首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine seismic and eruptive activity at Fuego Volcano (14°29′N, 90° 53′W), a 3800-m-high stratovolcano located in the active volcanic arc of Guatemala. Eruptions at Fuego are typically short-lived vulcanian eruptions producing ash falls and ash flows of high-alumina basalt. From February 1975 to December 1976, five weak ash eruptions occurred, accompanied by small earthquake swarms. Between 0 and 140 (average ≈ 10) A-type or high-frequency seismic events per day with M > 0.5 were recorded during this period. Estimated thermal energies for each eruption are greater by a factor of 106 than cumulative seismic energies, a larger ratio than that reported for other volcanoes.Over 4000 A-type events were recorded January 3–7, 1977 (cumulative seismic energy ≈ 109 joules), yet no eruption occurred. Five 2-hour-long pulses of intense seismicity separated by 6-hour intervals of quiescence accounted for the majority of events. Maximum likelihood estimates of b-values range from 0.7 ± 0.2 to 2.1 ± 0.4 with systematically lower values corresponding to the five intense pulses. The low values suggest higher stress conditions.During the 1977 swarm, a tiltmeter located 6 km southeast of Fuego recorded a 14 ± 3 microradian tilt event (down to SW). This value is too large to represent a simple change in the elastic strain field due to the earthquake swarm. We speculate that the earthquake swarm and tilt are indicative of subsurface magma movement.  相似文献   

2.
A common sequence of phenomena associated with volcanic explosions is extracted based on seismic and ground deformation observations at 3 active volcanoes in Japan and Indonesia. Macroscopic inflation-related ground deformations are detected prior to individual explosions, while deflations are observed during eruptions. Precursory inflation occurs 5 min to several hours before eruption at the Sakurajima volcano, but just 1–2 min at Suwanosejima and 3–30 min at the Semeru volcano. The sequence commences with minor contraction, which is detected by extensometers 1.5 min before eruption at Sakurajima, as a dilatant first motion of the explosion earthquakes 0.2–0.3 s before surface explosions at Suwanosejima, and as downward tilt 4–5 s prior to eruption at the Semeru volcano. The sequence is detected for explosive eruptions with > 0.1 μrad tilt change at Sakurajima, 90% at Suwanosejima and 75% at Semeru volcanoes. It is inferred that the minor contraction is caused by a volume and pressure decrease due to the release of gas from a pocket at the top of the conduit as the gas pressure exceeds the strength of the confining plug. The subsequent violent expansion may be triggered by sudden outgassing of the water-saturated magma induced by the decrease in confining pressure.  相似文献   

3.
Paricutin volcano is a monogenetic volcano whose birth and growth were observed by modern volcanological techniques. At the time of its birth in 1943, the seismic activity in central Mexico was mainly recorded by the Wiechert seismographs at the Tacubaya seismic station in Mexico City about 320 km east of the volcano area. In this paper we aim to find any characteristics of precursory earthquakes of the monogenetic eruption. Though there are limits in the available information, such as imprecise location of hypocenters and lack of earthquake data with magnitudes under 3.0.The available data show that the first precursory earthquake occurred on January 7, 1943, with a magnitude of 4.4. Subsequently, 21 earthquakes ranging from 3.2 to 4.5 in magnitude occurred before the outbreak of the eruption on February 20. The (S - P) durations of the precursory earthquakes do not show any systematic changes within the observational errors. The hypocenters were rather shallow and did not migrate.The precursory earthquakes had a characteristic tectonic signature, which was retained through the whole period of activity. However, the spectra of the P-waves of the Paricutin earthquakes show minor differences from those of tectonic earthquakes. This fact helped in the identification of Paricutin earthquakes. Except for the first shock, the maximum earthquake magnitudes show an increasing tendency with time towards the outbreak. The total seismic energy released by the precursory earthquakes amounted to 2 × 1019 ergs. Considering that statistically there is a threshold of cumulative seismic energy release (1017–18ergs) by precursory earthquakes in polygenetic volcanoes erupting after long quiescence, the above cumulative energy is exceptionally large. This suggests that a monogenetic volcano may need much more energy to clear the way of magma passage to the earth surface than a polygenetic one.The magma ascent before the outbreak of Paricutin volcano is interpretable by a model of magma-filled crack formation proposed by Weertman, based on seismic data and other field observations.  相似文献   

