首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In wind-fed X-ray binaries the accreting matter is Compton-cooled and falls freely on to the compact object. The matter has a modest angular momentum l and accretion is quasi-spherical at large distances from the compact object. Initially small non-radial velocities grow in the converging supersonic flow and become substantial in the vicinity of the accretor. The streamlines with l >( GMR ∗)1/2 (where M and R ∗ are the mass and radius of the compact object) intersect outside R ∗ and form a two-dimensional caustic which emits X-rays. The streamlines with low angular momentum, l <( GMR ∗)1/2, run into the accretor. If the accretor is a neutron star, a large X-ray luminosity results. We show that the distribution of accretion rate/luminosity over the star surface is sensitive to the angular momentum distribution of the accreting matter. The apparent luminosity depends on the side from which the star is observed and can change periodically with the orbital phase of the binary. The accretor then appears as a 'Moon-like' X-ray source.  相似文献   

2.
具有不同质量的恒星在耗尽其热核能源后,最终可能会坍缩成为性质完全不同的致密天体,如白矮星、中子星或者黑洞。从20世纪30年代起,黑洞的观测及其证认一直是天体物理学的研究热点之一。首先简要地回顾了恒星级黑洞的形成及其候选天体的研究历史;然后介绍了如何从观测上证认恒星级黑洞:接着详细讨论了恒星级黑洞的质量和自转参数的测量方法;最后介绍恒星级黑洞观测及其证认的最新研究进展,并做出结论:目前已经有充分的证据宣告在部分吸积X射线双星中存在恒星级黑洞。  相似文献   

3.
The results of the optical and infrared observations of classical symbiotic stars Z and, CI Cyg, BF Cyg, AG Dra, AX Per, V443 Her, and YY Her are summarized. It is shown that the hot component of most classical symbiotic stars is a hot subdwarf and not a Main-Sequence star with an accretion disc. The energy source of its outbursts is the gravitational energy of the matter accreted from the cool component's surface. The cool component is a red giant filling the Roche lobe and having class II luminosity. In the intervals between outbursts the hot component's luminosity may be determined by its own energy sources. It is probable that among classical symbiotic stars there are-in an insignificant quantity-systems in which the hot component is a Main-Sequence star with an accretion disc. In such systems eclipses of the hot source of radiation by the red giant must without fail occur and the hot component must be a yellow or red dwarf. The transition from a symbiotic nova (V1016 Cyg, HM Sge, and RR Tel) to a classical symbiotic nova takes place at the moment when the cool component's size is approaching the size of the Roche lobe, resulting in a sharp increase of the accretion rate of its matter onto the hot component. The nonstationarity of this process leads to the appearance of nova-like outbursts on classical symbiotic stars' light curves.  相似文献   

4.
We summarize all the reported detections of, and upper limits to, the radio emission from persistent (i.e. non-transient) X-ray binaries. A striking result is a common mean observed radio luminosity from the black hole candidates (BHCs) in the low/hard X-ray state and the neutron star Z sources on the horizontal X-ray branch. This implies a common mean intrinsic radio luminosity to within a factor of 25 (or less, if there is significant Doppler boosting of the radio emission). Unless coincidental, these results imply a physical mechanism for jet formation that requires neither a black hole event horizon nor a neutron star surface. As a whole the populations of Atoll and X-ray pulsar systems are less luminous by factors of ≳5 and ≳10 at radio wavelengths than the BHCs and Z sources (while some Atoll sources have been detected, no high-field X-ray pulsar has ever been reliably detected as a radio source). We suggest that all of the persistent BHCs and the Z sources generate, at least sporadically, an outflow with physical dimensions 1012 cm; that is, significantly larger than the binary separations of most of the systems. We compare the physical conditions of accretion in each of the types of persistent X-ray binary and conclude that a relatively low (1010 G) magnetic field associated with the accreting object, and a high (0.1 Eddington) accretion rate and/or dramatic physical change in the accretion flow, are required for formation of a radio-emitting outflow or jet.  相似文献   

