首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
随着啁啾脉冲放大技术(Chirped Pulse Amplification,CPA)的飞速发展,激光功率密度实现了飞跃式的提升,利用短脉冲激光开展实验室天体物理研究的条件日趋成熟.短脉冲激光与靶相互作用可以产生相对论粒子(正负电子、质子、中子等)和高能电磁辐射(X射线、γ射线),这些粒子和辐射的产生过程与天体中的某些...  相似文献   

2.
This paper presents some recent measurements on radiative shocks generated in a xenon gas cell using high power laser. We show new results on temperature and electronic density, and on radial expansion of the shock at various initial conditions (laser energy and gas pressure). The data obtained are compared with one-dimensional and two-dimensional hydro simulations.  相似文献   

3.
梁贵云  赵刚 《天文学进展》2005,23(3):248-271
正在进行的实验室天体物理测量解决了X射线天文学的一些问题,这些实验产生了大量可靠的原子数据,它们既可用于电荷分布中电离与复合截面的计算,又可用于对X射线谱线形成的线表、激发截面及双电子复合系数的理解。另有一部分实验注重于解决天体观测的难题,以及验证现有的和寻找新的X射线谱线诊断。讨论了上述实验产生的数据类型,并展示了实验室测量如何为卫星(ASCA、EUVE、Chandra、XMM和ASTRO-E2)观测提供实验依据.  相似文献   

4.
We have performed two sets of experiments looking at laser-driven radiating blast waves. In the first set of experiments the effect of a drive laser’s passage through a background gas on the hydrodynamical evolution of blast waves was examined. The laser’s passage heated a channel in the gas, creating a region where a portion of the blast wave front had an increased velocity, leading to the formation of a bump-like protrusion on the blast wave. The second set of experiments involved the use of regularly spaced wire arrays used to induce perturbations on a blast wave surface. The decay of these perturbations as a function of time was measured for various wave number perturbations and found to be in good agreement with theoretical predictions.  相似文献   

5.
近年来,随着用于高能量密度物理研究的实验装置如大功率激光器、磁力箍缩装置和托克马克等的发展,人们在实验室中可以使毫米尺度的物质达到极端高温、高压、高密度的状态,这使得在实验室环境中可以模拟天体物理环境中的物理条件及某些物理过程,从而推动了一个新兴科学领域--高能量密度实验室天体物理的发展。高能量密度实验室天体物理有很多重要的研究方向,包括超新星爆发过程中剧烈激波引发的非线性流体动力学不稳定性及其演化,原初恒星的喷流和高马赫数喷流,黑洞、中子星等致密天体周围的光致电离星风,不透明度的测量和天体磁场的重联现象等。在此选取高能量密度实验室天体物理中近年来几个研究方向的进展,对其进行系统地介绍,并对此领域的发展做出展望。  相似文献   

6.
An experimental simulation of planetary magnetospheres is being developed to investigate the formation of collisionless shocks and their effects. Two experimental situations are considered. In both, the solar wind is simulated by laser ablation plasmas. In one case, the “solar wind” flows across the magnetic field of a high-current discharge. In the other, a transverse magnetic field is embedded in the plasma flow, which interacts with a conductive obstacle. The ablation plasma is created using the “Tomcat” laser, currently emitting 5 J in a 6 ns pulse at 1 μm wavelength and irradiance above 1013 W/cm2. The “Zebra” z-pinch generator, with load current up to 1 MA and voltage up to 3.5 MV produces the magnetic fields. Hydrodynamic modeling is used to estimate the plasma parameters achievable at the front of the plasma flow and to optimize the experiment design. Particle-in-cell simulations reveal details of the interaction of the “solar wind” with an external magnetic field, including flow collimation and heating effects at the stopping point. Hybrid simulations show the formation of a bow shock at the interaction of a magnetized plasma flow with a conductor. The plasma density and the embedded field have characteristic spatial modulations in the shock region, with abrupt jumps and fine structure on the skin depth scale.  相似文献   