4.
Gravity changes of up to 1.2 ± 0.1 mgal (1 standard deviation) were measured at three points within 400 m of an active vent on Pacaya volcano, Guatemala during eleven days of January, 1975. For five continuous days gravity varied inversely with the average muzzle velocity of ejecta, the frequency of volcanic explosions, and the frequency of volcanic earthquakes. The gravity changes are most reasonably interpreted as the product of intravolcanic movements of magma with masses one to two orders of magnitude larger than any flow ever erupted from the volcano. However, elevation changes and/or combination of elevation and mass distribution changes could also have been an important factor in effecting the observed gravity variations. Because we lack elevation control on the gravity stations, we are unable to unequivocally conclude which factor or which combination of factors produced the gravity changes. The study indicates the possibility of gravity monitoring of hazardous volcanoes as a predictive tool, and as an added means for investigating the internal mechanism of volcanic eruptions.  相似文献   

5.
The eruptions of Nevado del Ruiz in 1985 were unusually rich in sulfur dioxide. These eruptions were observed with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) which can quantitatively map volcanic sulfur dioxide plumes on a global scale. A small eruption, originally believed to be of phreatic origin, took place on September 11, 1985. However, substantial amounts of sulfur dioxide from this eruption were detected with TOMS on the following day. The total mass of SO2, approximately 9 ± 3 × 104 metric tons, was deposited in two clouds, one in the upper troposphere, the other possibly at 15 km near the stratosphere.The devastating November 13 eruptions were first observed with TOMS at 1150 EST on November 14. Large amounts of sulfur dioxide were found in an arc extending 1100 km from south of Ruiz northeastward to the Gulf of Venezuela and as an isolated cloud centered at 7°N on the Colombia-Venezuela border. On November 15 the plume extended over 2700 km from the Pacific Ocean off the Colombia coast to Barbados, while the isolated mass was located over the Brazil-Guyana border, approximately 1600 km due east of the volcano. Based on wind data from Panama, most of the sulfur dioxide was located at 10–16 km in the troposphere and a small amount was quite likely deposited in the stratosphere at an altitude above 24 km.The total mass of sulfur dioxide in the eruption clouds was approximately 6.6 ± 1.9 × 105 metric tons on November 14. When combined with quiescent sulfur dioxide emissions during this period, the ratio of sulfur dioxide to erupted magma from Ruiz was an order of magnitude greater than in the 1982 eruption of El Chichon or the 1980 eruption of Mount St. Helens.  相似文献   

6.
Seismic activity has been postulated as a trigger of volcanic eruption on a range of timescales, but demonstrating the occurrence of triggered eruptions on timescales beyond a few days has proven difficult using global datasets. Here, we use the historic earthquake and eruption records of Chile and the Andean southern volcanic zone to investigate eruption rates following large earthquakes. We show a significant increase in eruption rate following earthquakes of MW > 8, notably in 1906 and 1960, with similar occurrences further back in the record. Eruption rates are enhanced above background levels for ~ 12 months following the 1906 and 1960 earthquakes, with the onset of 3–4 eruptions estimated to have been seismically influenced in each instance. Eruption locations suggest that these effects occur from the near-field to distances of ~ 500 km or more beyond the limits of the earthquake rupture zone. This suggests that both dynamic and static stresses associated with large earthquakes are important in eruption-triggering processes and have the potential to initiate volcanic eruption in arc settings over timescales of several months.  相似文献   

7.
In autumn of 1966 on the northern slope of Kliuchevskoy volcano a chain of new adventive craters broke out at the height of about 2200 m. Eighty-four hours before the beginning of the eruption a swarm of preliminary volcanic earthquakes had appeared. The number of preliminary shocks was 457 with total energy of 4 × 1017 erg. With the beginning of the lava flow the earthquakes stopped and a continuous volcanic tremor appeared. The total energy of volcanic tremor amounts to 1016 erg. During the eruption numerous explosive earthquakes with the energy of 1015–1016 erg were recorded and besides the microbarograph of the Volcanostation recorded 393 explosions with an energy more than 1013 erg and their total energy was equal to 1017 erg. All together it has been formed 8 explosive craters and the lowest 9th crater was effusive. The slag cone was formed round this effusive crater, the lava effusion of basaltic-andesite composition (52,5% SiO2) tooke place from the lava boccas at the cone base and from the crater. The lava flow covered a distance of 10 km along the valley of the Sopochnoy river and descended to a height of about 800 m. The lava flow velocity at the outflow reached 800 m/hr, the lava temperature was 1050°C. The effused lava volume amounts to 0.1 km3. The eruption stopped on December 25–26, 1966.  相似文献   

