首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present megafloral assemblage recorded from the Barakar sediments of Dholpahar section along Singda rivulet near Gopal Prasad Village in Talcher Basin comprises of equisetaceous stems, Gangamopteris buriadica, Palaeovittaria kurzii and 19 species of the genus Glossopteris. Record of Gangamopteris, Palaeovittaria and many narrow mesh forms of Glosspteris viz., G. angustifolia, G. churiensis, G. communis, G. recurva, G. spatulata, G. stenoneura, G. tenuifolia, G. vulgaris and G. zeilleri from two older fossiliferous horizons demonstrates that these fossils were preserved during Lower Barakar sedimentation. The report of middle and broad mesh forms of Glossopteris viz., G. barakarensis, G. browniana, G. indica, G. intermittens, G. karharbariensis, G. nakkarea, G. oldhamii, G. taeniensis and G. retifera in the youngest fossiliferous horizons reveals that these fossils were preserved during the deposition of Upper Barakar sediments. The continuation of some of the Karharbari plant fossils in the early phase of Barakar Formation and their disappearance in the flora of Late Barakar suggests a shift in the climatic setup. Palaeoclimate and palaeovegetation of this area are also summarised in this study. Moreover, the fossil assemblages of different fossiliferous beds of Dholpahar section demonstrate the evolution of midrib and meshes in different reticulate leaves.  相似文献   

2.
The coal-bearing sequences of Barakar and Raniganj formations exposed in Bina and Jhingurdah open-cast collieries, respectively, are analysed for their macro- and miofloral content. The sediment successions primarily comprise of sandstones, shales, claystones and coal seams. In addition to the diverse glossopterid assemblage, four palynoassemblage zones, namely Zones I and II in Bina Colliery and Zones III and IV in Jhingurdah Colliery, have also been recorded in the present study. The megafossil assemblage from the Barakar strata of Bina Colliery comprises of three genera, namely Gangamopteris, Glossopteris and cf. Noeggerathiopsis. Palynoassemblage-I is characterised by the dominance of non-striate bisaccate pollen genus Scheuringipollenites and subdominance of striate bisaccate Faunipollenites and infers these strata to be of Early Permian (Artinskian) age (Lower Barakar Formation). The palynoassemblage has also yielded a large number of naked fossil spore tetrads, which is the first record of spore tetrads from any Artinskian strata in the world and has a significant bearing on the climatic conditions. The palynoassemblage-II is characterised with the dominance of Faunipollenites over Scheuringipollenites and is indicative of Kungurian age (Upper Barakar Formation). The megafossil assemblage from the Raniganj Formation of Jhingurdah Colliery comprises of five genera with 26 species representing four orders, viz., Equisetales, Cordaitales, Cycadales and Glossopteridales. The order Glossopteridales is highly diversified with 23 taxa and the genus Glossopteris, with 22 species, dominates the flora. The mioflora of this colliery is represented by two distinct palynoassemblages. The palynoassemblage-III is correlatable with the palynoflora of Early Permian (Artinskian) Lower Barakar Formation. The assemblage suggests the continuity of older biozones into the younger ones. The palynoassemblage-IV equates the beds with composition V: Striatopodocarpites–Faunipollenites–Gondisporites assemblage zone of Tiwari and Tripathi (1992) of Late Permian (Lopingian) Raniganj Formation in Damodar Basin. The FAD’s of Alisporites, Klausipollenites, Falcisporites, Arcuatipollenites pellucidus and Playfordiaspora cancellosa palynotaxa in this assemblage enhance the end Permian level of the Jhingurdah Top seam, as these elements are the key species to mark the transition of Permian into the Lower Triassic.  相似文献   

