m apart and the shoreline‐change proxy will likely estimate volume change inaccurately over periods ≤ 1 year at beaches that are consistently eroding or accreting and contain cusps. However, over longer time periods (1–3.5 years), estimates of volume change from both proxies improved at those types of beaches. Volume changes at the edges of nourishment areas are not captured well by profiles. When the nourishment material is graded to a ramped morphology, which minimizes across‐beach morphologic variability, the shoreline‐change proxy does accurately estimate volume changes. Both proxies estimate volume changes inaccurately at beaches where volume changes oscillate between erosion and accretion on both short and long time scales because the magnitude of small‐scale changes in volume from the formation and erosion of morphologic features, such as cusps and berms, will always be similar to the longer‐term net volume change. This study suggests that decadal records of shoreline change, which are commonly developed using aerial photography, can be used to help identify the best proxy for estimating volume change; however, recent anthropogenic modifications that impact patterns of beach sedimentation, including nourishment, terminal groins, and inlet‐channel dredging, makes decadal records less useful. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Sandbars, submerged ridges of sand parallel to the shoreline, affect surfzone circulation, beach topography and beach width. Under time‐varying wave forcing, sandbars may migrate onshore and offshore, referred to as two‐dimensional (2D) behaviour, and vary in planshape from alongshore uniform ridges to alongshore non‐uniform ridges through the growth and decay of three‐dimensional (3D) patterns, referred to as 3D behaviour. Although 2D and 3D sandbar behaviour is reasonably well understood along straight coasts, this is not the case for curved coasts, where the curvature can invoke spatial variability in wave forcing. Here, we analyse sandbar behaviour along the ~3000 m man‐made curved coastline of the Sand Engine, Netherlands, and determine the wave conditions governing this behaviour. 2D and 3D behaviour was quantified within a box north and west of the Sand Engine's tip, respectively, using a 2.4‐year dataset of daily low‐tide video images and a sparser bathymetric dataset. The northern and western sides behaved similarly in terms of 2D behaviour, with seasonal onshore and offshore migration, resulting in a stable position on inter‐annual timescales. However, both sandbar geometry and 3D behaviour differed substantially between both sides. The geometric differences (bar shape, bar crest depth and wavelength of 3D patterns) are consistent with computed alongshore differences in breaker height due to refraction. The differences in the timing in growth, decay and morphological coupling of 3D patterns in the sandbar and shoreline are likely related to differences in the local wave angle, imposed by the curved coast. Similar dependency of bar behaviour on local wave height and angle may be expected elsewhere along curved coasts, e.g. shoreline sandwaves, cuspate forelands or embayed beaches. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Understanding across-margin transport has long been recognized as crucial for wise management of our coastline and shelf waters. Issues related to sewage outfalls, nutrient and pollutant dispersal, carbon export, and shoreline sediment budgets all require an understanding of these processes. Across-margin transport of water and sediment at cuspate foreland headlands has been largely unrecognized, and the processes responsible for this export unappreciated. We examined physical process on Cape Lookout Shoal, a cape-associated shoal on the North Carolina continental shelf, through numerical modeling and field observations of near-bottom currents. The cuspate foreland setting of the northern South Atlantic Bight has been previously characterized as wave-dominated with a principal alongshore directed sediment transport and physical circulation forced by wave and wind-driven currents along the inner and mid-shelf. Our findings instead suggest that a seaward-directed, tidal-driven headland flow many play a significant role in the direction of net sediment transport on the shoal and ultimately its location and long-term maintenance. The shoal's location relative to the promontory-induced residual eddies and the region of active deposition differs from traditionally held ideas on sedimentary processes at headland-related sand banks. In addition, the headland flows may also serve as a first-order mechanism for rapidly exporting nearshore and estuarine waters to the outer-shelf.  相似文献   

4.