8.
 Five new stepwise-heating 40Ar/39Ar ages and one new high-sensitivity 14C date of ash-fall and ash-flow deposits from late Quaternary silicic volcanoes in northern Central America document the eruption rates and frequencies of five major rhyodacite and rhyolite calderas (Atitlán, Amatitlán, Ayarza, Coatepeque, and Ilopango) located north of the basalt, andesite, and dacite stratovolcanoes of the Central American volcanic front. These deposits form extensive time-stratigraphic horizons that intercalate regionally, and knowledge of dates and stratigraphy provides a valuable framework for age determinations of more localized volcanic and nonvolcanic events. The new data, especially when integrated with previous stratigraphic and dating work, show that all five calderas erupted several times in the past 200 ka and, despite a lack of historic activity, should be considered as active centers that could produce highly explosive eruptions again. Because of their locations near the highly vulnerable economic hearts of Guatemala and El Salvador, the risks of eruptions from these calderas should be carefully considered along with risks of major earthquakes and volcanic front volcanoes, which are much more frequent but inflict less severe and extensive damage. This investigation also includes some examples of dating efforts that failed to produce reasonable results. Received: 15 May 1998 / Accepted: 18 January 1999  相似文献   

9.
A violent outburst of the Lopevi volcano in the central New Hebrides occurred on the 10th July, 1960. The eruption was preceded 4 months before by a deep earthquake (h=250 kms, Mag. 7 1/4), the focus of which was just under the volcano. An inventory of all shocks recorded in the Group since 1910 has been made and all informations about volcanic eruptions in this region have been collected. A close correlation appeared between these two phenomena. Each of the large volcanic eruptions recorded between 1910 and 1962 followed a deep focus earthquake of magnitude greater than 7. Moderate eruptions were preceded by earthquakes of magnitude between 5 3/4 and 6 3/4. The time between the tectonic shock and the climactic phase of the volcanic activity appears to be related to the distance between the focus and the volcano (i.e. the focal depth), the type of the volcano and the pattern of its eruption. It is of few months duration for the volcanoes in the Central group: Ambrym, Lopévi, the submarine volcano east of Epi and Karua. The authors tried to find the same correlations for others volcanoes in the world for which they have been able to collect dates of eruptions: Asama-Yama (Japan), Bezymiannyi (Kamtchatka), Paricutin and Izalco (Central America), Vesuve, Stromboli (Italy). Thus volcanic eruptions would appear to have their first origin in the mantle. A systematic survey of all volcanoes and deep regional earthquakes would bring evidence of this correlation and may permit a long term prediction of their eruptions.  相似文献   

10.
Seismic energy release during the precursory, eruptive and declining stages of volcanic activities provides various information about the mechanisms of volcanic eruptions and the temporary developments of their activities. Hitherto the energy release patterns from precursory earthquake swarms were used to predict the eruption times, especially of andesitic or dacitic volcanoes. In this paper the discussion is expanded to quantify the total amount of seismic energy released at the threshold of volcanic eruptions, with reference to the results observed at several volcanoes. The results generally indicate that the cumulative seismic energy release from the precursory earthquake swarms exceed 101718ergs before eruptions at any andesitic or dacitic volvanoes. This allows the seismic efficiency, or the ratio of energy radiated seismically, and the energy required for the volumetric expansion to be estimated by incorporating available deformation data with the seismic data. The dependency of seismic efficiency on the type of volcanic activity, i. e. non-explosive outbreaks, phreatic and magmatic eruptions, dome formation, etc., was evaluated from observations at a few volcanoes that provided a variety of examples.  相似文献   