3.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

4.
A technique for IR spectroscopic determination of the total nitrogen content N S in the form of A-and B 1-defects is suggested. It provides for the computer processing and decomposition of IR spectra into constituent bands, calculation of the total absorption band area S N and individual areas S A and S B1 and their normalization with respect to the total area of the diamond intrinsic absorption S 0, with the normalization coefficients K S , K A , and K B1 being calculated. Based on the analysis of the IR spectra of 60 octahedral diamond crystals from the Mir and Yubileinaya pipes (Sakha-Yakutiya), the empirical functions N S = 911.85 K S 0.9919 ppm (R 2 = 0.9859), N A = 1185.6 K A 1.1511 ppm (R 2 = 0.8703), and N B1 = 911.85 K S 0.9919 ? 1185.6 K A 1.1511 ppm have been defined.  相似文献   

5.
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (= 16.753(4), = 13.797(3) and = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes.  相似文献   

6.
We analyze three-phase flow of immiscible fluids taking place within an elementary capillary tube with circular cross-section under water- and oil-wet conditions. We account explicitly for momentum transfer between the moving phases, which leads to the phenomenon of viscous coupling, by imposing continuity of velocity and shear stress at fluid-fluid interfaces. The macroscopic flow model which describes the system at the Darcy scale includes three-phase effective relative permeabilities, K i j,r , accounting for the flux of the ith phase due to the presence of the jth phase. These effective parameters strongly depend on phase saturations, fluid viscosities, and wettability of the solid matrix. In the considered flow setting, K i j,r reduce to a set of nine scalar quantities, K i j,r . Our results show that K i j,r of the wetting phase is a function only of the fluid phase own saturation. Otherwise, K i j,r of the non-wetting phase depends on the saturation of all fluids in the system and on oil and water viscosities. Viscous coupling effects (encapsulated in K i j,r with ij) can be significantly relevant in both water- and oil-wet systems. Wettability conditions influence oil flow at a rate that increases linearly with viscosity ratio between oil and water phases.  相似文献   

7.
The purpose of this study is to quantify the magnitudes of surface conduction and pore water conduction from the measured electrical conductivity of kaolinite, with the ultimate goal of estimating the electrical conductivity of kaolinite with a wide range of pore water conductivities (σ w = 0.013–3.356 S/m) and porosities (n = 0.368–1.0). Therefore, the theoretical background of the electrical conductivity in soils was reviewed, and electrical conductivity measurements on kaolinite were performed using both slurry and consolidation tests in this study. The results of this study demonstrate that the variations of measured electrical conductivity (σ mix) with n are debatable according to the values of σ w, because a decrease in n results in both an increase in surface conduction (K s) and a decrease in pore water conduction (K w); this causes the relative magnitude of K s compared to that of K w to vary with σ w and n. Consequently, this study develops the relation between the porosity-normalized K s/K w and 1/σ w. Additionally, the surface conductivity of the tested kaolinite is back-calculated and compared with the previous relationship between K s and zeta potential of kaolinite. The measured and estimated σ mix values are compared with the varying pore water conductivity and porosity values.  相似文献   

8.
We have modeled the magnetic fields of the slowly rotating stars HD 116458 and HD 126515 using the “magnetic charge” technique. HD 116458 has a small angle between its rotation axis and dipole axis (β = 12°), whereas this angle is large for HD 126515 (β = 86°). Both stars can be described with a decentered-dipole model, with the respective displacements being r = 0.07 and r = 0.24 in units of the stellar radius. The decentered-dipole model is able to satisfactorily explain the phase relations for the effective field, Be(P), and the mean surface field, Bs(P), for both stars, along with the fact that the Be(P) phase relation for HD 126515 is anharmonic. We discuss the role of systematic measurement errors possibly resulting from instrumental or methodical effects in one or both of the phase relations. The displacement of the dipole probably reflects real asymmetry of the stellar field structure, and is not due to measurement errors. Using both phase relations, Be(P) and Bs(P), in the modeling considerably reduces the influence of the nonuniform distribution of chemical elements on the stellar surface.  相似文献   

