首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Following the 1996 February 18 M L = 5.2 earthquake in the Agly massif in the eastern French Pyrenees, we installed a temporary network of seismometers around the epicentre. In this paper, we analyse 336 well-located aftershocks recorded from February 19 to February 23 by 18 temporary stations and two permanent stations located less than 35  km from the epicentre. Most aftershocks have been located with an accuracy better than 1.5  km in both horizontal and vertical positions. Their spatial distribution suggests the reactivation of a known fault system. We determined 39 fault-plane solutions using P -wave first motions. Despite their diversity, the focal mechanisms yield an E–W subhorizontal T-axis. We also determined fault-plane solutions and principal stress axes using the method developed by Rivera & Cisternas (1990 ) for the 15 best-recorded events. We obtain a pure-shear-rupture tectonic regime under N–S subhorizontal compression and E–W subhorizontal extension. These principal stress axes, which explain the focal mechanisms for at least 75 per cent of the 39 aftershocks, are different from the axes deduced from the main shock. The post-earthquake stress field caused by the main-shock rupture, modelled as sinistral strike slip on three vertical fault segments, is computed for various orientations and magnitudes of the regional stress field, assumed to be horizontal. The aftershock distribution is best explained for a compressive stress field oriented N30°E. Most aftershocks concentrate where the Coulomb failure stress change increases by more than 0.2  MPa. The diversity of aftershock focal mechanisms, poorly explained by this model, may reflect the great diversity in the orientations of pre-existing fractures in the Agly massif.  相似文献   

6.
7.
8.
9.
In this paper we present revised locations and original focal mechanisms computed for intermediate and deep earthquakes that occurred within the Southern Tyrrhenian subduction zone between 1988 and 1994, in order to improve our knowledge of the state of stress for this compressional margin. In particular, we define the stress distribution within a large portion of the descending slab, between 40 and about 450 km depth. The seismicity distribution reveals a continuous 40–50 km thick slab that abruptly increases its dip from subhorizontal in the Ionian Sea to a constant 70° dip in the Tyrrhenian. We computed focal mechanisms for events with magnitudes ranging from 2.7 and 5.7, obtaining the distribution of P - and T -axes for many events for which centroid moment tensor (CMT) solutions are not available, thus enabling the sampling of a larger depth range compared to previous studies. We define three portions of the slab characterized by different distributions of P - and T -axes. A general down-dip compression is found between 165 and 370 km depth, whereas in the upper part of the slab (40–165 km depth) the fault-plane solutions are strongly heterogeneous. Below 370 km the P -axes of the few deep events located further to the north have a shallower dip and are not aligned with the 70° dipping slab, possibly suggesting that they belong to a separated piece of subducted lithosphere. There is a good correspondence between the depth range in which the P -axes plunge closer to the slab dip (∼ 70°) and the interval characterized by the highest seismic energy release (190–370 km).  相似文献   

10.
11.
12.
13.
14.
15.
We present the results of body waveform modelling studies for 17 earthquakes of M w ≥5.7 occurring in the South Island, New Zealand region between 1918 and 1962, including the 1929 M s = 7.8 Buller earthquake, the largest earthquake to have occurred in the South Island this century. These studies confirm the concept of slip partitioning in the northern South Island between strike-slip faulting in southwestern Marlborough and reverse and strike-slip faulting in the Buller region, but indicate that the zone of reverse faulting is quite localized. In the central South Island, all historical earthquakes appear to be associated with strike-slip faulting, although recent (post-1991) reverse faulting events suggest that slip partitioning also occurs within this region. The difference between historical and recent seismicity in the central South Island may also reflect stress readjustment occurring in response to the 1717 ad rupture along the Alpine fault. Within the Fiordland region (southwestern South Island) none of the historical earthquakes appears to have occurred along the Australian/Pacific plate interface, but rather they are associated with complex deformation of the subducting plate as well as with deformation of the upper (Pacific) plate. Two earthquakes in the Puysegur Bank region south of the South Island suggest that strike-slip deformation east of the Puysegur Trench is playing a major role in the tectonics of the region.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号