11.
The 1977–1978 eruption of Usu volcano is discussed from the geophysical standpoint as a classic example of dacite volcanism. The activities of dacitic volcanoes are characterized by persistent earthquake swarms and remarkable crustal deformations due to the high viscosity of the magmas; the former include shocks felt near the volcanoes and the latter accompany formation of lava domes or cryptodomes.The hypocenters of the earthquakes occurring beneath Usu volcano have been located precisely. Their distribution defines an earthquake-free zone which underlies the area of doming within the summit crater. This zone is regarded as occupied by viscous magma. The domings within the summit crater forming the cryptodomes have amounted to about 160 m. In addition to uplift they showed thrusting towards the northeast. As a result, the northeastern foot of the volcano has contracted by about 150 m. The relation between crustal deformation and earthquake occurrence is examined, and it is found that the abrupt domings are accompanied by the larger earthquakes (M = 3–4.3). Both the seismic activity and the ground deformation are shown to have a unique and common energy source.The energy of activities of Usu volcano consists of the explosive type, the deformation type and the seismic type; the second and the third are in parallel with each other in discharges, and both energies are complementary to the explosive energy. The explosive energy and the seismic energy have been calculated for an explosion sequence, and it is concluded that the deformation energy is about 10 times greater than the seismic energy. The discharge rate of the seismic energy and the upheaval rates of the cryptodomes have continued to decrease since the outburst of the eruption, except for a small increase at the end of January 1978. Eruptions are governed not only by the supply of the energies but also by the depth of the magma, which has gradually approached the surface. The last eruption occurred in October 1978; however, the crustal deformations and the earthquake swarms are still proceeding as of January 1980, albeit at a lower rate of activity.  相似文献   

12.
The sequence of large Vulcanian explosions occurring at the andesitic Popocatépetl volcano, Mexico during November 1998 to April 1999 was studied. The size of 26 largest explosions was estimated from broadband seismic records at the distance of 4 km from the crater. The sequence began with the largest explosion (E = 2.6 × 1012 J) occurring on 25 November at 08:05, and following largest daily explosions were characterized by gradual decrease in the energy. The energy of 20 large (E ≥ 1011 J) explosions was distributed as Student's t-distribution with a geometrical mean Log E = 11.81 (J).  相似文献   

13.
Shallow intrusion of magma caused phreatic explosions and mud flows at the snow-covered summit of Chokai volcano, northeast Honshu, Japan, after 153 years of dormancy. Total heat emission by the eruption is estimated at more than 3.0 × 1021 erg. Equivalent amount of magma is about 2.2 × 108 ton. Focal mechanisms of the associated volcanic earthquakes, which had been variable during the period of eruption. became stable after the cessation of the surface activity with pressure axis in a NW direction which is also the strike of the epicenter distribution. This temporal change of focal mechanisms may be interpreted as the result of propagation of increased pore pressure in the direction of the maximum pressure in the post eruptive period. The magmatic pressure which certainly predominated during the eruption period and caused carthquakes with variable mechanisms, decreased through surface activity.  相似文献   

14.
We investigated characteristics of eruption tremor observed for 24 eruptions at 18 volcanoes based on published reports. In particular, we computed reduced displacements (DR) to normalize the data and examined tremor time histories. We observed: (a) maximum DR is approximately proportional to the square root of the cross sectional area of the vent, however, with lower than expected slope; (b) about one half of the cases show approximately exponential increases in DR at the beginnings of eruptions, on a scale of minutes to hours; (c) one half of the cases show a sustained maximum level of tremor; (d) more than 90% of the cases show approximately exponential decay at the ends of eruptions, also on a scale of minutes to hours; and (e) exponential increases, if they occur, are commonly associated with the first large stage of eruptions. We estimate the radii of the vents using several methods and reconcile the topographic estimates, which are systematically too large, with those obtained from DR itself and theoretical considerations. We compare scaling of tremor DR with that for explosions and find that explosions have large absolute pressures and scale with vent radius squared, whereas tremor consists of pressure fluctuations that have lower amplitudes than the absolute pressure of explosions, and the scaling is different. We explore several methods to determine the appropriate scaling. This characteristic helps us to distinguish the type of eruptions: explosive (Vulcanian or Strombolian) eruptions versus sustained or continuous ash (e.g. Plinian) eruptions. Average eruption discharge, estimated from the total volume of tephra and the total duration of eruption tremor, is well correlated with peak discharge calculated from cross sectional area of the vent and velocity of volcanic ejecta. These results suggest similar scaling between different eruption types and the overall usefulness of monitoring tremor for evaluating volcanic activity.  相似文献   