9.
Synchrotron-based in situ angle-dispersive X-ray diffraction experiments were conducted on a natural uvite-dominated tourmaline sample by using an external-heating diamond anvil cell at simultaneously high pressures and temperatures up to 18 GPa and 723 K, respectively. The angle-dispersive X-ray diffraction data reveal no indication of a structural phase transition over the P–T range of the current experiment in this study. The pressure–volume–temperature data were fitted by the high-temperature Birch–Murnaghan equation of state. Isothermal bulk modulus of K 0 = 96.6 (9) GPa, pressure derivative of the bulk modulus of \(K_{0}^{\prime } = 12.5 \;(4)\), thermal expansion coefficient of α 0 = 4.39 (27) × 10?5 K?1 and temperature derivative of the bulk modulus (?K/?T) P  = ?0.009 (6) GPa K?1 were obtained. The axial thermoelastic properties were also obtained with K a0 = 139 (2) GPa, \(K_{a0}^{\prime }\) = 11.5 (7) and α a0 = 1.00 (11) × 10?5 K?1 for the a-axis, and K c0 = 59 (1) GPa, \(K_{c0}^{\prime }\) = 11.4 (5) and α c0 = 2.41 (24) × 10?5 K?1 for the c-axis. Both of axial compression and thermal expansion exhibit large anisotropic behavior. Thermoelastic parameters of tourmaline in this study were also compared with that of the other two ring silicates of beryl and cordierite.  相似文献   

10.
11.
High pressure in situ synchrotron X-ray diffraction experiment of strontium orthophosphate Sr3(PO4)2 has been carried out to 20.0 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the PV data yields a volume of V 0 = 498.0 ± 0.1 Å3, an isothermal bulk modulus of K T  = 89.5 ± 1.7 GPa, and first pressure derivative of K T ′ = 6.57 ± 0.34. If K T ′ is fixed at 4, K T is obtained as 104.4 ± 1.2 GPa. Analysis of axial compressible modulus shows that the a-axis (K a  = 79.6 ± 3.2 GPa) is more compressible than the c-axis (K c  = 116.4 ± 4.3 GPa). Based on the high pressure Raman spectroscopic results, the mode Grüneisen parameters are determined and the average mode Grüneisen parameter of PO4 vibrations of Sr3(PO4)2 is calculated to be 0.30(2).  相似文献   

12.
SDO/HMI and SDO/AIA data for the 24th solar-activity cycle are analyzed using a quicker and more accurate method for resolving π ambiguities in the transverse component of the photospheric magnetic field, yielding new results and confirming some earlier results on the magnetic properties of leading and following magnetically connected spots and single spots. The minimum inclination of the field lines to the positive normal to the solar surface α min within umbrae is smaller in leading than in following spots in 78% of the spot pairs considered; the same trend is found for the mean angle 〈α〉 in 83% of the spot pairs. Positive correlations between the α min values and the 〈α〉 values in leading and following spots are also found. On average, in umbrae, the mean values of 〈B〉, the umbra area S, and the angles α min and 〈α〉 decrease with growth in the maximum magnetic field B max in both leading and following spots. The presence of a positive correlation between B max and S is confirmed, and a positive correlation between 〈B〉 and S in leading and following spots has been found. Themagnetic properties of the umbrae of magnetically connected pairs of spots are compared with the contrast of the He II 304 emission above the umbrae, C 304. Spots satisfying certain conditions display a positive correlation between C 304?L and 〈α L 〉 for the leading (L) spots, and between C 304?L /C 304?F and l L /l F , where l L (l F ) are the lengths of the field lines connecting leading (L) or following (F) spots from the corresponding spot umbrae to the apex of the field line.  相似文献   