Profiles were analysed in conjunction with wave climate to assess offshore island influences on an embayed beach at Tenby, Wales. Time series analyses showed medium and short‐term beach oscillation, with volume exchanges between zones lagging by up to six months. Dominant southerly and southwesterly waves caused sub and low tidal longshore drift from south towards north, while less frequent southeasterly waves generated counter drift. Modelled inshore breaking waves had less energy than offshore ones and the former behaved differently between the low and high tidal zones (spring tidal range of 7 · 5 m). Variations in wave direction from directly behind the islands resulted in reduced wave heights and statistical analyses agreed with wave model results. These were correlated to morphological change and it was concluded that offshore islands change wave dynamics and modify the morphology of embayed beaches in their lee. Consequently, this work provides significant new insights into offshore island influences, shoreline behaviour and especially tidal setting Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
An 8‐year time series of weekly shoreline data collected at the Gold Coast, Australia, is used to examine the temporal evolution of a beach, focusing on the frequency response of the shoreline to time‐varying wave height and period. Intriguingly, during 2005 the movement of the shoreline at this site changed from a seasonally‐dominated mode (annual cycle) to a storm‐dominated (~monthly) mode. This unexpected observation provides the opportunity to explore the drivers of the observed shoreline response. Utilizing the calibration of an equilibrium shoreline model to explore the time‐scales of underlying beach behavior, the best‐fit frequency response (days?1) is shown to be an order of magnitude higher post‐2004, suggesting that a relatively subtle change in wave forcing can drive a significant change in shoreline response. Analysis of available wave data reveals a statistically significant change in the seasonality of storms, from predominantly occurring at the start of the year pre‐2005 to being relatively consistent throughout the year after this time. The observed change from one mode of shoreline variability to another suggests that beaches can adapt relatively quickly to subtle changes in the intra‐annual distribution of wave energy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Magilligan Point is a recurved cuspate foreland at the mouth of Lough Foyle. Two wave regimes intersect in the estuary mouth and the manner of their interplay controls shoreline changes. Ocean swell waves from the N and NE are refracted around the recurve, losing both height and energy longshore. Width of the surf zone decreases and waves tend to steepen, although both these changes and wave refraction owe something to nearshore geometry. Angle of wave approach becomes more acute and a westerly flowing longshore current moves sand S and SW along the beach. Estuary waves from the S and SW are wind-driven with high-frequencies and steepnesses. They generate a northeasterly current which returns material N, but dies out as the waves become obliterated by nearshore attenuation and breaking of swell. It is possible to identify a time-averaged null-point where shoreline wave power is balanced, although this tends to shift over short periods causing rapid morphological changes. The existence of two independent, but counteractive cells ensures the long-term maintenance of the foreland, without requiring major or continuous supplies of fresh sediment.  相似文献   

7.
Nearshore sandbars are characteristic features of sandy surf zones and have been observed with a variety of geometries in cross-shore (e.g. location) and longshore direction (e.g. planform). Although the behaviour of sandbars has been studied extensively on spatial scales up to kilometres and timescales up to years, it remains challenging to observe and explain their behaviour on larger spatial and temporal scales, especially in locations where coastline curvature can be prominent. In this paper, we study a data set with 38 years of coastal profiles, collected with alongshore intervals of 50 m, along the 34 km-long curved sandy shoreline of Sylt island, Germany. Sylt's shoreline has an orientation difference of ~20° between the northern and southern half of the island. We found that the decadal coastal profiles on the southern half show features of a low-tide terrace and a sandbar located further from the shoreline (~441 m). On the nothern half, the sandbar was located closer to the shoreline (~267 m) and was less pronounced, while the profiles show transverse bar and rip features. The alongshore planform also differed systematically and significantly along the two island sides. The sandbar on the southern island half, with alongshore periodicity on a larger length scale (~2240 m), was coupled out-of-phase to the shoreline, while no phase coupling was observed for the sandbar with periodicity on a shorter length scale (~670 m) on the northern half. We related the observed geometric differences of the sandbars to the difference in the local wave climate along Sylt, imposed by the shoreline shape. Our observations imply that small alongshore variations in wave climate, due to the increasing shoreline curvature on larger spatial scales, can lead to significant alongshore differences in the decadal evolution of coastal profiles, sandbars and shorelines. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

8.