5.
The collapse of massive stars may result in the formation of accreting black holes in their interiors. The accreting stellar matter may advect substantial magnetic flux on to the black hole and promote the release of its rotational energy via magnetic stresses (the Blandford–Znajek mechanism). In this paper we explore whether this process can explain the stellar explosions and relativistic jets associated with long gamma-ray bursts. In particular, we show that the Blandford–Znajek mechanism is activated when the rest mass–energy density of matter drops below the energy density of the magnetic field in the near vicinity of the black hole (within its ergosphere). We also discuss whether such a strong magnetic field is in conflict with the rapid rotation of the stellar core required in the collapsar model, and suggest that the conflict can be avoided if the progenitor star is a component of a close binary. In this case the stellar rotation can be sustained via spin-orbital interaction. In an alternative scenario the magnetic field is generated in the accretion disc, but in this case the magnetic flux through the black hole ergosphere is not expected to be sufficiently high to explain the energetics of hypernovae by the BZ mechanism alone. However, this energy deficit can be recovered via the additional power provided by the disc.  相似文献   

6.
We review how the recent increase in X-ray and radio data from black hole and neutron star binaries can be merged together with theoretical advances to give a coherent picture of the physics of the accretion flow in strong gravity. Both long term X-ray light curves, X-ray spectra, the rapid X-ray variability and the radio jet behaviour are consistent with a model where a standard outer accretion disc is truncated at low luminosities, being replaced by a hot, inner flow which also acts as the launching site of the jet. Decreasing the disc truncation radius leads to softer spectra, as well as higher frequencies (including quasi periodic oscillations, QPOs) in the power spectra, and a faster jet. The collapse of the hot flow when the disc reaches the last stable orbit triggers the dramatic decrease in radio flux, as well as giving a qualitative (and often quantitative) explanation for the major hard–soft spectral transition seen in black holes. The neutron stars are also consistent with the same models, but with an additional component due to their surface, giving implicit evidence for the event horizon in black holes. We review claims of observational data which conflict with this picture, but show that these can also be consistent with the truncated disc model. We also review suggested alternative models for the accretion flow which do not involve a truncated disc. The most successful of these converge on a similar geometry, where there is a transition at some radius larger than the last stable orbit between a standard disc and an inner, jet dominated region, with the X-ray source associated with a mildly relativistic outflow, beamed away from the disc. However, the observed uniformity of properties between black holes at different inclinations suggests that even weak beaming of the X-ray emission may be constrained by the data. After collapse of the hot inner flow, the spectrum in black hole systems can be dominated by the disc emission. Its behaviour is consistent with the existence of a last stable orbit, and such data can be used to estimate the black hole spin. By contrast, these systems can also show very different spectra at these high luminosities, in which the disc spectrum (and probably structure) is strongly distorted by Comptonization. The structure of the accretion flow becomes increasingly uncertain as the luminosity approaches (and exceeds) the Eddington luminosity, though there is growing evidence that winds may play an important role. We stress that these high Eddington fraction flows are key to understanding many disparate and currently very active fields such as ULX, Narrow Line Seyfert 1’s, and the growth of the first black holes in the Early Universe.  相似文献   

7.
We have carried out global three‐dimensional magnetohydrodynamic simulations of the star‐disc interaction region around a young solar‐type star. The magnetic field is generated and maintained by dynamos in the star as well as in the disc. The developing mass flows possess non‐periodic time‐variable azimuthal structure and are controlled by the nonaxisymmetric magnetic fields. Since the stellar field drives a strong stellar wind, accretion is anti‐correlated with the stellar field strength and disc matter is spiraling onto the star at low latitudes, both contrary to the generally assumed accretion picture. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We investigate the hypothesis that quasars formed together with the stellar populations of early-type galaxies. This hypothesis – in conjunction with the stellar ages of early-type galaxies from population synthesis models, the relation of black hole mass to bulge velocity dispersion, and the velocity dispersion distribution of spheroids from the Sloan Digital Sky Survey – completely determines the cosmic accretion history of supermassive black holes and the redshift evolution of the characteristic luminosity. On the other hand, the precise shape of the luminosity function of quasars depends on the light curve of quasars and – in the optical, but not so much in X-rays – on the covering factor of the dust surrounding the active nucleus. We find a plausible set of assumptions for which the coeval formation of supermassive black holes and elliptical galaxies is in good agreement with the observed B -band and X-ray luminosity functions of quasars.  相似文献   