13.
The crystal chemistry and the elastic behavior under isothermal conditions up to 9 GPa of a natural, and extremely rare, 3T-phlogopite from Traversella (Valchiusella, Turin, Western Alps) [(K0.99Na0.05Ba0.01)(Mg2.60Al0.20Fe 0.21 2+ )[Si2.71Al1.29O10](OH)2, space group P3112, with a = 5.3167(4), c = 30.440(2) Å, and V = 745.16(9) ų] have been investigated by electron microprobe analysis in wavelength dispersion mode, single-crystal X-ray diffraction at 100 K, and in situ high-pressure synchrotron radiation powder diffraction (at room temperature) with a diamond anvil cell. The single-crystal refinement confirms the general structure features expected for trioctahedral micas, with the inter-layer site partially occupied by potassium and sodium, iron almost homogeneously distributed over the three independent octahedral sites, and the average bond distances of the two unique tetrahedra suggesting a disordered Si/Al-distribution (i.e., 〈T1-O〉 ~ 1.658 and 〈T2-O〉 ~ 1.656 Å). The location of the H-site confirms the orientation of the O–H vector nearly perpendicular to (0001). The refinement converged with R 1(F) = 0.0382, 846 unique reflections with F O > 4σ(F O) and 61 refined parameters, and not significant residuals in the final difference-Fourier map of the electron density (+0.77/?0.37 e ?3). The high-pressure experiments showed no phase transition within the pressure range investigated. The PV data were fitted with a Murnaghan (M-EoS) and a third-order Birch-Murnaghan equation of state (BM-EoS), yielding: (1) M-EoS, V 0 = 747.0(3) Å3, K T0 = 44.5(24) GPa, and K′ = 8.0(9); (2) BM-EoS, V 0 = 747.0(3) Å3, K T0 = 42.8(29) GPa, and K′ = 9.9(17). A comparison between the elastic behavior in response to pressure observed in 1M- and 3T-phlogopite is made.  相似文献   

14.
Shear heating by reverse faulting on a sharp straight fault plane is modelled. Increase in temperature (T i ) of faulted hangingwall and footwall blocks by frictional/shear heating for planar rough reverse faults is proportional to the coefficient of friction (μ), density and thickness of the hangingwall block (ρ). T i increases as movement progresses with time. Thermal conductivity (K i ) and thermal diffusivity (\(k_{\mathrm {i}}^{\prime }\)) of faulted blocks govern T i but they do not bear simple relation. T i is significant only near the fault plane. If the lithology is dry and faulting brings adjacent hangingwall and footwall blocks of the same lithology in contact, those blocks undergo the same rate of increase in shear heating per unit area per unit time.  相似文献   

15.
Ab initio calculations of thermo-elastic properties of beryl (Al4Be6Si12O36) have been carried out at the hybrid HF/DFT level by using the B3LYP and WC1LYP Hamiltonians. Static geometries and vibrational frequencies were calculated at different values of the unit cell volume to get static pressure and mode-γ Grüneisen’s parameters. Zero point and thermal pressures were calculated by following a standard statistical-thermodynamics approach, within the limit of the quasi-harmonic approximation, and added to the static pressure at each volume, to get the total pressure (P) as a function of both temperature (T) and cell volume (V). The resulting P(V, T) curves were fitted by appropriate EoS’, to get bulk modulus (K 0) and its derivative (K′), at different temperatures. The calculation successfully reproduced the available experimental data concerning compressibility at room temperature (the WC1LYP Hamiltonian provided K 0 and K′ values of 180.2 Gpa and 4.0, respectively) and the low values observed for the thermal expansion coefficient. A zone-centre soft mode \( P6/mcc \to P\bar{1} \) phase transition was predicted to occur at a pressure of about 14 GPa; the reduction of the frequency of the soft vibrational mode, as the pressure is increased, and the similar behaviour of the majority of the low-frequency modes, provided an explanation of the thermal behaviour of the crystal, which is consistent with the RUM model (Rigid Unit Model; Dove et al. in Miner Mag 59:629–639, 1995), where the negative contribution to thermal expansion is ascribed to a geometric effect connected to the tilting of rigid polyhedra in framework silicates.  相似文献   