Future shoreline changes on a sandy beach with a structure such as a jetty or groin can be estimated when wave time series is known (i.e. sequence of wave height, period, and direction). This paper presents an extension of an existing solution (Pelnard-Considere, 1956) for the linearized partial differential equation for shoreline change at an infinite jetty where waves are time varying and when the angle of the shoreline is small with respect to the waves breaking at the shoreline. The novel solution provided in this paper allows the previous constant wave condition solution to be extended to the case where wave properties (i.e. wave direction, wave height, and wave period) are time varying. Example usage of the method presented shows that shorelines may be of different final plan form shape for time varying wave conditions even though the sediment transport along adjacent beaches is not spatially varying (i.e. spatially constant) from time step to time step. Although this difference in shape may have been known previously using numerical models, it could not be proved analytically. Reversals of wave height, period, and direction time series are shown to provide different final shoreline shapes even though the time series consists of the same waves although in different ordered time. The solution provided will allow one line numerical shoreline models to be tested using an analytic solution.  相似文献   

9.
Erosion of hard‐rock coastal cliffs is understood to be caused by a combination of both marine and sub‐aerial processes. Beach morphology, tidal elevation and significant wave heights, especially under extreme storm conditions, can lead to variability in wave energy flux to the cliff‐toe. Wave and water level measurements in the nearshore under energetic conditions are difficult to obtain and in situ observations are rare. Here we use monthly cliff‐face volume changes detected using terrestrial laser scanning alongside beach morphological changes and modelled nearshore hydrodynamics to examine how exposed cliffs respond to changes in extreme wave conditions and beach morphology. The measurements cover the North Atlantic storms of 2013 to 2014 and consider two exposed stretches of coastline (Porthleven and Godrevy, UK) with contrasting beach morphology fronting the cliffs; a flat dissipative sandy beach at Godrevy and a steep reflective gravel beach at Porthleven. Beach slope and the elevation of the beach–cliff junction were found to influence the frequency of cliff inundation and the power of wave–cliff impacts. Numerical modelling (XBeach‐G) showed that under highly energetic wave conditions, i.e. those that occurred in the North Atlantic during winter 2013–2014, with Hs = 5.5 m (dissipative site) and 8 m (reflective site), the combination of greater wave height and steeper beach at the reflective site led to amplified wave run‐up, subjecting these cliffs to waves over four times as powerful as those impacting the cliffs at the dissipative site (39 kWm‐1 compared with 9 kWm‐1). This study highlighted the sensitivity of cliff erosion to extreme wave conditions, where the majority (over 90% of the annual value) of cliff‐face erosion ensued during the winter. The significance of these short‐term erosion rates in the context of long‐term retreat illustrates the importance of incorporating short‐term beach and wave dynamics into geomorphological studies of coastal cliff change. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

10.
This paper examines the daily morphological responses of Sununga Beach, an embayed beach located on the south‐eastern Brazilian coast, to storms in the South Atlantic Ocean. The main mechanisms and timing of beach erosion and accretion, the relationship between wave height and direction, and beach volume changes are considered, to establish a qualitative model for short‐term embayed beach morphological changes. The methodology consisted of daily topographic surveys during the month of May in 2001, 2002, and 2003, using an RTK‐GPS (real‐time kinematics – global positioning system). Weather and wave model results were used to correlate hydrodynamics and beach morphology. The results indicate that the morphodynamics of Sununga Beach are characterized by a process of beach rotation, which occurred more or less clearly during all three surveys. Unlike what has been commonly described in the literature for longer time intervals and alternations of fair and stormy weather, the beach rotation processes on Sununga Beach occurred under conditions of moderate‐to‐high wave energy change (wave heights greater than 2 m). An integrated evaluation of the behaviour of the meteorological aspects, together with beach morphology, enabled us to recognize that extra‐tropical cyclones were the most important agent in remobilizing the beach planform, whether in beach rotation or in cross‐shore erosion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A five‐year dataset of Argus‐derived mean intertidal positions has been analysed to characterize the shoreface variability in a beach protected by a system of groynes and a parallel low crested structure (Lido di Dante Ravenna, Italy). For the period 2004–2009, 84 intertidal beach bathymetries and shorelines at the zero sea level were used as indicators to assess beach changes in between a number of selected surveys and to determine characteristic patterns of the beach response to storm events from different directions. Variations