7.
We describe experiments that investigate the capability of an experimental platform, based on laser-driven blast waves created in a medium of atomic clusters, to produce results that can be scaled to astrophysical situations. Quantitative electron density profiles were obtained for blast waves produced in hydrogen, argon, krypton and xenon through the interaction of a high intensity (I ≈ 1017 Wcm−2), sub-ps laser pulse. From this we estimate the local post-shock temperature, compressibility, shock strength and adiabatic index for each gas. Direct comparisons between blast wave structures for consistent relative gas densities were achieved through careful gas jet parameter control. From these we investigate the applicability of different radiative and Sedov-Taylor self-similar solutions, and therefore the (ρ,T) phase space that we can currently access.  相似文献   

8.
In recent years, with the development of megajoule-class laser, to create the physical conditions similar to those of extreme celestial environments in the laboratory has become possible. This makes scientists able to study some important astrophysical processes and physical phenomena in the laboratory. This paper briefly introduces several advances in the high energy density laboratory astrophysics driven by the National Ignition Facility (NIF), including the Rayleigh-Taylor instability in supernova remnants, the collisionless shock wave, the laser inertially-confined fusion detection of the thermonuclear reaction under the stellar core condition, the study of planetary interior state, the study of star formation, etc., which will provide a reference for the scientific experiments in the field of laboratory astrophysics performed by using the Shenguang IV laser facility under construction in China. Finally, the possible scientific issues relevant to the direction of laboratory astrophysics by using the Shenguang IV laser facility in the future are briefly discussed.  相似文献   

9.
The toroidal magnetic field frozen in the relativistic plasma ejected by pulsars must play a significant role in the formation of jet-like features observed in the central parts of plerions. We performed a semiquantitative analysis and calculations of the plasma flow in a plerion using the perturbation theory. We show that for the latitudinal magnetic-field distribution expected during the interaction of the pulsar wind with the interstellar medium, the magnetic field will have an appreciable effect on the flow primarily near the rotation axis. In the equatorial region, the effect of the magnetic field is negligible up to distances of 7rsh.  相似文献   

10.
This paper deals with the radiative shock from both theoretical and numerical points of view. It is based on the whole experimental results obtained at Laboratoire d'Utilisation des Lasers Intenses (LULI, école Polytechnique). Radiative shocks are high-Mach number shocks with a strong coupling between radiation and hydrodynamics which leads to a structure governed by a radiative precursor. These shocks are involved in various astrophysical systems: stellar accretion shocks, pulsating stars, interaction between supernovae and the interstellar medium. In laboratory, these radiative shocks are generated using high power lasers. New diagnostics have been implemented to study the geometrical shape of the shock and the front shock density. Data were obtained varying initial conditions for different laser intensities and temperature. The modeling of these phenomena is mainly performed through numerical simulations (1D and 2D) and analytical studies. We exhibit results obtained from several radiative hydrodynamics codes. As a result, it is possible to discuss about the influence of the geometry and physical parameters introduced in the 1D and 2D models.  相似文献   

11.
The effect of particle-particle interaction on the adiabatic index γ for an electron-positron plasma is considered. An improved method for numerically calculating the Hartree-Fock exchange integral is presented and its relativistic asymptotics is determined. An approximation formula is derived for the correlation part of the interaction in the low-density limit. This formula includes degeneracy and the positron component.  相似文献   

12.
We analyze the behavior of the outer envelope in a massive star during and after the collapse of its iron core into a protoneutron star (PNS) in terms of the equations of one-dimensional spherically symmetric ideal hydrodynamics. The profiles obtained in the studies of the evolution of massive stars up to the final stages of their existence, immediately before a supernova explosion (Boyes et al. 1999), are used as the initial data for the distribution of thermodynamic quantities in the envelope. We use a complex equation of state for matter with allowances made for arbitrary electron degeneracy and relativity, the appearance of electron-positron pairs, the presence of radiation, and the possibility of iron nuclei dissociating into free nucleons and helium nuclei. We performed calculations with the help of a numerical scheme based on Godunov's method. These calculations allowed us to ascertain whether the emersion of the outer envelope in a massive star is possible through the following two mechanisms: first, the decrease in the gravitational mass of the central PNS through neutrino-signal emission and, second, the effect of hot nucleon bubbles, which are most likely formed in the PNS corona, on the envelope emersion. We show that the second mechanism is highly efficient in the range of acceptable masses of the nucleon bubbles (≤0.01M ) simulated in our hydrodynamic calculations in a rough, spherically symmetric approximation.  相似文献   