16.
A new mineral romanorlovite has been found in the upper, moderately hot zones of two fumaroles, Glavnaya Tenoritovaya (Major Tenorite) and Arsenatnaya (Arsenate), located at the second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with avdoninite in both fumaroles, and in Glavnaya Tenoritovaya, it is also associated with belloite, sylvite, carnallite, mitscherlichite, sanguite, chlorothionite, eriochalcite, chrysothallite, and mellizinkalite. Romanorlovite occurs as prismatic, equant, or tabular tetragonal crystals up to 0.1 mm in size, crystal clusters up to 0.5 mm, and crusts up to 2 × 2 mm in area. The mineral is transparent with vitreous luster. Its color varies from yellow-brown to dark brown, and tiny crystals are honey- or golden-yellow. Cleavage is not observed. Romanorlovite is brittle. The Mohs hardness is ca ~3. The calculated density varies from 2.72 to 2.79 g/cm3 depending on the content of admixed Pb. The mineral is optically uniaxial (–), ω = 1.727(3), ε = 1.694(2). The Raman spectrum has been reported. The chemical composition of the holotype sample (wt %; electron microprobe data, contents of О and H calculated by stoichiometry) is as follows: 21.52 K, 0.89 Pb, 28.79 Cu, 0.02 Zn, 44.74 Cl, 4.85 Ocalc, 0.41 Hcalc, total 101.22. Its empirical formula calculated based on Cl25 with (ОН)4(Н2О)2 is K10.90Pb0.09Cu8.97Zn0.01Cl25(OH)4 · 2H2O. The simplified formula is K11Cu9Cl25(OH)4 · 2H2O (Z = 4). Romanorlovite is tetragonal, space group[ I4/mmm. The unit cell parameters are (1) holotype: a = 17.5804(7), c = 15.9075(6) Å, V = 4916.5(3) Å3; (2) the sample enriched in Pb on which the crystal structure was refined: a = 17.5538(19), c = 15.8620(17) Å, V= 4887.7(9) Å3. The strongest reflections of the powder XRD pattern (d, Å–I[hkl]) are 12.48–56[110], 11.74–36[101], 8.80–100[200], 7.97–34[002], 6.71–40[112], 3.165–32[512], 2.933–80[215, 433], 2.607–38[514]. The mineral is named in honor of Roman Yu. Orlov (1929-2005), Russian mineralogist and physicist, who worked in the Department of Mineralogy, Moscow State University.  相似文献   

17.
The excitation of methanol in the absence of external radiation is analyzed, and LTE methods for probing interstellar gas considered. It is shown that rotation diagrams correctly estimate the gas kinetic temperature only if they are constructed using lines whose upper levels are located in the same K-ladders, such as the J0?J?1E lines at 157 GHz, the J1?J0E lines at 165 GHz, and the J2?J1E lines at 25 GHz. The gas density must be no less than 107 cm?3. Rotation diagrams constructed from lines with different K values for their upper levels (e.g., 2K?1K at 96 GHz, 3K?2K at 145 GHz, 5K?4K at 241 GHz) significantly underestimate the temperature, but enable estimation of the density. In addition, diagrams based on the 2K?1K lines can be used to estimate the methanol column density within a factor of about two to five. It is suggested that rotation diagrams should be used in the following manner. First, two rotation diagrams should be constructed, one from the lines at 96, 145, or 241 GHz, and another from the lines at 157, 165, or 25 GHz. The former diagram is used to estimate the gas density. If the density is about 107 cm?3 or higher, the latter diagram reproduces the temperature fairly well. If the density is around 106 cm?3, the temperature obtained from the latter diagram should be multiplied by a factor of 1.5–2. If the density is about 105 cm?3 or lower, then the latter diagram yields a temperature that is lower than the kinetic temperature by a factor of three or more, and should be used only as a lower limit for the kinetic temperature. The errors in the methanol column density determined from the integrated intensity of a single line can be more than an order of magnitude, even when the gas temperature is well known. However, if the J0?(J ? 1)0E lines, as well as the J1?(J ? 1)1A+ or A? lines are used, the relative error in the column density is no more than a factor of a few.  相似文献   