9.
The stationary two-dimensional magnetohydrodynamic solution for the accretion of the matter without pressure into a gravitating centre of a black hole is obtained. It is assumed that the magnetic field far from the collapsed star is homogeneous and its influence on the flow is negligible. Around the star, at the plane perpendicular to the direction of the magnetic field, the dense quasistationary disc is formed, the structure of which in a large extent is determined by dissipation processes. The structure is calculated for (a) a laminar disc with the Coulomb mechanism of dissipation; and (b) a turbulent disc.The estimations of the parameters of the shock which result from the infall of the matter onto the disc are given. In the last section the numerical estimation and approximate character of the radiation spectrum of the disc and the shock are obtained for two cases of 10M and 105 M . The luminosity of collapsed objects withM=10M appears to be about solar, thus its observation is possibly only at the distances less than 300–1000 pc. The collapsed objects in the Galaxy withM=105 M could constitute very bright sources in spectral regions from optical up to X-ray. The spectra of a laminar and a turbulent disc for 10M black hole are very different. The laminar disc radiates primarily in the ultraviolet. The turbulent disc radiates a large part of its flux in the infrared. Therefore, one cannot exclude the possibility that some of the galactic infrared star-like sources are individual black holes in the accretion state.  相似文献   

10.
We carried out spectroscopic observations of the candidate black hole binary GX 339−4 during its low–hard and high–soft X-ray states. We have found that the spectrum is dominated by emission lines of neutral elements with asymmetric, round-topped profiles in the low–hard state. In the high–soft state, however, the emission lines from both neutral and ionized elements have unambiguously resolved double-peaked profiles. The detection of double-peaked emission lines in the high–soft state, with a larger peak separation for higher ionization lines, indicates the presence of an irradiatively heated accretion disc. The round-topped lines in the low–hard state are probably caused by a dense matter outflow from an inflated non-Keplerian accretion disc. Our data do not show velocity modulations of the line centres caused by the orbital motion of the compact object, neither do the line basewidths show substantial variations in each observational epoch. There are no detectable absorption lines from the companion star. All these features are consistent with those of a system with a low-mass companion star and low orbital inclination.  相似文献   

11.
We report the detection of series of close type I X-ray bursts consisting of two or three events with a recurrence time much shorter than the characteristic (at the observed mean accretion rate) time of matter accumulation needed for a thermonuclear explosion to be initiated on the neutron star surface during the JEM-X/INTEGRAL observations of several X-ray bursters. We show that such series of bursts are naturally explained in the model of a spreading layer of accreting matter over the neutron star surface in the case of a sufficiently high (? ? 1 × 10?9 M yr?1) accretion rate (corresponding to a mean luminosity L tot ? 1 × 1037erg s?1). The existence of triple bursts requires some refinement of the model—the importance of a central ring zone is shown. In the standard model of a spreading layer no infall of matter in this zone is believed to occur.  相似文献   

12.
In the first part of the paper the known results on the gravitational interaction of a massive black hole with the surrounding stars in a galactic nucleus are discussed. The tidal disruption of stars in close encounters with a black hole is reviewed. Expressions for the flux of stars on a black hole are given, taking into account energy and angular momentum diffusion of stellar orbits. The scenario of star disruption and accretion of the released stellar matter is depicted. The growth of a black hole in a typical galactic nucleus on account of gas accretion from disrupted stars is discussed. A comparison with the upper limit to the luminosity of the nucleus of our Galaxy puts rather severe constraints on the mass of a hypothetical black hole at the galactic centre. Possible mechanisms preventing the formation and growth of black holes in normal galactic nuclei are discussed.The second part of the paper (Section 8) deals with the hypothesis that massive black holes are the primary energy sources in active galaxies and quasars. The luminosity requirements of bright quasars and weak Seyferts can probably be accounted for in such a model, but there are difficulties in explaining the intermediate range. Mass ejection from Seyferts and quasars is not a severe problem. The same applies to the spectrum. A much more serious objection is the observed periodic and quasi-periodic variability. Another unsatisfactory feature of this hypothesis is that one needs two different evolutionary tracks for quasars and active galaxies, and for normal galaxies.  相似文献   