in the shoreline at the zero sea levels have been quantified and analysed in conjunction with nearshore wave conditions and provenance linked to storm events. These fall into two categories: (1) storm events occurring during Bora (north‐eastern) wind conditions and (2) storm events occurring during Scirocco (south‐eastern) wind conditions. The results show that, apart from main beach advances of the whole protected beach due to nourishments periodically carried out, a marked variability is observed among the four sub‐cells into which the shoreface behaviour has been separately analysed. In particular, a dependence of beach rotation in the ‘artificially embayed’ area on the substantially bi‐directional wave climate has been shown: Bora and Scirocco storm events produce shoreline rotation in counterclockwise and clockwise directions, respectively, due to the occurrence of longshore currents in the opposite direction in the nearshore. An attempt was made to correlate the shoreface dynamics for the main rotation events (14 selected ones) to the wave attack intensity (as the total energy flux due to storm events). A relationship seems to occur (for each storm category) between the shoreline displacements estimated for each sub‐cell and the total energy flux computed for inter‐survey periods, supporting the occurrence of a link between the observed morphological changes and the hydrodynamic forcing associated with storm events in the five‐year monitoring period. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Shoreline evolution due to longshore sediment transport is one of the most important problems in coastal engineering and management. This paper describes a method to predict the probability distributions of long-term shoreline positions in which the evolution process is based on the standard one-line model recast into a stochastic differential equation. The time-dependent and spatially varying probability density function of the shoreline position leads to a Fokker–Planck equation model. The behaviour of the model is evaluated by applying it to two simple shoreline configurations: a single long jetty perpendicular to a straight shoreline and a rectangular beach nourishment case. The sensitivity of the model predictions to variations in the wave climate parameters is shown. The results indicate that the proposed model is robust and computationally efficient compared with the conventional Monte Carlo simulations.  相似文献   

13.
This paper addresses a series of geomorphic questions relating to large‐scale (> 1 km), long‐term (100 – 1,000 years) coastal planshape evolution. Previous research on soft‐cliff coasts has recognised the role of protective fronting beach volumes on reducing rates of cliff toe retreat. However, it is the maintenance of this critical threshold that ultimately determines two contrasting modes of shoreline behaviour: Mode A, in which there is little beach sediment and shoreline evolution is controlled by material strength; and, Mode B, when ample beach sediment means that shoreline evolution is controlled by longshore sediment transport. Here we use a numerical model (SCAPE) to investigate temporal and spatial changes in beach volume on a broader range of feedbacks than considered in previous models. The transition between Mode A and Mode B coasts is defined by relative sediment inputs to outputs and used to explore how these contrasting modes control the evolution of an initial linear frontage exhibiting longshore changes in cliff lithology (material resistance and the proportion of beach grade material in the eroded bedrock). Under Mode A, relative changes in material resistance result in long term heterogeneous rates of retreat, which result in the development of persistent headland and embayment features. However, under Mode B, feedbacks between coastal planshape, longshore sediment transport, beach volume and wave energy result in steady state retreat rates regardless of longshore variations in resistance. Results are compared and contrasted to previous simulations and site specific examples and a conceptual model of Mode A and Mode B interactions presented. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Airborne hyperspectral data and airborne laserscan or LIDAR data were applied to analyse the sediment transport and the beach morphodynamics along the Belgian shoreline. Between 2000 and 2004, four airborne acquisitions were performed with both types of sensor. The hyperspectral data were classified into seven sand type classes following a supervised classification approach, in which feature selection served to reduce the number of bands in the hyperspectral data. The seven classes allowed us to analyse the spatial dynamics of specific sediment volumes. The technique made it possible to distinguish the sand used for berm replenishment works or for beach nourishments from the sand naturally found on the backshore and the foreshore. Subtracting sequential DTMs (digital terrain models) resulted in height difference maps indicating the erosion and accretion zones. The combination of both data types, hyperspectral data and LIDAR data, provides a powerful tool, suited to analyse the dynamics of sandy shorelines. The technique was demonstrated on three sites along the Belgian shoreline: Koksijde, located on the West Coast and characterized by wide accretional beaches, influenced by dry berm replenishment works and the construction of groins; Zeebrugge, on the Middle Coast, where a beach nourishment was executed one year before the acquisitions started and where the dams of the harbour of Zeebrugge are responsible for the formation of a large accretional beach, and Knokke‐Heist, located on the East Coast and characterized by narrow, locally reflective, beaches, heavily influenced by nourishment activities. The methodology applied allowed retrieval of the main sediment transport directions as well as the amount of sediment transported. It proved to be specifically suited to follow up the redistribution and the re‐sorting of the fill in beach nourishment areas. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Within the context of a warming climate, there are wide and increasing concerns about the way beaches respond to different wave energy environments. However, behavioural differences in changes in beach elevation contours (including shorelines) in different wave energy environments remain unknown. Thus, it is unilateral to evaluate the changes in beaches based on a single elevation contour (e.g. shoreline) in coastal engineering and management applications. In this study, based on the collected shoreline and wave energy data of two international beaches, as well as the measured beach elevation contour data from Yintan Beach and the corresponding wave energy data simulated by Xbeach, our results show that frequency distributions of beach elevation contour changes exhibit distinct features under different wave energy environments. Under high wave energy environments, the frequency distributions of beach elevation contour changes show a Gaussian distribution. However, frequency distributions of beach elevation contour changes present a power law, intermediate between the logarithmic and Gaussian distributions under low and moderate wave energy environments, respectively. Furthermore, the conceptual model of beach elevation contour changes constructed by this study indicates that the relative importance of the wave energy and sediment resistance determines this phenomenon. © 2020 John Wiley & Sons Ltd  相似文献   

16.
Coastal barriers are ubiquitous globally and provide a vital protective role to valuable landforms, habitats and communities located to landward. They are, however, vulnerable to extreme water levels and storm wave impacts. A detailed record of sub‐annual to annual; decadal; and centennial rates of shoreline retreat in frontages characterized by both high (> 3 m) and low (< 1 m) dunes is established for a barrier island on the UK east coast. For four storms (2006–2013) we match still water levels and peak significant wave heights against shoreline change at high levels of spatial densification. The results suggest that, at least in the short‐term, shoreline retreat, of typically 5–8 m, is primarily driven by individual events, separated by varying periods of barrier stasis. Over decadal timescales, significant inter‐decadal changes can be seen in both barrier onshore retreat rates and in barrier extension rates alongshore. Whilst the alongshore variability in barrier migration seen in the short‐term remains at the decadal scale, shoreline change at the centennial stage shows little alongshore variability between a region of barrier retreat (at 1.15 m a?1) and one of barrier extension. A data‐mining approach, synchronizing all the variables that drive shoreline change (still water level, timing of high spring tides and peak significant wave heights), is an essential requirement for validating models that predict future shoreline responses under changing sea level and storminess. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

17.
Tidal inlets interrupt longshore sediment transport, thereby exerting an influence on adjacent beach morphology. To investigate the details and spatial extent of an inlet's influence, we examine beach topographic change along a 1.5 km coastal reach adjacent to Matanzas Inlet, on the Florida Atlantic coast. Analyses of beach morphology reveal a behavioral change between 0.64 and 0.86 km from the inlet channel centerline, interpreted to represent the spatial extent of inlet influence. Beyond this boundary, the beach is narrow, exhibits a statistically significant inverse correlation of shoreline position with offshore wave conditions, and has a uniform alongshore pattern in temporal behavior, as determined from empirical orthogonal function (EOF) analysis. On the inlet side of the boundary, the beach experiences monotonic widening (with proximity to the inlet), lacks spatial consistency in correlation between shoreline position and wave conditions, and exhibits an irregular pattern in spatial EOF modes. We augment the field observations with numerical modeling that provides calculations of wave setup and nearshore current patterns near the inlet, highlighting the effects of the ebb‐tidal delta on the assailing waves. The modeling results are verified by a natural experiment that occurred during May 2009, when a storm‐produced sedimentary mass accreted to the lower beach, then subsequently split into two oppositely directed waves of sediment that migrated away from the initial accretion site in the subsequent months. Our results suggest that the ebb‐tidal delta produces a pattern of wave setup that creates a pressure gradient driving an alongshore flow that opposes the longshore currents derived from breaking of obliquely oriented incident waves. The resulting recirculation pattern on the margin of the ebb‐tidal delta provides a mechanism through which the inlet influences adjacent barrier island beach morphology. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Variability in the regional setting and morphology of cuspate forelands on the west coast of Western Australia is examined in this paper. In accordance with this aim, principal differences in the geologic and geomorphologic setting of three prominent sites on the west coast were established and their association with historical changes and contemporary oceanographic processes was examined. The cuspate forelands investigated are Jurien Bay, Winderabandi Point and Turquoise Bay. The most significant differences in geologic setting are associated with the structure and location of an extensive offshore reef system. Morphologically, the reef alters from south to north, changing from a discontinuous ridge parallel to the shore along the central west coast, to a nearly continuous fringing reef at Ningaloo. The reefs vary in distance from the shore, being farthest in the south and closest in the north and they impound a series of inshore basins, or lagoons. The deeper southern basins are dominated by locally generated wind waves and wind‐generated currents. The shallower northern basins are most markedly affected by tidal currents and wave pumping across the reef flats. The large cuspate foreland at Jurien on the central west coast has undergone shoreline configuration change in response to changing phases of storminess as well as in response to a change in focus for sediment deposition as a result of offshore reef erosion. At Winderabandi Point on the Ningaloo coast, relict Pleistocene limestone has provided the focus for sedimentation and morphology has been controlled by a balance in refracted wave energy and nearshore currents driven by tidal and wave set‐up variability. At Turquoise Bay, where the lagoonal basin is most shallow and narrow, the morphology of the foreland suggests that it may at some stage have been migratory, but its present asymmetrical shape is maintained by strong northerly longshore drift and strong currents exiting the lagoon through a nearby gap in the reef crest. Fundamental differences between the two coastal regions include the structure of the offshore reef, processes driving flow of water within the lagoons and the role of storminess in evolution of coastal landforms. Although many questions regarding storm surge dynamics and landform change remain unanswered, this research provides a significant contribution to the understanding of the evolution of morphological systems in low‐wave‐energy protected environments. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
The sea level change along the Peninsular Malaysia and Sabah–Sarawak coastlines for the 21st century is investigated along the coastal areas of Peninsular Malaysia and Sabah–Sarawak because of the expected climate change during the 21st century. The spatial variation of the sea level change is estimated by assimilating the global mean sea level projections from the Atmosphere–Ocean coupled Global Climate Model/General Circulation Model (AOGCM) simulations to the satellite altimeter observations along the subject coastlines. Using the assimilated AOGCM projections, the sea level around the Peninsular Malaysia coastline is projected to rise with a mean in the range of 0.066 to 0.141 m in 2040 and 0.253 m to 0.517 m in 2100. Using the assimilated AOGCM projections, the sea level around Sabah–Sarawak coastlines is projected to rise with a mean in the range of 0.115 m to 0.291 m in 2040 and 0.432 m to 1.064 m in 2100. The highest sea level rise occurs at the northeast and northwest regions in Peninsular Malaysia and at north and east sectors of Sabah in Sabah–Sarawak coastline. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Shoreline change is driven by various complex processes interacting at a large range of temporal and spatial scales, making shoreline reconstructions and predictions challenging and uncertain. Despite recent progress in addressing uncertainties related to the physics of sea-level rise, very little effort is made towards understanding and reducing the uncertainties related to wave-driven shoreline response. To fill this gap, the uncertainties associated with the long-term modelling of shoreline change are analysed at a high-energy cross-shore transport dominated site. Using the state-of-the-art LX-Shore shoreline change model, we produce a probabilistic shoreline reconstruction, based on 3000 simulations over the past 20 years at Truc Vert beach, southwest France, whereby sea-level rise rate, depth of closure and three model free parameters are considered uncertain variables. We further address the relative impact of each source of uncertainty on the model results performing a Global Sensitivity Analysis. This analysis shows that the shoreline changes are mainly sensitive to the three parameters of the wave-driven model, but also that the sensitivity to each of these parameters is strongly modulated seasonally and interannually, in relation with wave energy variability, and depends on the time scale of interest. These results have strong implications on the model skill sensitivity to the calibration period as well as for the predictive skill of the model in a context of future climate change affecting wave climate and extremes. © 2020 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号