18.
The sound velocity (V P) of liquid Fe–10 wt% Ni and Fe–10 wt% Ni–4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe–Ni is insensitive to temperature, whereas that of liquid Fe–Ni–C tends to decrease with increasing temperature. The V P values of both liquid Fe–Ni and Fe–Ni–C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe–Ni and Fe–Ni–C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus (K S0) and its pressure derivative (K S ) were obtained to be K S0 = 103 GPa and K S  = 5.7 for liquid Fe–Ni and K S0 = 110 GPa and K S  = 7.6 for liquid Fe–Ni–C. The calculated density of liquid Fe–Ni–C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density (ρ) and sound velocity (V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.  相似文献   

19.
The Curie point depth map of Eastern Iran was constituted from spectral analysis of the aeromagnetic data. The reduction to pole (RTP) was applied to the magnetic anomaly data. The Curie point depth values from 165 overlapping blocks, 100 × 100 km in size, have been estimated. The Curie point depth method provides a relationship between the 2-D FFT power spectrum of the magnetic anomalies and the depth of magnetic sources by transforming the spatial data into the frequency domain. The centroid and top depth of the magnetic sources (respectively Z0 and Zt) is calculated from radially averaged log power spectrum for each block. Finally, the Curie point depth of Eastern Iran is obtained by Zb = 2Z0Zt. The highest value of 24 km is located in eastern and western boundaries of the Lut block, and the lowest value of 12 km is located at north of study area. The shallow depths in the Curie-point depth map are well correlated with the young volcanic areas and geothermal potential fields. Geothermal gradient ranging from 24 to 45°C/km. The deduced thermal structure in eastern Iran has a relationship with orogenic collapse associated with delamination of thickened lithospheric root between the Lut and Afghan continental blocks.  相似文献   

20.
A high-pressure single-crystal X-ray diffraction study has been carried out on a P21/c natural Mg-rich pigeonite sample with composition ca. Wo6En76Fs18 using a diamond anvil-cell. The unit-cell parameters were determined at 14 different pressures to 7.14 GPa. The sudden disappearance of the b-type reflections (h + k = odd) and a strong discontinuity (about 2.8%) in the unit-cell volume indicated a first-order P21/cC2/c phase transition between 4.66 and 4.88 GPa. The P(V) data of the P21/c phase were fitted to 4.66 GPa by a third-order Birch–Murnaghan equation of state (BM3 EoS), whereas the limited number of experimental data collected within the C2/c phase between 4.88 and 7.14 GPa were fitted using the same equation of state but with K′ constrained to the value obtained for the P21/c fitting. The equation of state coefficients are V 0 = 424.66(6) Å3, K T0 = 104(2) GPa and K′ = 8(1) for the P21/c phase, and V 0 = 423.6(1) Å3, K T0 = 112.4(8) GPa, and K′ fixed to 8(1) for the C2/c phase. The axial moduli for a, b, and c for the P21/c phase were obtained using also a BM3-EoS, while for the C2/c phase only a linear calculation could be performed, and therefore the same approach was applied for comparison also to the P21/c phase. In general the C2/c phase exhibits axial compressibilities (β c > β a >> β b) lower than those of the P21/c phase (β b > β c ≈ β a; similar to those found in previous studies in clinopyroxenes and orthopyroxenes). The lower compressibility of the C2/c phase compared with that of the P21/c could be ascribed to the greater stiffness along the b direction. A previously published relationship between P c and M2 average cation radius (i.r.) has been updated using all the literature data on P21/c clinopyroxene containing large cations at M2 site and our new data. The following weighted regression was obtained: P c (GPa) = 26(4) ? 28(5) ×  i.r (Å), R 2 = 0.97. This improved equation can be used to predict the critical pressure of natural P21/c clinopyroxene samples just knowing the composition at M2 site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号