13.
The twisting of magnetic fields threading an accretion system can lead to the generation on axis of toroidal field loops. As the magnetic pressure increases, the toroidal field inflates, producing a flow. Collimation is due to a background corona, which radially confines this axially growing “magnetic tower”. We investigate the possibility of studying in the laboratory the dynamics, confinement and stability of magnetic tower jets. We present two-dimensional resistive magnetohydrodynamic simulations of radial arrays, which consist of two concentric electrodes connected radially by thin metallic wires. In the laboratory, a radial wire array is driven by a 1 MA current which produces a hot, low density background plasma. During the current discharge a low plasma beta (β < 1), magnetic cavity develops in the background plasma (β is the ratio of thermal to magnetic pressure). This laboratory magnetic tower is driven by the magnetic pressure of the toroidal field and it is surrounded by a shock envelope. On axis, a high density column is produced by the pinch effect. The background plasma has >rsim1, and in the radial direction the magnetic tower is confined mostly by the thermal pressure. In contrast, in the axial direction the pressure rapidly decays and an elongated, well collimated magnetic-jet develops. This is later disrupted by the development of m = 0 instabilities arising in the axial column.  相似文献   

14.
Highly nonadiabatic shock waves are formed at an early stage of a supernova explosion inside a stellar wind because of the large energy losses by direct radiation from the front. The properties of such waves are considered for velocities of (5?25)×103km s?1 and gas densities of 10?17?10?10 g cm?3. A critical energy flux going to “infinity” that separates two modes is shown to exist. If the flux is lower than the critical one, then energy losses cause even an increase in the post-shock temperature. An excess of the flux over its critical value results in an abrupt cooling and in a strong compression of the gas. For the flux equal to the critical one, the post-shock gas velocity matches the isothermal speed of sound. Approximate formulas are given for estimating the degree of gas compression and the post-shock radiation-to-gas pressure ratio at energy losses equal to the critical ones and for the limiting compression.  相似文献   

15.
It has recently been realized that the Weibel instability plays a major role in the formation and dynamics of astrophysical shocks of gamma-ray bursts and supernovae. Thanks to technological advances in the recent years, experimental studies of the Weibel instability are now possible in laser-plasma interaction devices. We, thus, have a unique opportunity to model and study astrophysical conditions in laboratory experiments – a key goal of the Laboratory Astrophysics program. Here we briefly review the theory of strong non-magnetized collisionless GRB and SN shocks, emphasizing the crucial role of the Weibel instability and discuss the properties of radiation emitted by (isotropic) electrons moving through the Weibel-generated magnetic fields, which is referred to as the jitter radiation. We demonstrate that the jitter radiation field is anisotropic with respect to the direction of the Weibel current filaments and that its spectral and polarization characteristics are determined by microphysical plasma parameters. We stress that the spectral analysis can be used for accurate diagnostics of the plasma conditions in laboratory experiments and in astrophysical GRB and SN shocks.  相似文献   

16.
The existence of a critical height for quiescent prominences and its relationship to parameters of the magnetic field of photospheric sources are discussed. In the inverse-polarity model, stable equilibrium of a filament with a current is possible only in the region where the external field decreases with height no faster than ~1/h. Calculations of the potential magnetic field above the polarity-inversion line are compared with the observed prominence height. The prominence height is shown to actually depend on the vertical field gradient and does not exceed the level at which the exponent of field decrease is equal to unity.  相似文献   