15.
Santo Antão, the northernmost island of the Cape Verde Archipelago, consists entirely of silica-undersaturated volcanic products and minor intrusions. 40Ar–39Ar incremental heating experiments have been carried out on 24 samples that cover the entire exposed chronological sequence. The oldest lavas (7.57±0.56 Ma), representing an older volcanic basement, are exposed about 620 m above mean sea level. After an interval of quiescence of up to 4.3 Ma the volcanic activity resumed and continued at low eruption rates. The older basement is unconformably overlain by a ca. 810-m-thick lava sequence that spans an age range from 2.93±0.03 to 1.18±0.01 Ma. This sequence is cut by many dykes and sills. Simultaneous volcanic activity occurred in the northeastern, central and eastern part of the island. A phonolitic pumice deposit that forms a noteworthy feature over most of the island has an estimated age of 0.20 Ma. This predates volcanic activity that formed the highest point of the island (Tope de Coroa) which has an age of 0.17±0.02 Ma. The most recent eruption on the island formed nephelinitic lavas in the Porto Novo region at 0.09±0.03 Ma. The oldest volcanism exposed on Santo Antão, which took place about 7.6 Ma ago, was simultaneous with waning activity on Maio at the eastern end of the Cape Verde Archipelago.  相似文献   

16.
The October, 1902, eruption of Santa Maria Volcano, Guatemala, was one of the largest this century. It was preceded by a great earthquake on April 19 centered at the volcano, as well as numerous other major earthquakes. The 18–20 hour-long plinian eruption on October 25 produced a column at least 28 km high, reaching well into the stratosphere.The airfall pumice deposit covered more than 1.2 million km2 with a trace of ash and was only two meters thick at the vent. White dacitic pumice, dark gray scoriaceous basalt (with physically and chemically mixed intermediate pumice) and loose crystals of plagioclase, hornblende, hypersthene, biotite and magnetite make up the juvenile components of the deposit. Lithic fragments are of volcanic, plutonic, and metamorphic origin. The plinian deposit is a fine-grained, crystal-rich, single pumice fall unit and shows inverse grading. Mapping of the deposit gives a volume of 8.3 km3 within the one mm isopach. Crystal concentration studies show that the true volume erupted was at least 20 km3 (equivalent to 8.5 km3 of dense dacite) and that 90% of the ejecta was less than 2 mm in diameter.The plinian volume eruption rate averaged 1.2 × 105 m3s−1 and the average gas muzzle velocity of the column exceeded 270 ms−1. A total of 8.3 × 1018 J of energy were released by the eruption. A knowledge of both theoretically derived eruption parameters and contemporary information allows a detailed analysis of eruption mechanisms.This eruption was the major stratospheric aerosol injection in the 1902–1903 period. However, mid- to low- latitude northern hemisphere temperature deviation data for the years following the eruption show no significant temperature decrease. This may be explained by the sulfur-poor nature of dacite magmas, suggesting that volatile composition, rather than mass of volatiles, is the controlling parameter in climatic response to explosive eruptions.  相似文献   