13.
在中子星磁轴吸积柱的上部,少数高能电子通过磁镜点反射,可使部份电子的速度分布形成非热分布,由此激发激射(Maser)不稳定性。波被放大,发射出频率近似为电子迴旋频率及其倍频的相干辐射。用此模型计算了HerX-1的迴旋线发射。发现不稳定性增长率与吸积柱中电子数密度成正比,因而比非相干散射产生的连续辐射随电子数密度增长更快;而且发射线的强度和能量均与脉冲相位关联。这个理论可解释近期的HerX-1观测结果。  相似文献   

14.
We consider the minimum mass planet, as a function of radius, that is capable of opening a gap in an α-accretion disc. We estimate that a half-Jupiter mass planet can open a gap in a disc with accretion rate     for viscosity parameter  α= 0.01  , and solar mass and luminosity. The minimum mass is approximately proportional to     . This estimate can be used to rule out the presence of massive planets in gapless accretion discs. We identify two radii at which an inwardly migrating planet may become able to open a gap and so slow its migration; the radius at which the heating from viscous dissipation is similar to that from stellar radiation in a flared disc, and the radius at which the disc becomes optically thin in a self-shadowed disc. In the inner portions of the disc, we find that the minimum planet mass required to open a gap is only weakly dependent on radius. If a migrating planet is unable to open a gap by the time it reaches either of the transition radii, then it is likely to be lost on to the star. If a gap-opening planet cuts off disc accretion allowing the formation of a central hole or clearing in the disc then we would estimate that the clearing radius would approximately be proportional to the stellar mass.  相似文献   

15.
An intense outburst of hard radiation (with a peak flux of ~50 mCrab) was detected from the X-ray transient AX J1749.1-2733 by the IBIS/ISGRI gamma-ray telescope onboard the INTEGRAL observatory when the Galactic center field was monitored on September 8–10, 2003. Previously, this source had never been observed in a bright X-ray state. During the outburst, the source’s radiation spectrum was gently sloping and hard (extended to ~100 keV), followed a power law in the standard X-ray energy range, and had an exponential cutoff above 40–50 keV. The spectral hardness decreased with increasing flux. These and other properties described here and the shortness of the outburst (<2 days) allow the source to be attributed to the group of fast X-ray transients many representatives of which have an early O-B supergiant as their optical counterpart. Possible causes of the outbursts of fast transients are discussed. We show that accretion from the supergiant’s stellar wind should have led to intense persistent radiation from transients. The absence of radiation can be explained by the ejection of accreting matter from the system (propeller effect) during its contact with the magnetosphere of a rapidly rotating neutron star. Transient outbursts could originate in sources of this type if the spin period of their neutron star P s differed only slightly from the critical period P s * ? 3 s at which the propeller effect is still possible. The outburst is triggered by an insignificant rise in the local stellar wind density, by a factor of (P s * /P s)7/3. The entire outburst profile cannot be explained by an individual inhomogeneity in the wind, but is the reflection of a long-term (~2 days for AX J1749.1-2733) change in the rate of wind outflow from the supergiant’s surface facing the compact source. The rate of wind outflow could be enhanced through X-ray heating of the supergiant’s surface.  相似文献   

16.
We calculate the structure of the accretion disc around a rapidly rotating black hole with a super-Eddington accretion rate. The luminosity and height of the disc are reduced by the advection effect. In the case of large viscosity parameter, α>0.03, the accretion flow deviates strongly from thermodynamic equilibrium and overheats in the central region. With increasing accretion rate, the flow temperature steeply increases, reaches maximum, and then falls off. The maximum is achieved in the advection-dominated regime of accretion. The maximum temperature in the disc around a massive black hole of M =108 M⊙ with α=0.3 is of order 3×108 K. The discs with large accretion rates can emit X-rays in quasars as well as in galactic black hole candidates.  相似文献   