17.
We numerically solved the two-dimensional axisymmetric hydrodynamic problem of the explosion of a low-mass neutron star in a circular orbit. In the initial conditions, we assumed a nonuniform density distribution in the space surrounding the collapsed iron core in the form of a stationary toroidal atmosphere that was previously predicted analytically and computed numerically. The configuration of the exploded neutron star itself was modeled by a torus with a circular cross section whose central line almost coincided with its circular orbit. Using an equation of state for the stellar matter and the toroidal atmosphere in which the nuclear statistical equilibrium conditions were satisfied, we performed a series of numerical calculations that showed the propagation of a strong divergent shock wave with a total energy of ~0.2×1051 erg at initial explosion energy release of ~1.0×1051 erg. In our calculations, we rigorously took into account the gravitational interaction, including the attraction from a higher-mass (1.9M) neutron star located at the coordinate origin, in accordance with the rotational explosion mechanism for collapsing supernovae. We compared in detail our results with previous similar results of asymmetric supernova explosion simulations and concluded that we found a lower limit for the total explosion energy.  相似文献   

18.
We study the effect of magnetic-field axial asymmetry on the magnetocentrifugal acceleration of plasma when it flows in a source’s rotating magnetosphere (propeller effect). For an axisymmetric steady plasma flow, the first corrections to the energy that arise when the source rotates slowly are proportional to Ω4, suggesting a highly inefficient plasma acceleration. Magnetic-field axial asymmetry is shown to substantially modify the acceleration. The first corrections arise even in the first order in Ω. The plasma acceleration turns out to be considerably more efficient in a nonaxisymmetric magnetic field.  相似文献   

19.
We interpret the observed X-ray morphology of the central part of the Crab Nebula (torus + jets) in terms of the standard theory by Kennel and Coroniti (1984). The only new element is the inclusion of anisotropy in the energy flux from the pulsar in the theory. In the standard theory of relativistic winds, the Lorentz factor of the particles in front of the shock that terminates the pulsar relativistic wind depends on the polar angle as γ = γ0 + γ m sin2 θ, where γ0∼200 and γm∼4.5×106. The plasma flow in the wind is isotropic. After the passage of the pulsar wind through the shock, the flow becomes subsonic with a roughly constant (over the plerion volume) pressure P=1/3;n∈ where n is the plasma particle density and ∈ is the mean particle energy. Since ∈∼γmc 2, a low-density region filled with the most energetic electrons is formed near the equator. A bright torus of synchrotron radiation develops here. Jet-like regions are formed along the pulsar rotation axis, where the particle density is almost four orders of magnitude higher than that in the equatorial plane, because the particle energy there is four orders of magnitude lower. The energy of these particles is too low to produce detectable synchrotron radiation. However, these quasijets become comparable in brightness to the torus if additional particle acceleration takes place in the plerion. We also present the results of our study of the hydrodynamic interaction between an anisotropic wind and the interstellar medium. We compare the calculated and observed distributions of the volume emissivity of X-ray radiation.  相似文献   

20.
A numerical method presented by Imshennik et al. (2002) is used to solve the two-dimensional axisymmetric hydrodynamic problem on the formation of a toroidal atmosphere during the collapse of an iron stellar core and outer stellar layers. An evolutionary model from Boyes et al. (1999) with a total mass of 25M is used as the initial data for the distribution of thermodynamic quantities in the outer shells of a high-mass star. Our computational region includes the outer part of the iron core (without its central part with a mass of 1M that forms the embryo of a protoneutron star at the preceding stage of the collapse) and the silicon and carbon-oxygen shells with a total mass of (1.8–2.5)M. We analyze in detail the results of three calculations in which the difference mesh and the location of the inner boundary of the computational region are varied. In the initial data, we roughly specify an angular velocity distribution that is actually justified by the final result—the formation of a hydrostatic equilibrium toroidal atmosphere with reasonable total mass, Mtot=(0.117–0.122)M, and total angular momentum, Jtot=(0.445–0.472)×1050 erg s, for the two main calculations. We compare the numerical solution with our previous analytical solution in the form of toroidal atmospheres (Imshennik and Manukovskii 2000). This comparison indicates that they are identical if we take into account the more general and complex equation of state with a nonzero temperature and self-gravitation effects in the atmosphere. Our numerical calculations, first, prove the stability of toroidal atmospheres on characteristic hydrodynamic time scales and, second, show the possibility of sporadic fragmentation of these atmospheres even after a hydrodynamic equilibrium is established. The calculations were carried out under the assumption of equatorial symmetry of the problem and up to relatively long time scales (~10 s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号