17.
Eruptive scenarios associated with the possible reactivation of maar-forming events in the Quaternary, ultrapotassic Colli Albani Volcanic District (CAVD) provides implications for volcanic hazard assessment in the densely populated area near Rome. Based on detailed stratigraphy, grain size, componentry, ash morphoscopy and petro-chemical analyses of maar eruption products, along with textural analysis of cored juvenile clasts, we attempt to reconstruct the eruptive dynamics of the Prata Porci and Albano maars, as related to pre- and syn-eruptive interactions between trachybasaltic to K-foiditic feeder magmas and carbonate–silicoclastic and subvolcanic country rocks. Magma volumes in the order of 0.5–3.1 × 108 m3 were erupted during the monogenetic Prata Porci maar activity and the three eruptive cycles of the Albano multiple maar, originating loose to strongly lithified, wet and dry pyroclastic surge deposits, Strombolian scoria fall horizons and lithic-rich explosion breccias. These deposits contain a wide range of accessory and accidental lithic clasts, with significant vertical stratigraphic variations in the lithic types and abundances. The two maar study cases hold a record of repeated transitions between magmatic (i.e, Strombolian fallout) and hydromagmatic (wet and dry pyroclastic surges) activity styles. Evidence of phreatic explosions, a common precursor of explosive volcanic activity, is only found at the base of the Prata Porci eruptive succession. The quantitative evaluation of the proportions of the different eruptive styles in the stratigraphic record of the two maars, based on magma vs. lithic volume estimates, reveals a prevailing magmatic character in terms of erupted magma volumes despite the hydromagmatic footprint. Different degrees of explosive magma–water interaction were apparently controlled by the different hydrogeological and geological–structural settings. In the Prata Porci case, shifts in the depth of magma fragmentation are proposed to have accompanied eruption style changes. In the Albano case, a deeply dissected geothermal aquifer in peri-caldera setting and variable mass eruption rates were the main controlling factors of repeated shifts in the eruptive style. Finally, textural evidence from cored juvenile clasts and analytical modeling of melt–solid heat transfer indicate that the interacting substrate in the Prata Porci case was at low, uniform temperature (~ 100 °C) as compared to the highly variable temperatures (up to 700–800 °C) inferred for the geothermal system beneath Albano.  相似文献   

18.
Superficial volcanic manifestations occurred at Soufriere de Guadeloupe in 1976–1977. Superficial phenomena started on July 8, and had been preceded the previous year by a seismovolcanic crisis of exceptional amplitude for the Caribbean region. The essentially phreatic manifestations were accompanied by an extraordinarily high number of recorded quiakes: 16,467 earthquakes in 21 months, 153 of which classified as clearly perceived. The epicentral area covered about 30 km2, and the seismic energy released reached a total of 1018 erg. Thirty-six volcanic tremors accompanied violent superficial manifestations, and 26 strong phreatic eruptions have been observed. The important role played by seismology as a crisis detector for this type of volcanoes has been clearly shown.  相似文献   

19.
Pavlof Volcano (55° 25′N, 161° 54′W) exhibits two eruption styles: magmatic eruptions of one-to-two-days duration, and phreatic-phreatomagmatic activity lasting several days to two months. Thirty-four eruptions have occurred in historic times; of these the largest are Volcano Explosivity Index=3. Nine magmatic and 13 phreatomagmatic eruptions occurred between 1973–1983. All the magmatic eruptions occurred in the fall, between Sept. 9–Nov. 20. Four magmatic eruptions occurred during November 11–15, but in four different years. A 3-year-long period of eruptive activity between 1973–1976 bears striking resemblance to a period of activity between 1980–1983. No locatable shallow earthquakes (<50 km) have occurred within 30 km of Pavlof since 1973, which is quite unusual for an active island-arc volcano. Shallow events in the adjacent are segments have focal mechanisms with P-axes perpendicular to the arc (and parallel to plate convergence). Deep earthquakes (> 100 km) are clustered beneath Pavlof and several other volcanoes. Their T-axes show downdip tension within the slab. Deep teleseisms (> 160 km) mostly occurred between 1977–1979 when the volcano was not erupting. Catalogued volcanic activity throughout the Alaska/Aleutian arc shows a weak tendency to increase around the time of great (M > 7.8) earthquakes.  相似文献   

20.
The continuous background seismic activity contains information on the internal state of a volcanic system. Here, we report the influence of major regional tectonic earthquakes (M > 5 in most cases) on such state, reflected as changes in the spectral and dynamical parameters of the volcano continuous seismic data. Although changes do not always occur, analysis of five cases of earthquake-induced variations in the signals recorded at Popocatépetl volcano in central México reveal significant fluctuations following the tectonic earthquakes. External visible volcanic activity, such as small to moderate explosions and ash emissions, were related to those fluctuations. We briefly discuss possible causes of the variations. We conclude that recognition of fluctuations in the dynamical parameters in volcano monitoring seismic signals after tectonic earthquakes, even those located in the far field, hundreds of kilometers away, may provide an additional criterion for eruption forecasting, and for decision making in the definition of volcanic alert levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号