17.
Compact remnants – stellar mass black holes and neutron stars formed in the inner few parsec of galactic centres are predicted to sink into the central parsec due to dynamical friction on low-mass stars, forming a high concentration cusp. Same physical region may also contain very high-density molecular clouds and accretion discs that are needed to fuel supermassive black hole (SMBH) activity. Here we estimate gas capture rates on to the cusp of stellar remnants, and the resulting X-ray luminosity, as a function of the accretion disc mass. At low disc masses, most compact objects are too dim to be observable, whereas in the high disc case most of them are accreting at their Eddington rates. We find that for low accretion disc masses, compact remnant cusps may be more luminous than the central SMBHs. This 'diffuse' emission may be of importance for local moderately bright active galactic nuclei (AGNs), especially low-luminosity AGNs. We also briefly discuss how this expected emission can be used to put constraints on the black hole cusp near our Galactic Centre.  相似文献   

18.
The intent of this study is to determine the nature of the star and associated nebulosity S 235 B, which are located in a region of active star formation still heavily obscured by the parent molecular cloud. Low-resolution  ( R = 400)  long-slit spectra of the star and nebulosity, and medium-  ( R = 1800)  and high-resolution  ( R = 60 000)  spectra of the central star are presented along with the results of Fabry–Perot interferometric imaging of the entire region. Based on the long-slit and Fabry–Perot observations, the nebulosity appears to be entirely reflective in nature, with the stellar component S 235 B★ providing most of the illuminating flux. The stellar source itself is classified here as a B1V star, with emission-line profiles indicative of an accretion disc. S 235 B★ thus belongs to the relatively rare class of early-type Hebrig Be stars. Based on the intensity of the reflected component, it is concluded that the accretion disc must be viewed nearly edge-on. Estimates of the accretion rate of S 235 B★ from the width of the Hα profile at 10 per cent of maximum intensity, a method which has been used lately for T Tauri stars and Brown Dwarfs, appear to be inconsistent with the mass outflow rate and accretion rate implied from previous infrared observations by Felli et al., suggesting this empirical law does not extend to higher masses.  相似文献   

19.
We present a multi-wavelength study of the Be/X-ray binary system EXO 2030+375. We report that the Be companion is currently in a low-activity phase as indicated by the notable decrease of the infrared and optical emission. If this trend continues the source will lose its circumstellar envelope. Infrared spectroscopy in the IJHK bands is presented for the first time, along with optical and X-ray observations. These infrared spectra agree with the optical companion being an early-type (B0) main-sequence star. When active EXO 2030+375 shows an X-ray outburst at each periastron passage of the neutron star. In addition to the maximum X-ray luminosity displayed at orbital phase ∼0.0, we find a smaller maximum in the light curve at phase ∼0.5. This second intensity peak may be explained if the velocity of the wind is lower than or comparable to the orbital velocity of the neutron star at apastron. We also comment on the relation between the optical/infrared behaviour and the X-ray emission and argue that the X-ray inactive period observed between 1993 August and 1996 April is a result of centrifugal inhibition of accretion of matter rather than a low-activity circumstellar disc.  相似文献   

20.
By comparing photon diffusion time with gas outflow time, I argue that a large fraction of the energy carried by the jets during the grazing envelope evolution (GEE) might end in radiation, hence leading to an intermediate luminosity optical transient (ILOT). In the GEE a companion orbiting near the outskirts of the larger primary star accretes mass through an accretion disk, and launches jets that efficiently remove the envelope gas from the vicinity of the secondary star. In cases of high mass accretion rates onto the stellar companion the energy carried by the jets surpass the recombination energy from the ejected mass, and when the primary star is a giant this energy surpasses also the gravitational binding energy of the binary system. Some future ILOTs of giant stars might be better explained by the GEE than by merger and common envelope evolution without jets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号